Petrogenesis of Xiangshui Granite from Xiangyun, in the West Margin of Yangtze Block: Zircon U-Pb Geochronology, Geochemical and Sr-Nd Isotope Constraints
-
摘要: 滇西至滇中一带新元古代镁铁质岩类、花岗岩类等岩浆岩有广泛分布,前人利用不同岩石组合指示这些岩浆岩形成于不同的地质构造背景.通过对祥云一带调查研究,新确定了南华纪花岗岩体,花岗岩体中含有大量的超镁铁质岩(橄榄辉长岩)、闪长岩类包体,包体与花岗岩不规则边界呈成分渐变,混合形成为花岗闪长岩、石英闪长岩、英云闪长岩类岩石.对花岗岩和铁镁质包体进行锆石U-Pb LA-ICP-MS同位素测年,获得了相近的206Pb/238U平均年龄:761.9±4.1 Ma、761.7±4.2 Ma、761.3±3.7 Ma和757.5±5.9 Ma.花岗岩主量元素显示具有高碱(alk)、中等Mg#(38~57,平均值为50)、低TiO2、P和亏损Ta、Nb、Sr特点,展现了富集轻稀土元素(LREEs)、亏损重稀土元素(HREEs)和选择性富集大离子亲石元素(LILEs)等特点,并且其εNd(t)为负值(-2.73~-4.90),表明花岗岩浆的物质应为早期古老地壳部分熔融的产物;橄榄辉长岩包体地球化学特征为:低K2O,低稀土总量,LREEs和LILEs略富集或不富集,具明显P负异常,Nb-Ta和Zr-Hf无亏损,具有非常高的Mg#(71~83)等特点,这些特征都指示这些橄榄辉长岩来源于幔源,应为地幔边缘岩浆熔融的产物.花岗闪长岩、闪长岩具有略富集LREE和LILE、亏损HREE,其Mg#(45~71)较高,P亏损、负εNd(t)值等特征,Ta、Nb、Ti、Sr、P略亏损或不亏损,组分介于花岗岩和橄榄辉长岩之间,显示了幔源和古老地壳部分熔融混合特点.这些岩石都展示陆源弧岩浆岩的构造背景,大洋板块向扬子板块俯冲导致幔源物质重熔的结果.Abstract: A lot of Neoproterozoic magmatic rocks were reported from west to central Yunnan, while these rocks were regarded that they were formed from different tectonic setting. In this paper, we show some granites keeping well granitic texture from Xiangshui granite batholith in Xiangyun county, including different enclaves such as mafic rocks (olivine gabbro) and diorites. In the field, some rocks of granidiorites, quartz diorites, tonalities were formed with the mixed granitic magma around the mafic rocks. Four similar LA-ICP-MS 206Pb/238U weight mean ages of zircons yield 761.9±4.1 Ma, 761.7±4.2 Ma, 761.3±3.7 Ma and 757.5±5.9 Ma. The granites are characterized by high alkaline, moderate Mg# values (38~57, average 50), low TiO2 and P contents, their trace elements show depleted Ta, Nb, Sr, enrichment LREEs and LILEs, depleted HREEs, and have low εNd(t) values of -2.73 to -4.90. All of the geochemical characters suggest that the granitic laves was the results of partial melt of the ancient crust. The olivine gabbro show low K2O content and total oxide rare earth elements (REEs), slightly to no enrichment LREEs and LILEs, and slightly or no depleted Nb-Ta, Zr-Hf values, but of depleted P, and high Mg# values (71-83, average 77), indicating the origin of these mafic rocks from MORB or the margin MORB melt. The diorites and granidiorites exhibit slightly enrichment LREE and LILE compared to HREE, variable Mg# (45-71, average 56), depleted P element, εNd(t) values of -3.83 to -4.42, slightly to no depleted Ta, Nb, Ti, Sr, P elements, these geochemical values are between those rocks of granites and olivine gabbro, which indicate the result of mix magma of MORB-derived melt and partial melt of ancient crust. In the tectonic diagrams, these rocks are plot into the continental arc field related to subduction of oceanic crust down to the Yangtze block, and the mafic magma of MORB were the result of oceanic crust remelting.
