• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    江汉平原土壤饱和渗透系数变化规律及影响因素

    刘天奇 汪丙国 张钧帅 段燕

    刘天奇, 汪丙国, 张钧帅, 段燕, 2021. 江汉平原土壤饱和渗透系数变化规律及影响因素. 地球科学, 46(2): 671-682. doi: 10.3799/dqkx.2020.039
    引用本文: 刘天奇, 汪丙国, 张钧帅, 段燕, 2021. 江汉平原土壤饱和渗透系数变化规律及影响因素. 地球科学, 46(2): 671-682. doi: 10.3799/dqkx.2020.039
    Liu Tianqi, Wang Bingguo, Zhang Junshuai, Duan Yan, 2021. Variation Law and Influencing Factors of Soil Saturated Hydraulic Conductivity in Jianghan Plain. Earth Science, 46(2): 671-682. doi: 10.3799/dqkx.2020.039
    Citation: Liu Tianqi, Wang Bingguo, Zhang Junshuai, Duan Yan, 2021. Variation Law and Influencing Factors of Soil Saturated Hydraulic Conductivity in Jianghan Plain. Earth Science, 46(2): 671-682. doi: 10.3799/dqkx.2020.039

    江汉平原土壤饱和渗透系数变化规律及影响因素

    doi: 10.3799/dqkx.2020.039
    基金项目: 

    国家自然科学基金项目 41772268

    中国地质调查局项目 DD20190263

    中国地质调查局项目 2019040022

    详细信息
      作者简介:

      刘天奇(1996-), 男, 硕士研究生, 主要研究方向为包气带水文学.ORCID: 0000-0001-6349-9425.E-mail: 15520842852@163.com

      通讯作者:

      汪丙国, E-mail: bgwang@cug.edu.cn

    • 中图分类号: P641.1

    Variation Law and Influencing Factors of Soil Saturated Hydraulic Conductivity in Jianghan Plain

    • 摘要: 目前对影响土壤饱和渗透系数规律的机理缺乏深刻认识.以不同沉积环境、不同岩性及不同土地利用方式的江汉平原汉江下游浅层土壤为对象,采用改进的TST-55型土壤渗透仪开展室内变水头达西实验.结果表明,研究区内土壤饱和渗透系数平均值为4.94×10-5cm/s,服从对数-正态分布;粉砂壤土冲积物和湖积物的饱和渗透系数平均值为3.53×10-5cm/s和1.98×10-5cm/s,粉砂质粘壤土中,两者分别为8.13×10-7cm/s和5.88×10-7cm/s,同一岩性冲积物的饱和渗透系数较湖积物大;冲积物中,砂壤土、粉砂壤土和粉砂质粘壤土饱和渗透系数平均值为1.98×10-5 cm/s、3.53×10-5 cm/s和8.13×10-7 cm/s,表现为砂壤土>粉砂壤土>粉砂质粘壤土;耕作土壤中,粉砂壤土、粉砂质粘壤土的饱和渗透系数平均值为3.75×10-5 cm/s和8.11×10-7cm/s,非耕作土壤中,两者分别为1.88×10-6cm/s、5.93×10-7cm/s,同一岩性耕作土壤饱和渗透系数较非耕作土壤大.

       

    • 图  1  加装气压改进装置的TST-55型土壤渗透仪

      Fig.  1.  TST-55 soil permeometer with air pressure improvement device

      图  2  采样点分布及沉积环境分区

      Fig.  2.  Sampling point distribution and sedimentary environment zoning

      图  3  典型取样浅坑

      Fig.  3.  Typical sampling pit

      图  4  耕作(a)和非耕作(b)土壤饱和渗透系数分布特征

      Fig.  4.  The distribution characteristics of saturated hydraulic conductivity of cultivated soil(a) and non-cultivated soil(b)

