Zircon U-Pb Age and Hf Isotope of Paleoproterozoic Pelitic Granulites at Weihai, Sulu Orogen: Implications for Tectonic Affinity
-
摘要: 威海地区出露古元古代泥质麻粒岩,其构造属性仍存在争议.泥质麻粒岩以透镜体的形式出露在花岗质片麻岩中,透镜体从核部到边部的岩性逐渐变化:未变形的粗粒泥质麻粒岩、面理化的细粒泥质麻粒岩、石榴黑云片麻岩和混合岩化麻粒岩.粗粒泥质麻粒岩,粗粒斑状变晶结构,块状构造;细粒泥质麻粒岩,细粒斑状变晶结构,面理发育;石榴黑云片麻岩,斑状变晶结构,片麻状构造,上述3种岩石的主要矿物组合均为石榴子石+黑云母+斜长石(反条纹长石)+石英+矽线石;混合岩,条带状构造,暗色残余体主要矿物组合为石榴子石+斜长石+黑云母+石英+矽线石,浅色体矿物组合为石英+斜长石+钾长石.所有样品均有金红石、锆石和独居石等副矿物.粗粒泥质麻粒岩中的锆石颗粒均为浑圆近等粒,具有典型的麻粒岩相变质锆石的特征:锆石CL图像为均一的云雾状或补丁状结构,低的Th/U比值(0.01~0.30),强烈的Ce正异常和Eu负异常,HREE的亏损及高的Hf/Y比值(19~537).利用锆石Ti温度计获得的变质温度为788~892℃(加权平均值为837±24℃).锆石U-Pb定年获得上交点年龄为1 863±18 Ma,206Pb/238U加权平均年龄为1 832±23 Ma.εHf(t)值为-3.4~-4.9(加权平均值为-4.23±0.35),相应的两阶段模式年龄(TDM2)为2 716±107 Ma~2 807±93 Ma(加权平均值为2 767±44 Ma).细粒泥质麻粒岩中的锆石也具有麻粒岩相锆石的CL和微量元素特征,Ti含量温度计获得的变质温度为804~909℃(加权平均值为845±23℃),锆石U-Pb上交点年龄为1 823±14 Ma,谐和206Pb/238U年龄加权平均值为1 812±13 Ma,εHf(t)为-3.7~-5.7(加权平均值为-4.67±0.37),TDM2为2 705±133 Ma~2 826±116 Ma(加权平均值为2 766±46 Ma).石榴黑云片麻岩中的锆石也具有麻粒岩相变质锆石的CL和微量元素特征,锆石Ti含量计算变质温度为785~923℃(加权平均值为820±32℃),锆石U-Pb上交点年龄为1 807±22 Ma,εHf(t)为-4.5~-9.0(加权平均值为-6.07±0.48),TDM2为2 742±90 Ma~3 020±92 Ma(加权平均值为2 839±41 Ma).混合岩中的锆石大部分具有核-边结构.根据Ti含量温度计获得的混合岩中麻粒岩相变质锆石核的变质温度为754~875℃(加权平均值为818±30℃),U-Pb上交点年龄为1 822±19 Ma,εHf(t)值为-4.3~-6.3(加权平均值为-5.47±0.35),TDM2为2 742±82 Ma~2 864±91 Ma(加权平均值为2 814±43 Ma).可见,麻粒岩、石榴黑云片麻岩和混合岩经历了相同的麻粒岩相峰期变质作用(~1.8 Ga),具有相同的原岩属性,即晚太古代(2.7~2.8 Ga)的地壳物质.麻粒岩透镜体从核部到边部岩性的变化,可能受到晚三叠纪碰撞造山作用的不同程度改造.因此,威海超高压地体中出露的泥质麻粒岩透镜体,在构造亲属性上可能属于华北克拉通地壳物质,成因上可能与哥伦比亚超大陆的演化有关,在三叠纪大陆俯冲碰撞过程中卷入造山带.Abstract: Paleoproterozoic pelitic granulites have been reported in Weihai region, the tectonic affinity of which is still under controversy. The pelitic granulite occur as a lens in the granitic gneisses and the lithologies of the lens gradually changes from the core to the margin, from undeformed coarse-grained granulite, foliated fine-grained granulite, garnet-biotite-gneiss to migmatized granulite. The coarse-grained pelitic granulite exhibits coarse-grained porphyroblastic texture. The fine-grained pelitic granulite shows a weakly foliated layer with a fine-grained porphyroblastic texture. The garnet-biotite-gneiss displays porphyroblastic texture. The three samples described above mainly comprise of garnet + biotite + plagioclase (antiperthite) + quartz + sillimanite. The migmatite is made up of melanosomes and leucosomes, in which the former mainly consists of garnet + plagioclase + biotite + quartz + sillimanite and the latter has mineral assemblage of quartz + plagioclase + K-feldpsar. All of the four samples contain the accessory mineral assemblage of rutile + zircon + monazite. Zircons from the coarse-grained pelitic granulite are round or elliptical in shape and show homogenous cloudy zoning or patchy zoning in internal structure, and they have low Th/U ratios (0.01-0.30, mostly < 0.1), flat HREE patterns with positive Ce and negative Eu anomalies and high Hf/Y ratios (19-537, mostly > 100). These characteristics are consistent with the granulite-facies zircon growth. Ti-in-zircon thermometers give temperature of 788-892℃ (mean=837±24℃). These metamorphic zircons yield an upper intercept age of 1 863±18 Ma and a concordant 206Pb/238U age of 1 832±23 Ma, εHf(t) values ranging from -3.4 to -4.9 (mean=-4.23±0.35) and corresponding TDM2are between 2 716±107 Ma and 2 807±93 Ma (mean=2 767±44 Ma). The morphology and trace element characteristics of the zircon grains from fine-grained pelitic granulite also suggest a typical granulite-facies metamorphic zircon. The calculated metamorphic temperature is 804-909℃ (mean=845±23℃). Metamorphic zircons define an upper intercept age of 1 823±14 Ma with a tight cluster concordant 206Pb/238U age of 1 812±13 Ma. The εHf(t) values of them range from -3.7 to -5.7 (mean=-4.67±0.37). Calculated TDM2 are from 2 705±133 Ma to 2 826±116 Ma (mean=2 766±46 Ma). Zircon grains from the garnet-biotite-gneiss also grew under granulite-facies condition according to the CL and trace element features. The metamorphic temperature calculated based on the Ti contents in zircon is from 785℃ to 923℃ (mean=820±32℃). U-Pb dating of zircons gives a discordant upper intercept age of 1 807±22 Ma. The εHf(t) values range from -4.5 to -9.0 (mean=-6.07±0.48). TDM2 range from 2 742±90 Ma to 3 020±92 Ma (mean=2839±41 Ma). Most of the zircons from the migmatite exhibit a core-rim texture comprising of granulite-facies metamorphic core and a narrow anatectic rim. The metamorphic cores give temperature