-
Key words:
- granite /
- mafic inclusion /
- zircon age dating /
- geochemistry /
- Neoproterozoic /
- west margin of Yangtze block
-
图 1 华南新元古代岩浆岩分布图(a)、滇中南华纪侵入岩分布图(b)和研究区区域地质简图(c)
a.据Chen et al.(2017)修改(年龄数据引用Yang et al., 2016; Wang et al., 2016; Chen et al., 2017);b.据《云南省成矿地质背景研究》之侵入岩分布图修编;c.据“1:25万大理幅”修编;1.二叠纪峨眉山玄武岩;2.二叠纪辉绿岩;3.古近纪石英斑岩; 4.南华纪花岗岩;5.奥陶系;6.泥盆系;7.石炭-二叠系;8.三叠系;9.侏罗系;10.白垩系;11.第四系;12.整合/角度不整合接触;13.断裂;14.采样位置
Fig. 1. (a) Distribution of Neoproterozoic magmatic rocks in the South China block, (b) distribution of Neoproterozoic magmatic rocks in the middle of Yunnan and (c) geologic sketch of study area
图 2 云南省宾川县南响水花岗体野外宏观露头岩石特征(a~b)及岩石镜下特征(c~f)
a.浅灰色带肉色中粗粒浅色花岗岩(D007-10-1)与灰绿色闪长岩产出关系及岩浆混合特征;b.浅灰色中粗粒浅色花岗岩与深绿灰色蛇纹石化橄榄辉长岩包体(D7001-13-2)产出关系及岩浆混合特征;c.中粗粒花岗岩(D007-10-1) (正交偏光);d.蛇纹石化橄榄辉长岩(D7001-13-2) (单偏光);e.铁泥化绢云母化黑云石英闪长岩(D7001-15-1) (单偏光);f.似斑状花岗闪长岩(D7001-19-1) (正交偏光);Ol.橄榄石;Cpx.单斜辉石;Hb.角闪石;Bt.黑云母;Pl.斜长石;Kfs.钾长石;Qtz.石英
Fig. 2. Field photos (a and b) and micrographs (c-f) showing the mineral assemblages and microstructures of the Neoproterozoic granitoids, diorite and olivine-gabbro inclusion from Xiangshui, south Binchuan county of middle Yunnan
图 5 响水花岗岩Harker图及主量元素变化关系
图b据Chappell (1999);图c据Green and Pearson (1986)
Fig. 5. Harker diagrams of major-element compositions from the Xiangshui granites
图 6 云南省宾川县南响水花岗岩类、闪长岩、橄榄辉长岩球粒陨石标准化稀土元素蛛网图(a, c, e)和原始地幔标准化微量元素蛛网图(b, d, f)
标准化值据Sun and McDonough (1989);陆源弧玄武岩、陆源弧安山岩曲线据Condie (1989);陆源弧安山岩、英安岩、流纹岩曲线据Drummond et al. (1996)
Fig. 6. Chondrite-normalized REE patterns (a, c, e) and primitive mantle-normalized spider diagram (b, d, f) of granitoids, diorite and olivine-gabbro inclusion from Xiangshui granites in south Binchuan county, Yunnan
图 7 扬子西缘响水花岗岩类、闪长岩和橄榄辉长岩包体初始Sr-Nd同位素组成
图中Sr-Nd同位素区域为Gangdese (藏南)和Lachlan (澳大利亚) I-型花岗岩、华南东部Kwangsian阶和Indosinian阶花岗岩以及前寒武纪变质沉积岩岩石,来源Wang et al. (2016)
Fig. 7. Initial Sr-Nd isotopic composition for the Xiangshui granitoids, diorite and olivine-gabbro inclusion of the SW Yangtze Block
图 8 响水花岗岩体εNd(t)-SiO2图解
亏损地幔(SiO2=45%, Nd=11.3×10-6, εNd(t)=+7.3);洋中脊玄武岩熔融(SiO2=48%, Nd=20.0×10-6, εNd(t)=+7.3);初始弧火山(SiO2=47.4%, Nd=10.1×10-6, εNd(t)=+7.3);沉积岩熔融(SiO2=75%, Nd=183.0×10-6, εNd(t)=-2.0);俯冲相关的洋盆沉积岩(SiO2=75%, Nd=27.0×10-6, εNd(t)=-1.8);早元古代沉积岩(SiO2=82.7%, Nd=59.6×10-6, εNd(t)=-16.6);太古代沉积岩(SiO2=76.4%, Nd=131.0×10-6, εNd(t)=-23.1)
Fig. 8. εNd(t) vs. SiO2 diagram from Xiangshui granite
图 9 响水花岗岩体Ti-Zr图(a)、Ti/Zr vs. Zr/Y图(b)和La/Yb vs. Th/Yb图(c)
a.据Göncüoglu et al. (2010); b.据Condie (1989); c.据Condie (1989)
Fig. 9. Ti-Zr diagram (a), Ti/Zr vs. Zr/Y diagram (b) and La/Yb vs. Th/Yb diagram (c) for the Xiangshui granite
图 10 响水花岗岩Rb/30-Hf-Ta×3 (a)和Rb-(Y+Nb) (b)图
a.据Harris et al. (1986); b.据Pearce (1996)
Fig. 10. Rb/30-Hf-Ta×3 (a) and Rb-(Y+Nb) (b) diagrams for Xiangshui granitoid
图 11 扬子西缘俯冲作用及岩浆演化特征
底图据Chen et al. (2017)修改
Fig. 11. Subduction of the ocean towards the Yangtze block showing the magmatic evolution
-