      图  5  研究区表层土壤岩性分布

      Fig.  5.  Lithology distribution of topsoil in the study area

      图  6  汉江流域和长江流域冲积成因粉砂壤土参数对比

      Fig.  6.  Comparison of parameters of silty loam in alluvial sendiments between Hanjiang River basin and Yangtze River basin

      图  7  不同沉积类型土壤饱和渗透系数

      Fig.  7.  Soil saturated hydraulic conductivity of different sedimentary types

      图  8  耕作与非耕作土壤的饱和渗透系数

      Fig.  8.  Saturated hydraulic conductivity of cultivated and noncultivated soils

      图  9  粉砂壤土不同土地利用类型的土壤饱和渗透系数

      Fig.  9.  Saturated hydraulic conductivity of silt loam with different land uses

      图  10  不同岩性土壤饱和渗透系数与孔隙度(a)和干密度(b)的关系

      Fig.  10.  The relations between saturated hydraulic conductivity and soil porosity (a) and bulk density (b) of different lithologies

      图  11  耕作与非耕作土壤孔隙度(a)和干密度(b)

      Fig.  11.  Porosity (a) and bulk density (b) of cultivated and non-cultivated soils

      表  1  研究区实验点分布情况

      Table  1.   Basic information of the study area

      沉积类型 样品数(个) 土地利用类型 样品数(个)
      冲积物 100 耕地 11
      非耕地 89
      湖积物 20 耕地 15
      非耕地 5
      下载: 导出CSV

      表  2  实验成果统计

      Table  2.   The statistical experiment results

      最小值 最大值 平均值 CV(%)
      粘粒含量(%) 0.04 26.51 5.77 105.1
      粉粒含量(%) 10.70 95.11 70.51 24.9
      砂粒含量(%) 3.27 84.66 23.55 76.5
      孔隙度 0.40 0.59 0.48 6.4
      干密度(g/cm3) 1.05 1.62 1.37 8.5
      饱和渗透系数(cm/s) 3.21×10-7 1.28×10-3 4.94×10-5 270.5
      注:CV为变异系数.
      下载: 导出CSV

      表  3  耕作与非耕作土壤饱和渗透系数与各影响因素的相关性

      Table  3.   The correlation between saturated hydraulic conductivity of cultivated and non-cultivated soils and influencing factors