ranging from 754 ℃ to 875℃ (mean=818±30℃) and yield an upper intercept age of 1 822±19 Ma. The εHf(t) values are of -4.3 to -6.3 (mean=-5.47±0.35) and corresponding TDM2 are between 2 742±82 Ma and 2 864±91 Ma (mean=2 814±43 Ma). In conclusion, the pelitic granulite, garnet-biotite-gneiss and migmatite have experienced the same granulite-facies metamorphism at about~1.8 Ga and they share a common protolith which was derived from Neoarchean (2.7-2.8 Ga) crust. The changed lithologies from core to the margin of the pelitic granulite lens may be caused by the collisional orogeny during the late Triassic. Thus, the pelitic granulites in Weihai region have the tectonic affinity to NCC and formed when involved in the evolution of supercontinent Columbia, then they incorporated into the Sulu ultrahigh-pressure metamorphic belt during the collision between the Yangtze and the North China cratons and subsequently exhumed in Triassic.
-
Key words:
- pelitic granulite /
- Paleoproterozoic /
- zircon /
- tectonic affinity /
- Sulu orogen /
- geochemistry /
- geochronology
-
图 1 苏鲁造山带地质简图(a)和威海地区采样位置(b)
图a据Xiang et al. (2014)修改; 图b据Xu et al. (2019)修改
Fig. 1. Geological sketch map of Sulu orogen (a) and sample location in the Weihai area (b)
图 3 样品显微照片
图a~d为未变形的粗粒泥质麻粒岩(17WH-1); 图e、f为面理化的细粒泥质麻粒岩(17WH-2); 图g~i为石榴黑云片麻岩(17WH-3); 图j~l为混合岩(17WH-5); a. 石榴子石变斑晶中锆石、独居石包裹体及裂隙中黑云母和夕线石,基质中矽线石;b.变斑晶石榴子石中金红石、独居石、石英包裹体及金红石出溶体;c.放射状集合体黑云母及退变为钛铁矿的金红石;d.反条纹长石;e.黑云母与纤维状矽线石;f.石榴子石残余,具有定向性的黑云母;g、h、k.具有强定向性的黑云母和纤维状矽线石;i、l.定向拉长的石英及定向的矽线石;j.石榴子石变斑晶中锆石、独居石、石英和黑云母矿物包裹体. 矿物代号:Gt.石榴子石;Bt.黑云母;Qz.石英;Pl.斜长石;Atp.反条纹长石;Sil.矽线石;Rt.金红石;Kf.钾长石;Zrc.锆石;Mnz.独居石;Ilm.钛铁矿;Melt.熔体
Fig. 3. Photomicrographs of the samples
图 6 样品锆石球粒陨石标准化稀土元素配分模式图(标准化值据Sun and McDonough, 1989)
Fig. 6. Chondrite-normalized REE patterns of zircons in samples from Weihai (values from Sun and McDonough, 1989)
图 8 样品锆石分析点年龄和基于锆石Ti含量温度计(Ferry and Watson, 2007)计算的变质温度图解
括号内数值为所有分析点的平均年龄和平均温度
Fig. 8. Zircon 206Pb/238U age spots and corresponding temperature which is calculated based upon Ti concentration in zircon by using the Ti-in-zircon thermometer (Ferry and Watson, 2007)
-
[1] Bingen, B. , Austrheim, H. , Whitehouse, M. J. , et al. , 2004. Trace Element Signature and U-Pb Geochronology of Eclogite-Facies Zircon, Bergen Arcs, Caledonides of W Norway. Contributions to Mineralogy and Petrology, 147(6): 671-683. https://doi.org/10.1007/s00410-004-0585-z [2] Blichert-Toft, J. , Chauvel, C. , Albarède, F. , 1997. Separation of Hf and Lu for High-Precision Isotope Analysis of Rock Samples by Magnetic Sector-Multiple Collector ICP-MS. Contributions to Mineralogy and Petrology, 127(3): 248-260. https://doi.org/10.1007/s004100050278 [3] Bradley, D. C., Kusky, T. M., Haeussler, P. J., et al., 2003. Geologic Signature of Early Tertiary Ridge Subduction in Alaska. In: Sisson, V. B., Roseske, S. M., Pavlis, T. L., eds., Geology of a Transpressional Orogen Developed during Ridge-Trench Interaction along the North Pacific Margin. Geological Society of America Special Paper, 371: 19-49. https://doi.org/10.1130/0-8137-2371-x.19 [4] Brown, M. , Johnson, T. , 2019. Time's Arrow, Time's Cycle: Granulite Metamorphism and Geodynamics. Mineralogical Magazine, 83(3): 323-338. https://doi.org/10.1180/mgm.2019.19 [5] Chen, K. , Gao, S. , Wu, Y. B. , et al. , 2013.2.6-2.7 Ga Crustal Growth in Yangtze Craton, South China. Precambrian Research, 224: 472-490. https://doi.org/10.1016/j.precamres.2012.10.017 [6] Chen, R. X. , Ding, B. H. , Zheng, Y. F. , et al. , 2015. Multiple Episodes of Anatexis in a Collisional Orogen: Zircon Evidence from Migmatite in the Dabie Orogen. Lithos, 212-215: 247-265. https://doi.org/10.1016/j.lithos.2014.11.004 [7] Chen, R. X. , Zheng, Y. F. , Zhao, Z. F. , et al. , 2007. Zircon U-Pb Age and Hf Isotope Evidence for Contrasting Origin of Bimodal Protoliths for Ultrahigh-Pressure Metamorphic Rocks from the Chinese Continental Scientific Drilling Project. Journal of Metamorphic Geology, 25(8): 873-894. https://doi.org/10.1111/j.1525-1314.2007.00735.x [8] Chen, S. , Li, X. P. , Kong, F. M. , et al. , 2018. Metamorphic Evolution and Zircon U-Pb Ages of the Nanshankou Mafic High Pressure Granulites from the Jiaobei Terrane, North China Craton. Journal of Earth Science, 29(5): 1219-1235. https://doi.org/10.1007/s12583-017-0956-9 [9] Chen, Y. , Ye, K. , Liu, J. B. , et al. , 2006. Multistage Metamorphism of the Huangtuling Granulite, Northern Dabie Orogen, Eastern China: Implications for the Tectonometamorphic Evolution of Subducted Lower Continental Crust. Journal of Metamorphic Geology, 24(7): 633-654. https://doi.org/10.1111/j.1525-1314.2006.00659.x [10] Collins, W. J. , 2002a. Hot Orogens, Tectonic Switching, and Creation of Continental Crust. Geology, 30(6): 535. https://doi.org/10.1130/0091-7613(2002)0300535:hotsac>2.0.co;2 doi: 10.1130/0091-7613(2002)0300535:hotsac>2.0.co;2 [11] Collins, W. J. , 2002b. Nature of Extensional Accretionary Orogens. Tectonics, 21(4): 6-1-6-12. https://doi.org/10.1029/2000tc001272 [12] Condie, K. C. , Aster, R. C, 2010. Episodic Zircon Age Spectra of Orogenic Granitoids: The Supercontinent Connection and Continental Growth. Precambrian Research, 180(3-4): 227-236. https://doi.org/10.1016/j.precamres.2010.03.008 [13] Condie, K. C. , Belousova, E. , Griffin, W. L. , et al. , 2009. Granitoid Events in Space and Time: Constraints from Igneous and Detrital Zircon Age Spectra. Gondwana Research, 15(3-4): 228-242. https://doi.org/10.1016/j.gr.2008.06.001 [14] Cui, X. , Zhu, W. B. , Ge, R. F. , 2014. Provenance and Crustal Evolution of the Northern Yangtze Block Revealed by Detrital Zircons from Neoproterozoic-Early Paleozoic Sedimentary Rocks in the Yangtze Gorges Area, South China. The Journal of Geology, 122(2): 217-235. https://doi.org/10.1086/674801 [15] Ewing, T. A. , Hermann, J. , Rubatto, D. , 2013. The Robustness of the Zr-in-Rutile and Ti-in-Zircon Thermometers during High-Temperature Metamorphism (Ivrea-Verbano Zone, Northern Italy). Contributions to Mineralogy and Petrology, 165(4): 757-779. https://doi.org/10.1007/s00410-012-0834-5 [16] Feng, P. , Wang, L. , Brown, M. , et al. , 2020. Separating Multiple Episodes of Partial Melting in Polyorogenic Crust: An Example from the Haiyangsuo Complex, Northern Sulu Belt, Eastern China. GSA Bulletin, 132(5-6): 1235-1256. https://doi.org/10.1130/b35210.1 [17] Ferry, J. M. , Watson, E. B. , 2007. New Thermodynamic Models and Revised Calibrations for the Ti-in-Zircon and Zr-in-Rutile Thermometers. Contributions to Mineralogy and Petrology, 154(4): 429-437. https://doi.org/10.1007/s00410-007-0201-0 [18] Fisher, C. M. , Vervoort, J. D. , Hanchar, J. M. , 2014. Guidelines for Reporting Zircon Hf Isotopic Data by LA-MC-ICPMS and Potential Pitfalls in the Interpretation of These Data. Chemical Geology, 363: 125-133. https://doi.org/10.1016/j.chemgeo.2013.10.019 [19] Gao, M. D. , Xu, H. J. , Zhang, J. F. , et al. , 2018. Incipient Melt during Partial Melting of the Deeply Subducted Continental Crust: Evidence from Leucosome of Migmatite in Sulu Ultra-high Pressure Terrane. Acta Petrologica Sinica, 34(3): 547-566(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_acta-petrologica-sinica_thesis/0201252011765.html [20] Gao, S. , Yang, J. , Zhou, L. , et al. , 2011. Age and Growth of the Archean Kongling Terrain, South China, with Emphasis on 3.3 Ga Granitoid Gneisses. American Journal of Science, 311(2): 153-182. https://doi.org/10.2475/02.2011.03 [21] Geng, K. , Wang, R. J. , Li, H. K. , et al. , 2016. Granulite and Granulite Facies Metamorphism in Shandong Province: Research Status and Implications to Precambrian Geotectonic Evolution. Geological Review, 62(1): 153-170(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZLP201601021.htm [22] Geng, Y. S. , Du, L. L. , Ren, L. D. , 2012. Growth and Reworking of the Early Precambrian Continental Crust in the North China Craton: Constraints from Zircon Hf Isotopes. Gondwana Research, 21(2-3): 517-529. https://doi.org/10.1016/j.gr.2011.07.006 [23] Guo, J. L. , Gao, S. , Wu, Y. B. , et al. , 2014.3.45 Ga Granitic Gneisses from the Yangtze Craton, South China: Implications for Early Archean Crustal Growth. Precambrian Research, 242: 82-95. https://doi.org/10.1016/j.precamres.2013.12.018 [24] Hacker, B. R. , Ratschbacher, L. , Webb, L. , et al. , 2000. Exhumation of Ultrahigh-Pressure Continental Crust in East Central China: Late Triassic-Early Jurassic Tectonic Unroofing. Journal of Geophysical Research: Solid Earth, 105(B6): 13339-13364. https://doi.org/10.1029/2000jb900039 [25] Harley, S. L. , 2008. Refining the P-T Records of UHT Crustal Metamorphism. Journal of Metamorphic Geology, 26(2): 125-154. https://doi.org/10.1111/j.1525-1314.2008.00765.x [26] Harley, S. L. , Kelly, N. M. , Möller, A. , 2007. Zircon Behaviour and the Thermal Histories of Mountain Chains. Elements, 3(1): 25-30. https://doi.org/10.2113/gselements.3.1.25 [27] Hermann, J. , Rubatto, D. , 2003. Relating Zircon and Monazite Domains to Garnet Growth Zones: Age and Duration of Granulite Facies Metamorphism in the Val Malenco Lower Crust. Journal of Metamorphic Geology, 21(9): 833-852. https://doi.org/10.1046/j.1525-1314.2003.00484.x [28] Hou, G. T. , Santosh, M. , Qian, X. L. , et al. , 2008. Configuration of the Late Paleoproterozoic Supercontinent Columbia: Insights from Radiating Mafic Dyke Swarms. Gondwana Research, 14(3): 395-409. https://doi.org/10.1016/j.gr.2008.01.010 [29] Hu, Z. C. , Liu, Y. S. , Gao, S. , et al. , 2012a. A "Wire" Signal Smoothing Device for Laser Ablation Inductively Coupled Plasma Mass Spectrometry Analysis. Spectrochimica Acta Part B: Atomic Spectroscopy, 78: 50-57. https://doi.org/10.1016/j.sab.2012.09.007 [30] Hu, Z. C. , Liu, Y. S. , Gao, S. , et al. , 2012b. Improved In Situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS. Journal of Analytical Atomic Spectrometry, 27(9): 1391. https://doi.org/10.1039/c2ja30078h [31] Hu, Z. C. , Zhang, W. , Liu, Y. S. , et al. , 2015. "Wave" Signal-Smoothing and Mercury-Removing Device for Laser Ablation Quadrupole and Multiple Collector ICPMS Analysis: Application to Lead Isotope Analysis. Analytical Chemistry, 87(2): 1152-1157. https://doi.org/10.1021/ac503749k [32] Hyndman, R. D. , Currie, C. A. , Mazzotti, S. P. , 2005. Subduction Zone Backarcs, Mobile Belts, and Orogenic Heat. GSA Today, 15(2): 4-10. https://doi.org/10.1130/1052-5173(2005)0154:szbmba>2.0.co;2 doi: 10.1130/1052-5173(2005)0154:szbmba>2.0.co;2 [33] Jahn, B. M. , Liu, D. Y. , Wan, Y. S. , et al. , 2008. Archean Crustal Evolution of the Jiaodong Peninsula, China, as Revealed by Zircon SHRIMP Geochronology, Elemental and Nd-Isotope Geochemistry. American Journal of Science, 308(3): 232-269. https://doi.org/10.2475/03.2008.03 [34] Jiang, N. , Guo, J. H. , Zhai, M. G. , et al. , 2010. ~2.7 Ga Crust Growth in the North China Craton. Precambrian Research, 179(1-4): 37-49. https://doi.org/10.1016/j.precamres.2010.02.010 [35] Jiao, S. J. , Guo, J. H. , 2011. Application of the Two-Feldspar Geothermometer to Ultrahigh-Temperature (UHT) Rocks in the Khondalite Belt, North China Craton and Its Implications. American Mineralogist, 96(2-3): 250-260. https://doi.org/10.2138/am.2011.3500 [36] Kato, T. , Enami, M. , Zhai, M. , 1997. Ultra-High-Pressure (UHP) Marble and Eclogite in the Su-Lu UHP Terrane, Eastern China. Journal of Metamorphic Geology, 15(2): 169-182. https://doi.org/10.1111/j.1525-1314.1997.00013.x [37] Kelly, N. M. , Harley, S. L. , 2005. An Integrated Microtextural and Chemical Approach to Zircon Geochronology: Refining the Archaean History of the Napier Complex, East Antarctica. Contributions to Mineralogy and Petrology, 149(1): 57-84. https://doi.org/10.1007/s00410-004-0635-6 [38] Korhonen, F. J. , Clark, C. , Brown, M. , et al. , 2013. How Long-Lived is Ultrahigh Temperature (UHT) Metamorphism? Constraints from Zircon and Monazite Geochronology in the Eastern Ghats Orogenic Belt, India. Precambrian Research, 234: 322-350. https://doi.org/10.1016/j.precamres.2012.12.001 [39] Lei, H. C. , Xiang, H. , Zhang, Z. M. , et al. , 2014. Paleoproterozoic UHT Granulite in the Sulu Orogen and Its Tectonic Implications. Acta Petrologica Sinica, 30(8): 2435-2445(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201408023.htm [40] Lei, H. C. , Xu, H. J. , 2018. A Review of Ultrahigh Temperature Metamorphism. Journal of Earth Science, 29(5): 1167-1180. https://doi.org/10.1007/s12583-018-0846-9 [41] Lei, H. C. , Xu, H. J. , Xiang, H. , 2020. Basement Evolution of the Sulu Orogenic Belt: Constraints on Zircon U-Pb Ages and Trace Elements from the Weihai Gneisses. Geological Journal, 55(4): 2646-2661. https://doi.org/10.1002/gj.3538 [42] Lei, H. C. , Xu, H. J. , Zhang, J. F. , et al. , 2019. A Record of Ultrahigh Temperature Metamorphism in the Dabie Orogen during Triassic Continental Collision. Gondwana Research, 72: 54-64. https://doi.org/10.1016/j.gr.2019.02.009 [43] Lei, N. Z. , Wu, Y. B. , 2008. Zircon U-Pb Age, Trace Element, and Hf Isotope Evidence for Paleoproterozoic Granulite-Facies Metamorphism and Archean Crustal Remnant in the Dabie Orogen. Journal of China University of Geosciences, 19(2): 110-134. https://doi.org/10.1016/s1002-0705(08)60031-x [44] Li, S. Z. , Zhao, G. C. , 2007. SHRIMP U-Pb Zircon Geochronology of the Liaoji Granitoids: Constraints on the Evolution of the Paleoproterozoic Jiao-Liao-Ji Belt in the