[1] Barker, F., 1979. Trondhjemites, Dacites and Related Rocks. Elsevier Scientific Publishing Company, Amsterdam. [2] Cai, Y., Wang, Y., Cawood, P.A., et al., 2014. Neoproterozoic Subduction along the Ailaoshan Zone, South China:Geochronological and Geochemical Evidence from Amphibolite. Precambrian Research, 245:13-28. https://doi.org/10.1016/j.precamres.2014.01.009 [3] Cai, Y., Wang, Y., Cawood, P.A., et al., 2015. Neoproterozoic Crustal Growth of the Southern Yangtze Block:Geochemical and Zircon U-Pb Geochronological and Lu-Hf Isotopic Evidence of Neoproterozoic Diorite from the Ailaoshan Zone. Precambrian Research, 266:137-149. https://doi.org/10.1016/j.precamres.2015.05.008 [4] Chappell, B.W., 1999. Aluminium Saturation in I- and S-Type Granites and the Characterization of Fractionated Haplogranites. Lithos, 46(3):535-551. https://doi.org/10.1016/S0024-4937(98)00086-3 [5] Chen L., Zhen Y. F., 2019. Neoproterozoic Oceanic Slab-Mantle Interaction:Geochemical Evidence from Mesozoic Andesitic Rocks in the Middle and Lower Yangtze Valley. Journal of Earth Science, 44(12):4144-4151(in Chinese with English abstract). [6] Chen, X., Liu, J., Fan, W., et al., 2017. Neoproterozoic Granitoids along the Ailao Shan-Red River Belt:Zircon U-Pb Geochronology, Hf Isotope Analysis and Tectonic Implications. Precambrian Research, 299:244-263. https://doi.org/10.1016/j.precamres.2017.06.024 [7] Cheng, J. X., Luo, J. H., Wu, Y. D., et al., 2014. Geochronology, Geochemistry and Tectonic Significance of the Xiatianba Granite in Northeastern Yunnan. Acta Geologica Sinica, 88(3):337-346 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201403004 [8] Condie, K.C., 1989. Geochemical Changes in Baslts and Andesites across the Archean-Proterozoic Boundary:Identification and Significance. Lithos, 23(1-2):1-18. https://doi.org/10.1016/0024-4937(89)90020-0 [9] Drummond, M.S., Defant, M.J., Kepezhinskas, P.K., 1996. Petrogenesis of Slab-Derived Trondhjemite-Tonalite-Dacite/Adakite Magmas. Transactions of the Royal Society of Edinburgh Earth Sciences, 87(1-2):205-215. https://doi.org/10.1017/s0263593300006611 [10] Göncüoglu, M.C., Sayit, K., Tekin, U.K., 2010. Oceanization of the Northern Neotethys:Geochemical Evidence from Ophiolitic Melange Basalts within the İzmir-Ankara Suture Belt, NW Turkey. Lithos, 116:175-187. https://doi.org/10.1016/j.lithos.2010.01.007 [11] Green, T.H., Pearson, N.J., 1986. Ti-Rich Accessory Phase Saturation in Hydrous Mafic-Felsic Compositions at High P-T. Chemical Geology, 54(3):185-201. https://doi.org/10.1016/0009-2541(86)90136-1 [12] Harris, N.B.W., Pearce, J.A., Tindle, A.G., 1986. Geochemical Characteristics of Collision Zone Magmatism. In: Coward, M.P., Reis, A.C., eds., Collision Tectonics. Geological Society of London Special Publication, London, 67-81. [13] Iwamori, H., Richardson, C., Maruyama, S., 2007. Numerical Modeling of Thermal Structure, Circulation of H2O, and Magmatism-Metamorphism in Subduction Zones:Implications for Evolution of Arcs. Gondwana Research, 11:109-119. https://doi.org/10.1016/j.gr.2006.04.010 [14] Li, W.X., Li, X.H., Li, Z.X., 2005. Neoproterozoic Bimodal Magmatism in the Cathaysia Block of South China and Its Tectonic Significance. Precambrian Research, 136:51-66. https://doi.org/10.1016/j.precamres.2004.09.008 [15] Li, X., Li, Z., Zhou, H., et al., 2003a. SHRIMP U-Pb Zircon Age, Geochemistry and Nd Isotope of the Guandaoshan Pluton in SW Sichuan:Petrogenesis and Tectonic Significance. Science in China:Earth Sciences, 