      影响因素 非耕作土壤饱和渗透系数(n=16) 耕作土壤饱和渗透系数(n=104)
      孔隙度 0.63* (0.016) -0.02 (0.79)
      干密度 -0.70* (0.048) -0.22 (0.08)
      孔隙比 0.68** (0.007) -0.01 (0.93)
      注:***分别表示变量在5%、1%的统计水平上显著.
      下载: 导出CSV
    • [1] Alyamani, M. S. , Şen, Z. , 1993. Determination of Hydraulic Conductivity from Complete Grain-Size Distribution Curves. Groundwater, 31(4): 551-555. doi: 10.1111/j.1745-6584.1993.tb00587.x
      [2] Bagarello, V. , Baiamonte, G. , Caia, C. , 2019. Variability of Near-Surface Saturated Hydraulic Conductivity for the Clay Soils of a Small Sicilian Basin. Geoderma, 340: 133-145. doi: 10.1016/j.geoderma.2019.01.008
      [3] Cai, H. J. , Xu, J. T. , Wang, J. , et al. , 2016. Yearly Variation of Soil Infiltration Parameters in Irrigated Field Based on WinSRFR4.1. Transactions of the Chinese Society of Agricultural Engineering, 32(2): 92-98 (in Chinese with English abstract). http://www.ingentaconnect.com/content/tcsae/tcsae/2016/00000032/00000002/art00014
      [4] Chapuis, R. P. , 2012. Predicting the Saturated Hydraulic Conductivity of Soils: A Review. Bulletin of Engineering Geology and the Environment, 71(3): 401-434. doi: 10.1007/s10064-012-0418-7
      [5] Chen, F. , Zhang, H. T. , Wang, T. W. , et al. , 2014. Taxonomy and Spatial Distribution of Soils Typical of Jianghan Plain. Acta Pedologica Sinica, 51(4): 761-771 (in Chinese with English abstract). http://www.cqvip.com/QK/90156X/20144/50241836.html
      [6] Chen, M. Z. , Yan, C. H. , Wang, Y. Y. , et al. , 2008. The Influence Factors of Soil Permeability in Chenqibao Village of Puding County. Hydrogeology & Engineering Geology, 35(4): 66-70 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SWDG200804020.htm
      [7] Chen, X. H. , 2005. Statistical and Geostatistical Features of Streambed Hydraulic Conductivities in the Platte River, Nebraska. Environmental Geology, 48(6): 693-701. doi: 10.1007/s00254-005-0007-1
      [8] Guo, H. , Luo, Y. S. , Li, G. D. , 2009. Experimental Research on Triaxial Seepage Test of Saturated Loess Based on Regional Differences. China Rural Water and Hydropower, (10): 112-114 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-ZNSD200910033.htm
      [9] Hu, S. J. , Tian, C. Y. , Song, Y. D. , et al. , 2011. Determination and Calculation of Soil Permeability Coefficient. Transactions of the Chinese Society of Agricultural Engineering, 27(5): 68-72 (in Chinese with English abstract). http://dl.sciencesocieties.org/publications/tcsae/abstracts/2011/5/2011.5.011
      [10] Hu, Z. M. , Fan, J. W. , Zhong, H. P. , et al. , 2005. Progress on Grassland Underground Biomass Researches in China. Chinese Journal of Ecology, 24(9): 1095-1101 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-STXZ200509023.htm
      [11] Huang, D. L. , Fei, L. J. , Zeng, J. , et al. , 2018. Influencing Factors of Soil Water Vertical Infiltration Characteristics Based on the Grey Correlation Method. Chinese Agricultural Science Bulletin, 34(32): 95-101 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZNTB201832017.htm
      [12] Ilek, A. , Kucza, J. , 2014. A Laboratory Method to Determine the Hydraulic Conductivity of Mountain Forest Soils Using Undisturbed Soil Samples. Journal of Hydrology, 519: 1649-1659. doi: 10.1016/j.jhydrol.2014.09.045
      [13] Lin, H. Z. , Peng, J. B. , Yang, H. , et al. , 2017. A Simple Estimation Approach for the Saturated Permeability of Loess in Field by a Double-Ring Infiltrometer. Advances in Water Science, 28(4): 523-533 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKXJ201704006.htm