Eastern Block of the North China Craton. Precambrian Research, 158(1-2): 1-16. https://doi.org/10.1016/j.precamres.2007.04.001 [45] Li, X. H. , Li, W. X. , Li, Z. X. , et al. , 2008.850-790 Ma Bimodal Volcanic and Intrusive Rocks in Northern Zhejiang, South China: A Major Episode of Continental Rift Magmatism during the Breakup of Rodinia. Lithos, 102(1-2): 341-357. https://doi.org/10.1016/j.lithos.2007.04.007 [46] Liou, J. G. , Tsujimori, T. , Chu, W. , et al. , 2006. Protolith and Metamorphic Ages of the Haiyangsuo Complex, Eastern China: A Non-UHP Exotic Tectonic Slab in the Sulu Ultrahigh-Pressure Terrane. Mineralogy and Petrology, 88(1-2): 207-226. https://doi.org/10.1007/s00710-006-0156-2 [47] Liu, F. L. , Gerdes, A. , Liou, J. G. , et al. , 2006. SHRIMP U-Pb Zircon Dating from Sulu-Dabie Dolomitic Marble, Eastern China: Constraints on Prograde, Ultrahigh-Pressure and Retrograde Metamorphic Ages. Journal of Metamorphic Geology, 24(7): 569-589. https://doi.org/10.1111/j.1525-1314.2006.00655.x [48] Liu, F. L. , Gerdes, A. , Zeng, L. S. , et al. , 2008a. SHRIMP U-Pb Dating, Trace Elements and the Lu-Hf Isotope System of Coesite-bearing Zircon from Amphibolite in the SW Sulu UHP Terrane, Eastern China. Geochimica et Cosmochimica Acta, 72(12): 2973-3000. https://doi.org/10.1016/j.gca.2008.04.007 [49] Liu, X. M. , Gao, S. , Diwu, C. R. , et al. , 2008b. Precambrian Crustal Growth of Yangtze Craton as Revealed by Detrital Zircon Studies. American Journal of Science, 308(4): 421-468. https://doi.org/10.2475/04.2008.02 [50] Liu, F. L. , Liu, P. H. , Wang, F. , et al. , 2014. U-Pb Dating of Zircons from Granitic Leucosomes in Migmatites of the Jiaobei Terrane, Southwestern Jiao-Liao-Ji Belt, North China Craton: Constraints on the Timing and Nature of Partial Melting. Precambrian Research, 245: 80-99. https://doi.org/10.1016/j.precamres.2014.01.001 [51] Liu, F. L. , Liu, C. H. , Itano, K. , et al. , 2017a. Geochemistry, U-Pb Dating, and Lu-Hf Isotopes of Zircon and Monazite of Porphyritic Granites within the Jiao-Liao-Ji Orogenic Belt: Implications for Petrogenesis and Tectonic Setting. Precambrian Research, 300: 78-106. https://doi.org/10.1016/j.precamres.2017.08.007 [52] Liu, F. L. , Liu, L. S. , Liu, P. H. , et al. , 2017b. A Relic Slice of Archean-Early Paleoproterozoic Basement of Jiaobei Terrane Identified within the Sulu UHP Belt: Evidence from Protolith and Metamorphic Ages from Meta-Mafic Rocks, TTG-Granitic Gneisses, and Metasedimentary Rocks in the Haiyangsuo Region. Precambrian Research, 303: 117-152. https://doi.org/10.1016/j.precamres.2017.03.014 [53] Liu, F. L. , Xu, Z. Q. , Xue, H. M. , 2004. Tracing the Protolith, UHP Metamorphism, and Exhumation Ages of Orthogneiss from the SW Sulu Terrane (Eastern China): SHRIMP U-Pb Dating of Mineral Inclusion-bearing Zircons. Lithos, 78(4): 411-429. https://doi.org/10.1016/j.lithos.2004.08.001 [54] Liu, J. H. , Liu, F. L. , Ding, Z. J. , et al. , 2013. The Growth, Reworking and Metamorphism of Early Precambrian Crust in the Jiaobei Terrane, the North China Craton: Constraints from U-Th-Pb and Lu-Hf Isotopic Systematics, and REE Concentrations of Zircon from Archean Granitoid Gneisses. Precambrian Research, 224: 287-303. https://doi.org/10.1016/j.precamres.2012.10.003 [55] Liu, L. S. , Liu, F. L. , Ji, L. , et al. , 2018. The Polygenetic Meta-Granitic Rocks and Their Geological Significance, within the North Sulu Ultrahigh-Pressure Belt. Acta Petrologica Sinica, 34(6): 1557-1580(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201806002.htm [56] Liu, L. S. , Liu, F. L. , Liu, P. H. , et al. , 2018. Petrology, Geochemistry and Geochronology of the Meta-Mafic Rocks in the North Sulu Ultrahigh-Pressure Belt: Implications for Their Petrogenetic Diversity and Complex Tectonic Evolution. Precambrian Research, 316: 127-154. https://doi.org/10.1016/j.precamres.2018.08.002 [57] Liu, L. S. , Liu, F. L. , Wang, W. , 2017. The Polygenetic Meta-Mafic Rocks from the Northeast of Sulu Ultrahigh-Pressure Metamorphic Belt: Insight from Petrology, Isotope Geochronology and Geochemistry. Acta Petrologica Sinica, 33(9): 2899-2924(in Chinese with English abstract). http://www.researchgate.net/publication/320144745_The_polygenetic_meta-mafic_rocks_from_the_northeast_of_Sulu_ultrahigh-pressure_metamorphic_belt_Insight_from_petrology_isotope_geochronology_and_geochemistry [58] Liu, P. H. , Liu, F. L. , Wang, F. , et al. , 2015. P-T-t Paths of the Multiple