Variation Law and Influencing Factors of Soil Saturated Hydraulic Conductivity in Jianghan Plain
-
摘要: 目前对影响土壤饱和渗透系数规律的机理缺乏深刻认识.以不同沉积环境、不同岩性及不同土地利用方式的江汉平原汉江下游浅层土壤为对象,采用改进的TST-55型土壤渗透仪开展室内变水头达西实验.结果表明,研究区内土壤饱和渗透系数平均值为4.94×10-5cm/s,服从对数-正态分布;粉砂壤土冲积物和湖积物的饱和渗透系数平均值为3.53×10-5cm/s和1.98×10-5cm/s,粉砂质粘壤土中,两者分别为8.13×10-7cm/s和5.88×10-7cm/s,同一岩性冲积物的饱和渗透系数较湖积物大;冲积物中,砂壤土、粉砂壤土和粉砂质粘壤土饱和渗透系数平均值为1.98×10-5 cm/s、3.53×10-5 cm/s和8.13×10-7 cm/s,表现为砂壤土>粉砂壤土>粉砂质粘壤土;耕作土壤中,粉砂壤土、粉砂质粘壤土的饱和渗透系数平均值为3.75×10-5 cm/s和8.11×10-7cm/s,非耕作土壤中,两者分别为1.88×10-6cm/s、5.93×10-7cm/s,同一岩性耕作土壤饱和渗透系数较非耕作土壤大.Abstract: At present,there is no deep understanding of the mechanism that affects the law of soil saturated hydraulic conductivity. The shallow soils in the lower reaches of Hanjiang River in Jianghan Plain from different sedimentary environment,lithologies and land use were sampled to carry out the variable head Darcy experiment by improved soil permeation instrument (TST-55).The results show that the mean soil saturated hydraulic conductivity is 4.94×10-5cm/s with log-normal distribution. In silty loam,the mean value of soil saturated hydraulic conductivity for alluvium and lacustrine deposits are 3.53×10-5cm/s and 1.98×10-5cm/s respectively,and the mean value for them is 8.13×10-7cm/s and 5.88×10-7cm/s in silty clay loam. For the same lithology,soil saturated hydraulic conductivity of alluvial sediments is obviously larger than that of lacustrine sediment. The average soil saturated hydraulic conductivity of sandy loam,silty loam and silty clay loam from high to low are 1.98×10-5cm/s,3.53×10-5cm/s and 8.13×10-7cm/s,respectively. The mean soil saturated hydraulic conductivities of silty loam and silty clay loam in cultivated soil are 3.75×10-5cm/s and 8.11×10-7cm/s,while the mean value of them are 1.88×10-6cm/s and 5.93×10-7cm/s in non-cultivated soil. The soil saturated hydraulic conductivity of cultivated soils is also higher than that of non-cultivated soils.
-
表 1 研究区实验点分布情况
Table 1. Basic information of the study area
沉积类型 样品数(个) 土地利用类型 样品数(个) 冲积物 100 耕地 11 非耕地 89 湖积物 20 耕地 15 非耕地 5 表 2 实验成果统计
Table 2. The statistical experiment results
最小值 最大值 平均值 CV(%) 粘粒含量(%) 0.04 26.51 5.77 105.1 粉粒含量(%) 10.70 95.11 70.51 24.9 砂粒含量(%) 3.27 84.66 23.55 76.5 孔隙度 0.40 0.59 0.48 6.4 干密度(g/cm3) 1.05 1.62 1.37 8.5 饱和渗透系数(cm/s) 3.21×10-7 1.28×10-3 4.94×10-5 270.5 注:CV为变异系数. 表 3 耕作与非耕作土壤饱和渗透系数与各影响因素的相关性
Table 3. The correlation between saturated hydraulic conductivity of cultivated and non-cultivated soils and influencing factors
影响因素 非耕作土壤饱和渗透系数(n=16) 耕作土壤饱和渗透系数(n=104) 孔隙度 0.63* (0.016) -0.02 (0.79) 干密度 -0.70* (0.048) -0.22 (0.08) 孔隙比 0.68** (0.007) -0.01 (0.93) 注:*、**分别表示变量在5%、1%的统计水平上显著. -