      [14] Liu, J. L. , Li, J. W. , Zhou, Y. , et al. , 2019. Effects of Straw Mulching and Tillage on Soil Water Characteristics. Transactions of the Chinese Society for Agricultural Machinery, 50(7): 333-339 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_transactions-chinese-society-agricultural-machinery_thesis/0201272897202.html
      [15] Lü, J. , Chen, Z. H. , Gong, X. , 2013. Test Method for the Determination of Soil Saturated Permeability Coefficients and the Optimization of Results. Safety and Environmental Engineering, 20(5): 144-148, 162 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_safety-environmental-engineering_thesis/0201217111640.html
      [16] Ma, D. H. , Zhang, J. B. , Lai, J. B. , et al. , 2016. An Improved Method for Determining Brooks-Corey Model Parameters from Horizontal Absorption. Geoderma, 263: 122-131. doi: 10.1016/j.geoderma.2015.09.007
      [17] Mo, B. , Chen, X. Y. , Yang, Y. C. , et al. , 2016. Research on Soil Infiltration Capacity and Its Influencing Factors in Different Land Uses. Research of Soil and Water Conservation, 23(1): 13-17 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-STBY201601003.htm
      [18] Perroux, K. M. , White, I. , 1988. Designs for Disc Permeameters. Soil Science Society of America Journal, 52(5): 1205-1215. doi: 10.2136/sssaj1988.03615995005200050001x
      [19] Petersson, H. , Messing, I. , Steen, E. , 1987. Influence of Root Mass on Saturated Hydraulic Conductivity in Arid Soils of Central Tunisia. Arid Soil Research and Rehabilitation, 1(3): 149-160. doi: 10.1080/15324988709381140
      [20] Rehfeldt, K. R. , Boggs, J. M. , Gelhar, L. W. , 1992. Field Study of Dispersion in a Heterogeneous Aquifer: 3. Geostatistical Analysis of Hydraulic Conductivity. Water Resources Research, 28(12): 3309-3324. doi: 10.1029/92wr01758
      [21] Shi, H. , Liu, S. R. , 2005. The Macroporosity Properties of Forest Soil and Its Eco-hydrological Significance. Journal of Mountain Research, 23(5): 533-539 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-SDYA200505004.htm
      [22] Tavenas, F. , Jean, P. , Leblond, P. , et al. , 1983. The Permeability of Natural Soft Clays. Part I: Methods of Laboratory Measurement. Canadian Geotechnical Journal, 20(4): 629-644. doi: 10.1139/t83-072
      [23] Taylor, D. W. , 1948. Fundamentals of Soil Mechanics. Soil Science, 66(2): 161. doi: 10.1097/00010694-194808000-00008
      [24] Wan, N. , Sun, K. , Fan, W. G. , et al. , 2020. The Utilization Mode of Cold Waterlogged Paddy Field in Jianghan Plain. Earth Science, 45(3): 1041-1050 (in Chinese with English abstract).
      [25] Wang, G. L. , Liu, G. B. , 2009. Effect of Stipa Bungeana Communities on Soil Infiltration in Soil Profile in Loess Hilly Region. Journal of Soil and Water Conservation, 23(3): 227-231 (in Chinese with English abstract). http://www.cqvip.com/QK/96166X/200903/30962432.html
      [26] Wang, J. , Liang, X. , Jin, M. G. , et al. , 2020. Evaluation of Phreatic Evaporation in Manas River Basin Plain by Bromine Tracing Method. Earth Science, 45(3): 1051-1060 (in Chinese with English abstract).
      [27] Wang, L. X. , Liang, X. , Li, J. , 2020. Analysis of Origin of Groundwater in Jianghan Plain Based on Typical Drillings. Earth Science, 45(2): 701-710 (in Chinese with English abstract).