Metamorphic Events of the Jiaobei Terrane in the Southeastern Segment of the Jiao-Liao-Ji Belt(JLJB), in the North China Craton: Impication for Formation and Evolution of the JLJB. Acta Petrologica Sinica, 31(10): 2889-2941(in Chinese with English abstract). http://www.researchgate.net/publication/285470639_P-T-t_paths_of_the_multiple_metamorphic_events_of_the_Jiaobei_terrane_in_the_southeastern_segment_of_the_Jiao-Liao-Ji_Belt_JLJB_in_the_North_China_Craton_Impication_for_formation_and_evolution_of_the_ [59] Liu, P. H. , Liu, F. L. , Yang, H. , et al. , 2012. Protolith Ages and Timing of Peak and Retrograde Metamorphism of the High-Pressure Granulites in the Shandong Peninsula, Eastern North China Craton. Geoscience Frontiers, 3(6): 923-943. https://doi.org/10.1016/j.gsf.2012.04.001 [60] Liu, Y. S. , Gao, S. , Hu, Z. C. , et al. , 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2): 537-571. https://doi.org/10.1093/petrology/egp082 [61] Lu, X. P. , Wu, F. Y. , Guo, J. H. , et al. , 2006. Zircon U-Pb Geochronological Constraints on the Paleoproterozoic Crustal Evolution of the Eastern Block in the North China Craton. Precambrian Research, 146(3-4): 138-164. https://doi.org/10.1016/j.precamres.2006.01.009 [62] Ludwig, K. R., 2003. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley. [63] Möller, A. , O'Brien, P. J. , Kennedy, A. , et al. , 2003. Linking Growth Episodes of Zircon and Metamorphic Textures to Zircon Chemistry: An Example from the Ultrahigh-Temperature Granulites of Rogaland (SW Norway). Geological Society, London, Special Publications, 220(1): 65-81. https://doi.org/10.1144/gsl.sp.2003.220.01.04 [64] Qiu, Y. M. , Gao, S. , McNaughton, N. J. , et al. , 2000. First Evidence of > 3.2 Ga Continental Crust in the Yangtze Craton of South China and Its Implications for Archean Crustal Evolution and Phanerozoic Tectonics. Geology, 28(1): 11-14. https://doi.org/10.1130/0091-7613(2000)0280011:feogcc>2.3.co;2 doi: 10.1130/0091-7613(2000)0280011:feogcc>2.3.co;2 [65] O'Brien, P. J. , 2000. The Fundamental Variscan Problem: High-Temperature Metamorphism at Different Depths and High-Pressure Metamorphism at Different Temperatures. Geological Society, London, Special Publications, 179(1): 369-386. https://doi.org/10.1144/gsl.sp.2000.179.01.22 [66] Rogers, J. J. W. , Santosh, M. , 2009. Tectonics and Surface Effects of the Supercontinent Columbia. Gondwana Research, 15(3-4): 373-380. https://doi.org/10.1016/j.gr.2008.06.008 [67] Rubatto, D. , 2002. Zircon Trace Element Geochemistry: Partitioning with Garnet and the Link between U-Pb Ages and Metamorphism. Chemical Geology, 184(1-2): 123-138. https://doi.org/10.1016/s0009-2541(01)00355-2 [68] Santosh, M. , Liu, S. J. , Tsunogae, T. , et al. , 2012. Paleoproterozoic Ultrahigh-Temperature Granulites in the North China Craton: Implications for Tectonic Models on Extreme Crustal Metamorphism. Precambrian Research, 222-223: 77-106. https://doi.org/10.1016/j.precamres.2011.05.003 [69] Song, Y. R. , Xu, H. J. , Zhang, J. F. , et al. , 2014. Syn-Exhumation Partial Melting and Melt Segregation in the Sulu UHP Terrane: Evidences from Leucosome and Pegmatitic Vein of Migmatite. Lithos, 202-203: 55-75. https://doi.org/10.1016/j.lithos.2014.05.017 [70] Sun, M. , Chen, N. , Zhao, G. C. , et al. , 2008. U-Pb Zircon and Sm-Nd Isotopic Study of the Huangtuling Granulite, Dabie-Sulu Belt, China: Implication for the Paleoproterozoic Tectonic History of the Yangtze Craton. American Journal of Science, 308(4): 469-483. https://doi.org/10.2475/04.2008.03 [71] Sun, S. S. , McDonough, W. F. , 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [72] Tam, P. Y. , Zhao, G. C. , Liu, F. L. , et al. , 2011. Timing of Metamorphism in the Paleoproterozoic Jiao-Liao-Ji Belt: New SHRIMP U-Pb Zircon Dating of Granulites, Gneisses and Marbles of the Jiaobei Massif in the North China Craton. Gondwana Research, 19(1): 150-162. https://doi.org/10.1016/j.gr.2010.05.007 [73] Tam, P. Y. , Zhao, G. C. , Sun, M. , et al. , 2012a. Metamorphic P-T Path and Tectonic Implications of Medium-Pressure Pelitic Granulites from the Jiaobei Massif in the Jiao-Liao-Ji Belt, North China Craton. Precambrian Research, 220-221: 177-191. https://doi.org/10.1016/j.precamres.2012.08.008 [74] Tam, P. Y. , Zhao, G. C. , Sun, M. , et al. , 2012b. Petrology and Metamorphic P-T Path of High-Pressure Mafic Granulites from the Jiaobei Massif in the Jiao-Liao-Ji Belt, North China Craton. Lithos, 155: 