[1] Alyamani, M. S. , Şen, Z. , 1993. Determination of Hydraulic Conductivity from Complete Grain-Size Distribution Curves. Groundwater, 31(4): 551-555. doi: 10.1111/j.1745-6584.1993.tb00587.x [2] Bagarello, V. , Baiamonte, G. , Caia, C. , 2019. Variability of Near-Surface Saturated Hydraulic Conductivity for the Clay Soils of a Small Sicilian Basin. Geoderma, 340: 133-145. doi: 10.1016/j.geoderma.2019.01.008 [3] Cai, H. J. , Xu, J. T. , Wang, J. , et al. , 2016. Yearly Variation of Soil Infiltration Parameters in Irrigated Field Based on WinSRFR4.1. Transactions of the Chinese Society of Agricultural Engineering, 32(2): 92-98 (in Chinese with English abstract). http://www.ingentaconnect.com/content/tcsae/tcsae/2016/00000032/00000002/art00014 [4] Chapuis, R. P. , 2012. Predicting the Saturated Hydraulic Conductivity of Soils: A Review. Bulletin of Engineering Geology and the Environment, 71(3): 401-434. doi: 10.1007/s10064-012-0418-7 [5] Chen, F. , Zhang, H. T. , Wang, T. W. , et al. , 2014. Taxonomy and Spatial Distribution of Soils Typical of Jianghan Plain. Acta Pedologica Sinica, 51(4): 761-771 (in Chinese with English abstract). http://www.cqvip.com/QK/90156X/20144/50241836.html [6] Chen, M. Z. , Yan, C. H. , Wang, Y. Y. , et al. , 2008. The Influence Factors of Soil Permeability in Chenqibao Village of Puding County. Hydrogeology & Engineering Geology, 35(4): 66-70 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SWDG200804020.htm [7] Chen, X. H. , 2005. Statistical and Geostatistical Features of Streambed Hydraulic Conductivities in the Platte River, Nebraska. Environmental Geology, 48(6): 693-701. doi: 10.1007/s00254-005-0007-1 [8] Guo, H. , Luo, Y. S. , Li, G. D. , 2009. Experimental Research on Triaxial Seepage Test of Saturated Loess Based on Regional Differences. China Rural Water and Hydropower, (10): 112-114 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-ZNSD200910033.htm [9] Hu, S. J. , Tian, C. Y. , Song, Y. D. , et al. , 2011. Determination and Calculation of Soil Permeability Coefficient. Transactions of the Chinese Society of Agricultural Engineering, 27(5): 68-72 (in Chinese with English abstract). http://dl.sciencesocieties.org/publications/tcsae/abstracts/2011/5/2011.5.011 [10] Hu, Z. M. , Fan, J. W. , Zhong, H. P. , et al. , 2005. Progress on Grassland Underground Biomass Researches in China. Chinese Journal of Ecology, 24(9): 1095-1101 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-STXZ200509023.htm [11] Huang, D. L. , Fei, L. J. , Zeng, J. , et al. , 2018. Influencing Factors of Soil Water Vertical Infiltration Characteristics Based on the Grey Correlation Method. Chinese Agricultural Science Bulletin, 34(32): 95-101 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZNTB201832017.htm [12] Ilek, A. , Kucza, J. , 2014. A Laboratory Method to Determine the Hydraulic Conductivity of Mountain Forest Soils Using Undisturbed Soil Samples. Journal of Hydrology, 519: 1649-1659. doi: 10.1016/j.jhydrol.2014.09.045 [13] Lin, H. Z. , Peng, J. B. , Yang, H. , et al. , 2017. A Simple Estimation Approach for the Saturated Permeability of Loess in Field by a Double-Ring Infiltrometer. Advances in Water Science, 28(4): 523-533 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKXJ201704006.htm [14] Liu, J. L. , Li, J. W. , Zhou, Y. , et al. , 2019. Effects of Straw Mulching and Tillage on Soil Water Characteristics. Transactions of the Chinese Society for Agricultural Machinery, 50(7): 333-339 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_transactions-chinese-society-agricultural-machinery_thesis/0201272897202.html [15] Lü, J. , Chen, Z. H. , Gong, X. , 2013. Test Method for the Determination of Soil Saturated Permeability Coefficients and the Optimization of Results. Safety and Environmental Engineering, 20(5): 144-148, 162 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_safety-environmental-engineering_thesis/0201217111640.html [16] Ma, D. H. , Zhang, J. B. , Lai, J. B. , et al. , 2016. An Improved Method for Determining Brooks-Corey Model Parameters from Horizontal Absorption. Geoderma, 263: 122-131. doi: 10.1016/j.geoderma.2015.09.007 [17] Mo, B. , Chen, X. Y. , Yang, Y. C. , et al. , 2016. Research on Soil Infiltration Capacity and Its Influencing Factors in Different Land Uses. Research of Soil and Water Conservation, 23(1): 13-17 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-STBY201601003.htm [18] Perroux, K. M. , White, I. , 1988. Designs for Disc Permeameters. Soil Science Society of America Journal, 52(5): 1205-1215. doi: 10.2136/sssaj1988.03615995005200050001x [19] Petersson, H. , Messing, I. , Steen, E. , 1987. Influence of Root Mass on Saturated Hydraulic Conductivity in Arid Soils of Central Tunisia. Arid Soil Research and Rehabilitation, 1(3): 149-160. doi: 10.1080/15324988709381140 [20] Rehfeldt, K. R. , Boggs, J. M. , Gelhar, L. W. , 1992. Field Study of Dispersion in a Heterogeneous Aquifer: 3. Geostatistical Analysis of Hydraulic Conductivity. Water Resources Research, 28(12): 3309-3324. doi: 10.1029/92wr01758 [21] Shi, H. , Liu, S. R. , 2005. The Macroporosity Properties of Forest Soil and Its Eco-hydrological Significance. Journal of Mountain Research, 23(5): 533-539 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-SDYA200505004.htm [22] Tavenas, F. , Jean, P. , Leblond, P. , et al. , 1983. The Permeability of Natural Soft Clays. Part I: Methods of Laboratory Measurement. Canadian Geotechnical Journal, 20(4): 629-644. doi: 10.1139/t83-072 [23] Taylor, D. W. , 1948. Fundamentals of Soil Mechanics. Soil Science, 66(2): 161. doi: 10.1097/00010694-194808000-00008 [24] Wan, N. , Sun, K. , Fan, W. G. , et al. , 2020. The Utilization Mode of Cold Waterlogged Paddy Field in Jianghan Plain. Earth Science, 45(3): 1041-1050 (in Chinese with English abstract). [25] Wang, G. L. , Liu, G. B. , 2009. Effect of Stipa Bungeana Communities on Soil Infiltration in Soil Profile in Loess Hilly Region. Journal of Soil and Water Conservation, 23(3): 227-231 (in Chinese with English abstract). http://www.cqvip.com/QK/96166X/200903/30962432.html [26] Wang, J. , Liang, X. , Jin, M. G. , et al. , 2020. Evaluation of Phreatic Evaporation in Manas River Basin Plain by Bromine Tracing Method. Earth Science, 45(3): 1051-1060 (in Chinese with English abstract). [27] Wang, L. X. , Liang, X. , Li, J. , 2020. Analysis of Origin of Groundwater in Jianghan Plain Based on Typical Drillings. Earth Science, 45(2): 701-710 (in Chinese with English abstract). [28] Xing, W. H. , Wang, J. H. , Zhang, F. W. , et al. , 2019. Study on Characteristics of Water Vapor Channel Affecting Rainfall in Hanjiang River Basin during Autumn Flood Season. Yangtze