      [28] Xing, W. H. , Wang, J. H. , Zhang, F. W. , et al. , 2019. Study on Characteristics of Water Vapor Channel Affecting Rainfall in Hanjiang River Basin during Autumn Flood Season. Yangtze River, 50(2): 101-106 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-RIVE201902019.htm
      [29] Xu, M. X. , Liu, G. B. , Bu, C. F. , et al. , 2002. Experimental Study on Soil Infiltration Characteristics Using Disc Permeameter. Transactions of the Chinese Society of Agricultural Engineering, 18(4): 54-58 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-NYGU200204012.htm
      [30] Yi, Y. , Xin, Z. B. , Qin, Y. B. , et al. , 2013. Study on Physical Characteristics of Soil Water in Different Land Uses in Loess Hilly Region. Research of Soil and Water Conservation, 20(5): 45-49 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-STBY201305009.htm
      [31] Zhang, G. X. , Shen, L. X. , Guo, Y. M. , 2016. Effect of Soil Structure on Water Infiltration under Moistube Irrigation. Journal of Irrigation and Drainage, 35(7): 35-39 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GGPS201607006.htm
      [32] Zhang, J. W. , Liang, X. , Ge, Q. , et al. , 2017. Calculation Method about Hydraulic Conductivity of Quaternary Aquitard in Jianghan Plain. Earth Science, 42(5): 761-770 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201705011.htm
      [33] Zhang, S. , Tang, H. M. , Liu, X. , et al. , 2018. Seepage and Instability Characteristics of Slope Based on Spatial Variation Structure of Saturated Hydraulic Conductivity. Earth Science, 43(2): 622-634 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201802022.htm
      [34] Zhao, J. F. , Wang, B. G. , Liao, J. Q. , et al. , 2019. Variation Law of Soil Saturated Hydraulic Conductivity Based on Field Guelph Infiltration Method and Indoor Variable Head Darcy Method. Geological Science and Technology Information, 38(2): 235-242 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZKQ201902027.htm
      [35] Zhou, Y. L. , 2019. Study on Restore to the Original State for Mechanical Soil Compaction. Journal of Chinese Agricultural Mechanization, 40(1): 141-144 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-GLJH201901026.htm
      [36] Zhu, D. F. , Lin, X. Q. , Cao, W. X. , 2002. Root Growth in Rice and Its Response to Soil Density. Chinese Journal of Applied Ecology, 13(1): 60-62 (in Chinese with English abstract). http://europepmc.org/abstract/MED/11962322
      [37] Zhu, X. W. , Yan, J. M. , Wang, X. B. , et al. , 2014. Laboratory Investigation of the Permeability of Saturated Muddy Clays. Water Resources and Hydropower Engineering, 45(9): 107-111 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SJWJ201409029.htm
      [38] Zhuang, X. S. , Zheng, F. , Tao, G. L. , et al. , 2013. Study on Impact of Porosity of Saturated Clays on Hydraulic Conductivity. Journal of Hubei University of Technology, 28(5): 93-95 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HBGX201305026.htm
      [39] 蔡焕杰, 徐家屯, 王健, 等, 2016. 基于WinSRFR模拟灌溉农田土壤入渗参数年变化规律. 农业工程学报, 32(2): 92-98. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201602014.htm
      [40] 陈芳, 张海涛, 王天巍, 等, 2014. 江汉平原典型土壤的系统分类及空间分布研究. 土壤学报, 51(4): 761-771. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201404010.htm
      [41] 陈明珠, 阎长虹, 王玉英, 等, 2008. 土体渗透性影响因素: 以普定陈旗堡为例. 水文地质工程地质, 35(4): 66-70. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG200804020.htm