46:73-83. [16] Li, X.H., Zhu, W.G., Zhong, H., et al., 2011. The Tongde Picritic Dikes in the Western Yangtze Block: Evidence for Ca.800 Ma Mantle Plume Magmatism in South China during the Breakup of Rodinia. Institute of Geology And Geophysics, Chinese Academy of Science, Beijing, 509-522(in Chinese with English abstract). [17] Li, Z.X., Li, X. H., Kinny, P. D., et al., 2003b. Geochronology of Neoproterozoic Syn-Rift Magmatism in the Yangtze Craton, South China and Correlations with other Continents:Evidence for a Mantle Superplume that Broke up Rodinia. Precambrian Research, 122:85-109. doi: 10.1016/S0301-9268(02)00208-5 [18] Lin, T. H., Chung, S. L., Chiu, H. Y., et al., 2012. Zircon U-Pb and Hf Isotope Constraints from the Ailao Shan-Red River Shear Zone on the Tectonic and Crustal Evolution of Southwestern China. Chemical Geology, 291:23-37. doi: 10.1016/j.chemgeo.2011.11.011 [19] Liu, Y., Zong, K., Kelemen, P.B., et al., 2008. Geochemistry and Magmatic History of Eclogites and Ultramafic Rocks from the Chinese Continental Scientific Drill Hole:Subduction and Ultrahigh-Pressure Metamorphism of Lower Crustal Cumulates. Chemical Geology, 247, 133-153. https://doi.org/10.1016/j.chemgeo.2007.10.016 [20] Moores, E.M., 1991. Southwest U.S.East Antarctic (SWEAT) Connection:A Hypothesis. Geology, 19:425-428.https://doi.org/10.1130/0091-7613(1991)019 < 0425:SUSEAS > 2.3.CO; 2 doi: 10.1130/0091-7613(1991)019<0425:SUSEAS>2.3.CO;2 [21] Nakamura, H., Iwamori, H., 2009. Contribution of Slab-Fluid in Arc Magmas Beneath the Japan Arcs. Gondwana Research, 16:431-445. https://doi.org/10.1016/j.gr.2009.05.004 [22] Pearce, J.A., 1996. Sources and Settings of Granitic Rocks. Episodes, 19:120-125. https://doi.org/10.18814/epiiugs/1996/v19i4/005 [23] Qi, X., Santosh, M., Zhao, Y., H et al., 2016. Mid-Neoproterozoic Ridge Subduction and Magmatic Evolution in the Northeastern Margin of the Indochina Block:Evidence from Geochronology and Geochemistry of Calc-Alkaline Plutons. Lithos, 248-251:138-152. https://doi.org/10.1016/j.lithos.2015.12.028 [24] Sun, S.S., Mcdonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1):313-345. doi: 10.1144/GSL.SP.1989.042.01.19 [25] Wang, G., Xiu, Z. Q., Liu, Y., et al., 2015. Geochemical Elements Characteristics of Granite in Xujie of Mou Ding, Yunnan. Journal of Jilin University (Earth Science Edition), 45:1510-1511 (in Chinese with English abstract). [26] Wang, J., Li, X.H., Duan, T.Z., et al., 2003. Zircon SHRIMP U-Pb Dating for the Cangshuipu Volcanic Rocks and Its Implications for the Lower Boundary Age of the Nanhua Strata in South China. Chinese Science Bulletin, 48:1663-1669(in Chinese). doi: 10.1360/03wd0168 [27] Wang, W., Liu, S., Feng, Y., et al., 2012. Chronology, Petrogenesis and Tectonic Setting of the Neoproterozoic Tongchang Dioritic Pluton at the Northwestern Margin of the Yangtze Block:Constraints from Geochemistry and Zircon U-Pb-Hf Isotopic Systematics. Gondwana Research, 22:699-716. https://doi.org/10.1016/j.gr. 2011.11.015 doi: 10.1016/j.gr.2011.11.015 [28] Wang, X.C., Li, X.H., Li, W.X., et al., 2007. Ca. 825Ma Komatiitic Basalts in South China:First Evidence for > 1 500℃ Mantle Melts by a Rodinian Mantle Plume. Geology, 35:1103-1106. https://doi.org/10.1130/G23878A.1 [29] Wang, Y., Zhou, Y., Cai, Y., et al., 2016. Geochronological and Geochemical Constraints on the Petrogenesis of the Ailaoshan Granitic and Migmatite Rocks and Its Implications on Neoproterozoic Subduction along the SW Yangtze Block. Precambrian Research, 283:106-124. https://doi.org/10.1016/j.precamres.2016.07.017 [30] Yang, Y.N., Wang, X.C., Li, Q.L. et al., 2016. Integrated In-Situ U-Pb Age and Hf-O Analyses of Zircon from Suixian Group in Northern Yangtze:New Insights into the Neoproterozoic Low-δ18O Magmas in the South China Block. Precambrian Research, 273:151-164. doi: 10.1016/j.precamres.2015.12.008 [31] Zhang, F. F., Wang, X. L., Wang, D., et al., 2017. Neoproterozoic Back Arc Basin on the Southeastern Margin of the Yangtze Block during Rodinia Assembly:New Evidence from Provenance of Detrital Zircons and Geochemistry of Mafic Rocks. Geological Society of America Bulletin, 129:904-919. doi: 10.1130/B31528.1 [32] Zhang, S. B., Wu, P., Zheng, Y. F., 2019. Mafic Magmatic Records of Rodinia Amalgamation in the Northern Margin of the South China Block. Journal of Earth Science, 44(12):4157-4166(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201912026 [33] Zhao, J. H., Zhou, M. F., Yan, D. P., et al., 2011. Reappraisal of the Ages of Neoproterozoic Strata in South China:No Connection with the Grenvillian Orogeny. Geology, 39, 299-302. https://doi.org/10.1130/G31701.1 [34] Zhao, J. H., Zhou, M.F., 2007. Geochemistry of Neoproterozoic Mafic Intrusions in the Panzhihua District (Sichuan Province, SW China):Implications for Subduction-Related Metasomatism in the Upper Mantle. Precambrian Research, 152:27-47. https://doi.org/10.1016/j.precamres.2006.09.002 [35] Zhao, J. X., Chen, Y. L., Li, Z. H., 2006. Zircon U-Pb SHRIMP Dating for the Kangding Complex and Its Geological Significance. Geoscience, 20, 378-385 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz200603003 [36] Zheng, Y. F., 2003. Neoproterozoic Magmatic Activity and Global Change. Chinese Science Bulletin, 48:1639-1656. doi: 10.1360/03wd0342 [37] Zhou, M.F., Yan, D.P., Wang, C.L., et al., 2006. Subduction-Related Origin of the 750 Ma Xuelongbao Adakitic Complex (Sichuan Province, China):Implications for the Tectonic Setting of the Giant Neoproterozoic Magmatic Event in South China. Earth & Planetary Science Letters, 248:286-300. https://doi.org/10.1016/j.epsl.2006.05.032 [38] Zhou, M.F., Zhao, J.H., Xia, X., et al., 2007. Comment on "Revisiting the "YanbianTerrane":Implications for Neoproterozoic Tectonic Evolution of the Western Yangtze Block, South China". Precambrian Research, 151:14-30. https://doi.org/10.1016/j.precamres.2006.11.012 [39] 陈龙, 郑永飞, 2019.长江中下游中生代安山质火山岩记录的新元古代大洋板片-地幔相互作用.地球科学, 44(12):4144-4151. doi: 10.3799/dqkx.2019.243 [40] 程佳孝, 罗金海, 武昱东, 等, 2014.滇东北下田坝花岗岩年代学、地球化学及其构造意义.地质学报, 88(3):337-346. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201403004 [41] 汪刚, 徐争启, 刘瑶, 等, 2015.云南牟定戌街地区花岗岩元素地球化学特征.吉林大学学报:地球科学版, 45:1510-1511. [42] 张少兵, 吴鹏, 郑永飞, 2019.罗迪尼亚超大陆聚合在华南陆块北缘的镁铁质岩浆岩记录.地球科学, 44(12):4157-4166. doi: 10.3799/dqkx.2019.252 [43] 赵俊香, 陈岳龙, 李志红, 2006.康定杂岩锆石SHRIMP U-Pb定年及其地质意义.现代地质, 20:378-385. doi: 10.3969/j.issn.1000-8527.2006.03.003 -
dqkx-45-7-2426-Table1-2.doc