River, 50(2): 101-106 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-RIVE201902019.htm [29] Xu, M. X. , Liu, G. B. , Bu, C. F. , et al. , 2002. Experimental Study on Soil Infiltration Characteristics Using Disc Permeameter. Transactions of the Chinese Society of Agricultural Engineering, 18(4): 54-58 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-NYGU200204012.htm [30] Yi, Y. , Xin, Z. B. , Qin, Y. B. , et al. , 2013. Study on Physical Characteristics of Soil Water in Different Land Uses in Loess Hilly Region. Research of Soil and Water Conservation, 20(5): 45-49 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-STBY201305009.htm [31] Zhang, G. X. , Shen, L. X. , Guo, Y. M. , 2016. Effect of Soil Structure on Water Infiltration under Moistube Irrigation. Journal of Irrigation and Drainage, 35(7): 35-39 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GGPS201607006.htm [32] Zhang, J. W. , Liang, X. , Ge, Q. , et al. , 2017. Calculation Method about Hydraulic Conductivity of Quaternary Aquitard in Jianghan Plain. Earth Science, 42(5): 761-770 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201705011.htm [33] Zhang, S. , Tang, H. M. , Liu, X. , et al. , 2018. Seepage and Instability Characteristics of Slope Based on Spatial Variation Structure of Saturated Hydraulic Conductivity. Earth Science, 43(2): 622-634 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201802022.htm [34] Zhao, J. F. , Wang, B. G. , Liao, J. Q. , et al. , 2019. Variation Law of Soil Saturated Hydraulic Conductivity Based on Field Guelph Infiltration Method and Indoor Variable Head Darcy Method. Geological Science and Technology Information, 38(2): 235-242 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZKQ201902027.htm [35] Zhou, Y. L. , 2019. Study on Restore to the Original State for Mechanical Soil Compaction. Journal of Chinese Agricultural Mechanization, 40(1): 141-144 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-GLJH201901026.htm [36] Zhu, D. F. , Lin, X. Q. , Cao, W. X. , 2002. Root Growth in Rice and Its Response to Soil Density. Chinese Journal of Applied Ecology, 13(1): 60-62 (in Chinese with English abstract). http://europepmc.org/abstract/MED/11962322 [37] Zhu, X. W. , Yan, J. M. , Wang, X. B. , et al. , 2014. Laboratory Investigation of the Permeability of Saturated Muddy Clays. Water Resources and Hydropower Engineering, 45(9): 107-111 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SJWJ201409029.htm [38] Zhuang, X. S. , Zheng, F. , Tao, G. L. , et al. , 2013. Study on Impact of Porosity of Saturated Clays on Hydraulic Conductivity. Journal of Hubei University of Technology, 28(5): 93-95 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HBGX201305026.htm [39] 蔡焕杰, 徐家屯, 王健, 等, 2016. 基于WinSRFR模拟灌溉农田土壤入渗参数年变化规律. 农业工程学报, 32(2): 92-98. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201602014.htm [40] 陈芳, 张海涛, 王天巍, 等, 2014. 江汉平原典型土壤的系统分类及空间分布研究. 土壤学报, 51(4): 761-771. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201404010.htm [41] 陈明珠, 阎长虹, 王玉英, 等, 2008. 土体渗透性影响因素: 以普定陈旗堡为例. 水文地质工程地质, 35(4): 66-70. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG200804020.htm [42] 郭鸿, 骆亚生, 李广冬, 2009. 考虑地区差异性的饱和黄土三轴渗透试验研究. 中国农村水利水电, (10): 112-114. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNSD200910033.htm [43] 胡顺军, 田长彦, 宋郁东, 等, 2011. 土壤渗透系数测定与计算方法的探讨. 农业工程学报, 27(5): 68-72. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201105012.htm [44] 胡中民, 樊江文, 钟华平, 等, 2005. 中国草地地下生物量研究进展. 生态学杂志, 24(9): 1095-1101. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ200509023.htm [45] 黄德良, 费良军, 曾健, 等, 2018. 基于灰色关联法土壤水分垂直入渗影响因素研究. 中国农学通报, 34(32): 95-101. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNTB201832017.htm [46] 林鸿州, 彭建兵, 杨华, 等, 2017. 求取现场黄土饱和渗透系数的双环入渗法. 水科学进展, 28(4): 523-533. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201704006.htm [47] 刘继龙, 李佳文, 周延, 等, 2019. 秸秆覆盖与耕作方式对土壤水分特性的影响. 农业机械学报, 50(7): 333-339. https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX201907036.htm [48] 吕杰, 陈植华, 龚星, 2013. 测定土壤饱和渗透系数的试验方法与结果优化. 安全与环境工程, 20(5): 144-148, 162. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ201305031.htm [49] 莫斌, 陈晓燕, 杨以翠, 等, 2016. 不同土地利用类型土壤入渗性能及其影响因素研究. 水土保持研究, 23(1): 13-17. https://www.cnki.com.cn/Article/CJFDTOTAL-STBY201601003.htm [50] 石辉, 刘世荣, 2005. 森林土壤大孔隙特征及其生态水文学意义. 山地学报, 23(5): 533-539. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA200505004.htm [51] 万能, 孙科, 范伟国, 等, 2020. 江汉平原富硒冷浸田的利用模式. 地球科学, 45(3): 1041-1050. doi: 10.3799/dqkx.2019.953 [52] 王国梁, 刘国彬, 2009. 黄土丘陵区长芒草群落对土壤水分入渗的影响. 水土保持学报, 23(3): 227-231. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS200903048.htm [53] 王健, 梁杏, 靳孟贵, 等, 2020. 运用溴离子示踪法评价玛纳斯河流域平原区潜水蒸发. 地球科学, 45(3): 1051-1060. doi: 10.3799/dqkx.2019.089 [54] 王露霞, 梁杏, 李静, 2020. 基于典型钻孔的江汉平原地下水成因分析. 地球科学, 45(2): 701-710. doi: 10.3799/dqkx.2018.363 [55] 邢雯慧, 王坚红, 张方伟, 等, 2019. 秋汛期影响汉江流域降水的水汽通道特征研究. 人民长江, 50(2): 101-106. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE201902019.htm [56] 许明祥, 刘国彬, 卜崇峰, 等, 2002. 圆盘入渗仪法测定不同利用方式土壤渗透性试验研究. 农业工程学报, 18(4): 54-58. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU200204012.htm [57] 易扬, 信忠保, 覃云斌, 等, 2013. 黄土丘陵区不同土地利用类型土壤水分物理性质研究. 水土保持研究, 20(5): 45-49. https://www.cnki.com.cn/Article/CJFDTOTAL-STBY201305009.htm [58] 张国祥, 申丽霞, 郭云梅, 2016. 微润灌溉条件下土壤质地对水分入渗的影响. 灌溉排水学报, 35(7): 35-39. https://www.cnki.com.cn/Article/CJFDTOTAL-GGPS201607006.htm [59] 张婧玮, 梁杏, 葛勤, 等, 2017. 江汉平原第四系弱透水层渗透系数求算方法. 地球科学, 42(5): 761-770. doi: 10.3799/dqkx.2017.064 [60] 张抒, 唐辉明, 刘晓, 等, 2018. 基于饱和渗透系数空间变异结构的斜坡渗流及失稳特征. 地球科学, 43(2): 622-634. doi: 10.3799/dqkx.2017.617 [61] 赵建芳, 汪丙国, 廖嘉琦, 等, 2019. 基于野外Guelph入渗法与室内变水头达西法的土壤饱和渗透系数变化规律. 地质科技情报, 38(2): 235-242. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201902027.htm [62] 周艳丽, 2019. 农田土壤机械压实修复研究. 中国农机化学报, 40(1): 141-144. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJH201901026.htm [63] 朱德峰, 林贤青, 曹卫星, 2002. 水稻根系生长及其对土壤紧密度的反应. 应用生态学报, 13(1): 60-62. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB200201012.htm [64] 朱熹文, 严建明, 王贤奔, 等, 2014. 淤泥质饱和土渗透系数的室内实验研究. 水利水电技术, 45(9): 107-111. https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ201409029.htm [65] 庄心善, 郑飞, 陶高梁, 等, 2013. 饱和黏性土孔隙性对渗透系数的影响研究. 湖北工业大学学报, 28(5): 93-95. https://www.cnki.com.cn/Article/CJFDTOTAL-HBGX201305026.htm