      [42] 郭鸿, 骆亚生, 李广冬, 2009. 考虑地区差异性的饱和黄土三轴渗透试验研究. 中国农村水利水电, (10): 112-114. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNSD200910033.htm
      [43] 胡顺军, 田长彦, 宋郁东, 等, 2011. 土壤渗透系数测定与计算方法的探讨. 农业工程学报, 27(5): 68-72. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201105012.htm
      [44] 胡中民, 樊江文, 钟华平, 等, 2005. 中国草地地下生物量研究进展. 生态学杂志, 24(9): 1095-1101. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ200509023.htm
      [45] 黄德良, 费良军, 曾健, 等, 2018. 基于灰色关联法土壤水分垂直入渗影响因素研究. 中国农学通报, 34(32): 95-101. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNTB201832017.htm
      [46] 林鸿州, 彭建兵, 杨华, 等, 2017. 求取现场黄土饱和渗透系数的双环入渗法. 水科学进展, 28(4): 523-533. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201704006.htm
      [47] 刘继龙, 李佳文, 周延, 等, 2019. 秸秆覆盖与耕作方式对土壤水分特性的影响. 农业机械学报, 50(7): 333-339. https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX201907036.htm
      [48] 吕杰, 陈植华, 龚星, 2013. 测定土壤饱和渗透系数的试验方法与结果优化. 安全与环境工程, 20(5): 144-148, 162. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ201305031.htm
      [49] 莫斌, 陈晓燕, 杨以翠, 等, 2016. 不同土地利用类型土壤入渗性能及其影响因素研究. 水土保持研究, 23(1): 13-17. https://www.cnki.com.cn/Article/CJFDTOTAL-STBY201601003.htm
      [50] 石辉, 刘世荣, 2005. 森林土壤大孔隙特征及其生态水文学意义. 山地学报, 23(5): 533-539. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA200505004.htm
      [51] 万能, 孙科, 范伟国, 等, 2020. 江汉平原富硒冷浸田的利用模式. 地球科学, 45(3): 1041-1050. doi: 10.3799/dqkx.2019.953
      [52] 王国梁, 刘国彬, 2009. 黄土丘陵区长芒草群落对土壤水分入渗的影响. 水土保持学报, 23(3): 227-231. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS200903048.htm
      [53] 王健, 梁杏, 靳孟贵, 等, 2020. 运用溴离子示踪法评价玛纳斯河流域平原区潜水蒸发. 地球科学, 45(3): 1051-1060. doi: 10.3799/dqkx.2019.089
      [54] 王露霞, 梁杏, 李静, 2020. 基于典型钻孔的江汉平原地下水成因分析. 地球科学, 45(2): 701-710. doi: 10.3799/dqkx.2018.363
      [55] 邢雯慧, 王坚红, 张方伟, 等, 2019. 秋汛期影响汉江流域降水的水汽通道特征研究. 人民长江, 50(2): 101-106. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE201902019.htm
      [56] 许明祥, 刘国彬, 卜崇峰, 等, 2002. 圆盘入渗仪法测定不同利用方式土壤渗透性试验研究. 农业工程学报, 18(4): 54-58. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU200204012.htm
      [57] 易扬, 信忠保, 覃云斌, 等, 2013. 黄土丘陵区不同土地利用类型土壤水分物理性质研究. 水土保持研究, 20(5): 45-49. https://www.cnki.com.cn/Article/CJFDTOTAL-STBY201305009.htm
      [58] 张国祥, 申丽霞, 郭云梅, 2016. 微润灌溉条件下土壤质地对水分入渗的影响. 灌溉排水学报, 35(7): 35-39. https://www.cnki.com.cn/Article/CJFDTOTAL-GGPS201607006.htm
      [59] 张婧玮, 梁杏, 葛勤, 等, 2017. 江汉平原第四系弱透水层渗透系数求算方法. 地球科学, 42(5): 761-770. doi: 10.3799/dqkx.2017.064
      [60] 张抒, 唐辉明, 刘晓, 等, 2018. 基于饱和渗透系数空间变异结构的斜坡渗流及失稳特征. 地球科学, 43(2): 622-634. doi: 10.3799/dqkx.2017.617
      [61] 赵建芳, 汪丙国, 廖嘉琦, 等, 2019. 基于野外Guelph入渗法与室内变水头达西法的土壤饱和渗透系数变化规律. 地质科技情报, 38(2): 235-242. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201902027.htm
      [62] 周艳丽, 2019. 农田土壤机械压实修复研究. 中国农机化学报, 40(1): 141-144. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJH201901026.htm
      [63] 朱德峰, 林贤青, 曹卫星, 2002. 水稻根系生长及其对土壤紧密度的反应. 应用生态学报, 13(1): 60-62. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB200201012.htm
      [64] 朱熹文, 严建明, 王贤奔, 等, 2014. 淤泥质饱和土渗透系数的室内实验研究. 水利水电技术, 45(9): 107-111. https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ201409029.htm
      [65] 庄心善, 郑飞, 陶高梁, 等, 2013. 饱和黏性土孔隙性对渗透系数的影响研究. 湖北工业大学学报, 28(5): 93-95. https://www.cnki.com.cn/Article/CJFDTOTAL-HBGX201305026.htm
    • 加载中
    图(11) / 表(3)
    计量
    • 文章访问数:  857
    • HTML全文浏览量:  294
    • PDF下载量:  27
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-12-12
    • 刊出日期:  2021-02-15

    目录

      /

      返回文章
      返回