94-109. https://doi.org/10.1016/j.lithos.2012.08.018 [75] Tang, J. , Zheng, Y. F. , Wu, Y. B. , et al. , 2007. Geochronology and Geochemistry of Metamorphic Rocks in the Jiaobei Terrane: Constraints on Its Tectonic Affinity in the Sulu Orogen. Precambrian Research, 152(1-2): 48-82. https://doi.org/10.1016/j.precamres.2006.09.001 [76] Tang, J. , Zheng, Y. F. , Wu, Y. B. , et al. , 2008. Zircon U-Pb Age and Geochemical Constraints on the Tectonic Affinity of the Jiaodong Terrane in the Sulu Orogen, China. Precambrian Research, 161(3-4): 389-418. https://doi.org/10.1016/j.precamres.2007.09.008 [77] Taylor, R. J. M. , Harley, S. L. , Hinton, R. W. , et al. , 2015. Experimental Determination of REE Partition Coefficients between Zircon, Garnet and Melt: A Key to Understanding High-T Crustal Processes. Journal of Metamorphic Geology, 33(3): 231-248. https://doi.org/10.1111/jmg.12118 [78] Tian, Z. H. , Liu, F. L. , Windley, B. F. , et al. , 2017. Polyphase Structural Deformation of Low- to Medium-Grade Metamorphic Rocks of the Liaohe Group in the Jiao-Liao-Ji Orogenic Belt, North China Craton: Correlations with Tectonic Evolution. Precambrian Research, 303: 641-659. https://doi.org/10.1016/j.precamres.2017.08.017 [79] Tomkins, H. S. , Powell, R. , Ellis, D. J. , 2007. The Pressure Dependence of the Zirconium-in-Rutile Thermometer. Journal of Metamorphic Geology, 25(6): 703-713. https://doi.org/10.1111/j.1525-1314.2007.00724.x [80] Tong, L. X. , Xu, Y. G. , Cawood, P. A. , et al. , 2014. Anticlockwise P-T Evolution at ~280 Ma Recorded from Ultrahigh-Temperature Metapelitic Granulite in the Chinese Altai Orogenic Belt, a Possible Link with the Tarim Mantle Plume? Journal of Asian Earth Sciences, 94: 1-11. https://doi.org/10.1016/j.jseaes.2014.07.043 [81] Vavra, G. , Gebauer, D. , Schmid, R. , et al. , 1996. Multiple Zircon Growth and Recrystallization during Polyphase Late Carboniferous to Triassic Metamorphism in Granulites of the Ivrea Zone (Southern Alps): An Ion Microprobe (SHRIMP) Study. Contributions to Mineralogy and Petrology, 122(4): 337-358. https://doi.org/10.1007/s004100050132 [82] Vavra, G. , Schmid, R. , Gebauer, D. , 1999. Internal Morphology, Habit and U-Th-Pb Microanalysis of Amphibolite-to-Granulite Facies Zircons: Geochronology of the Ivrea Zone (Southern Alps). Contributions to Mineralogy and Petrology, 134(4): 380-404. https://doi.org/10.1007/s004100050492 [83] Wan, Y. S. , Liu, D. Y. , Wang, S. J. , et al. , 2011. ~2.7 Ga Juvenile Crust Formation in the North China Craton (Taishan-Xintai Area, Western Shandong Province): Further Evidence of an Understated Event from U-Pb Dating and Hf Isotopic Composition of Zircon. Precambrian Research, 186(1-4): 169-180. https://doi.org/10.1016/j.precamres.2011.01.015 [84] Wang, L. J. , Griffin, W. L. , Yu, J. H. , et al. , 2010. Precambrian Crustal Evolution of the Yangtze Block Tracked by Detrital Zircons from Neoproterozoic Sedimentary Rocks. Precambrian Research, 177(1-2): 131-144. https://doi.org/10.1016/j.precamres.2009.11.008 [85] Wang, X. M. , Liou, J. G. , Mao, H. K. , 1989. Coesite-bearing Eclogite from the Dabie Mountains in Central China. Geology, 17(12): 1085-1088. https://doi.org/10.1130/0091-7613(1989)0171085:cbeftd>2.3.co;2 doi: 10.1130/0091-7613(1989)0171085:cbeftd>2.3.co;2 [86] Watson, E. B. , Wark, D. A. , Thomas, J. B. , 2006. Crystallization Thermometers for Zircon and Rutile. Contributions to Mineralogy and Petrology, 151(4): 413-433. https://doi.org/10.1007/s00410-006-0068-5 [87] Whitehouse, M. J. , Platt, J. P. , 2003. Dating High-Grade Metamorphism: Constraints from Rare-Earth Elements in Zircon and Garnet. Contributions to Mineralogy and Petrology, 145(1): 61-74. https://doi.org/10.1007/s00410-002-0432-z [88] Wu, M. L. , Zhao, G. C. , Sun, M. , et al. , 2014. Zircon U-Pb Geochronology and Hf Isotopes of Major Lithologies from the Jiaodong Terrane: Implications for the Crustal Evolution of the Eastern Block of the North China Craton. Lithos, 190-191: 71-84. https://doi.org/10.1016/j.lithos.2013.12.004 [89] Wu, Y. B. , Gao, S. , Gong, H. J. , et al. , 2009. Zircon U-Pb Age, Trace Element and Hf Isotope Composition of Kongling Terrane in the Yangtze Craton: Refining the Timing of Palaeoproterozoic High-Grade Metamorphism. Journal of Metamorphic Geology, 27(6): 461-477. https://doi.org/10.1111/j.1525-1314.2009.00826.x [90] Wu, Y. B. , Zheng, Y. F. , 2004. Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age. Chinese Science Bulletin, 49(16): 1589-1604(in Chinese). doi: 10.1360/csb2004-49-16-1589 [91] Wu, Y. B. , Zheng, Y. F. , Gao, S. , et al. , 2008. Zircon U-Pb Age and Trace Element Evidence for Paleoproterozoic Granulite-Facies Metamorphism and Archean Crustal Rocks in the Dabie Orogen. Lithos, 101(3-4): 308-322. https://doi.org/10.1016/j.lithos.2007.07.008 [92] Xiang, H. , Zhang, Z. M. , Lei, H. C. , et al. , 2014. Paleoproterozoic Ultrahigh-Temperature Pelitic Granulites in the Northern Sulu Orogen: Constraints from Petrology and Geochronology. Precambrian Research, 254: 273-289. https://doi.org/10.1016/j.precamres.2014.09.004 [93] Xiang, H. , Zhang, Z. M. , Zhao, L. M. , et al. , 2018. Metamorphic P-T-t Path of UHT Granulites from the North Tongbai Orogen, Central China. Journal of Earth Science, 29(5): 1116-1131. https://doi.org/10.1007/s12583-018-0855-8 [94] Xu, H. J. , Lei, H. C. , Xiong, Z. W. , et al. , 2019. Paleoproterozoic Ultrahigh-Temperature Granulite-Facies Metamorphism in the Sulu Orogen, Eastern China: Evidence from Zircon and Monazite in the Pelitic Granulite. Precambrian Research, 333: 105430. https://doi.org/10.1016/j.precamres.2019.105430 [95] Xu, H. J. , Song, Y. R. , Ye, K. , 2013. Partial Melting Time of the Sulu UHP Terrane: Constraints from Zircon U-Pb Age, Trace Element and Lu-Hf Isotope Composition of Leucosome in Rongcheng Granitic Gneiss. Acta Petrologica Sinica, 29(5): 1594-1606(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201305012.htm [96] Xu, H. J. , Ye, K. , Song, Y. R. , et al. , 2013. Prograde Metamorphism, Decompressional Partial Melting and Subsequent Melt Fractional Crystallization in the Weihai Migmatitic Gneisses, Sulu UHP Terrane, Eastern China. Chemical Geology, 341: 16-37. https://doi.org/10.1016/j.chemgeo.2013.01.002 [97] Xu, H. J. , Zhang, J. F. , 2018. Zircon Geochronological Evidence for Participation of the North China Craton in the Protolith of Migmatite of the North Dabie Terrane. Journal of Earth Science, 29(1): 30-42. https://doi.org/10.1007/s12583-017-0805-x [98] Xu, H. J. , Zhang, J. F. , Wang, Y. F. , et al. , 2016. Late Triassic Alkaline Complex in the Sulu UHP Terrane: Implications for Post-Collisional Magmatism and Subsequent Fractional Crystallization. Gondwana Research, 35: 390-410. https://doi.org/10.1016/j.gr.2015.05.017 [99] Xu, S. T. , Liu, Y. C. , Chen, G. B. , et al. , 2003. New Finding of Micro-Diamonds in Eclogites from Dabie-Sulu Region in Central-Eastern China. Chinese Science Bulletin, 48(10): 988-994. https://doi.org/10.1007/bf03184213 [100] Xu, Z. Q. , Qi, X. X. , Yang, J. S. , et al. , 2006. Deep Subduction Erosion Model for Continent-Continent Collision of the Sulu HP-UHP Metamorphic Terrain. Earth Science, 31(4): 427-436(in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dqkx200604000.htm [101] Yakymchuk, C. , Kirkland, C. L. , Clark, C. , 2018. Th/U Ratios in Metamorphic Zircon. Journal of Metamorphic Geology, 36(6): 715-737. https://doi.org/10.1111/jmg.12307 [102] Yang, J. S. , Wooden, J. L. , Wu, C. L. , et al. , 2003. SHRIMP U-Pb Dating of Coesite-Bearing Zircon from the Ultrahigh-Pressure Metamorphic Rocks, Sulu Terrane, East China. Journal of Metamorphic Geology, 21(6): 551-560. https://doi.org/10.1046/j.1525-1314.2003.00463.x [103] Ye, K. , Cong, B. L. , Ye, D. N. , 2000a. The Possible Subduction of Continental Material to Depths Greater than 200 km. Nature, 407(6805): 734-736. https://doi.org/10.1038/35037566 [104] Ye, K. , Yao, Y. P. , Katayama, I. , et al. , 2000b. Large Areal Extent of Ultrahigh-Pressure Metamorphism in the Sulu Ultrahigh-Pressure Terrane of East China: New Implications from Coesite and Omphacite Inclusions in Zircon of Granitic Gneiss. Lithos, 52(1-4): 157-164. https://doi.org/10.1016/S0024-4937(99)00089-4 [105] Zhai, M. G. , Cong, B. L. , Guo, J. H. , et al. , 2000. Sm-Nd Geochronology and Petrography of Garnet Pyroxene Granulites in the Northern Sulu Region of China and Their Geotectonic Implication. Lithos, 52(1-4): 23-33. https://doi.org/10.1016/s0024-4937(99)00082-1 [106] Zhai, M. G. , Liu, W. J, 2001. The Formation of Granulite and Its Contribution to Evolution of the Continental Crust. Acta Petrologica Sinica, 17(1): 28-38(in Chinese with English abstract). [107] Zhai, M. G. , Santosh, M. , 2011. The Early Precambrian Odyssey of the North China Craton: A Synoptic Overview. Gondwana Research, 20(1): 6-25. https://doi.org/10.1016/j.gr.2011.02.005 [108] Zhang, H. F. , Wang, H. Z. , Santosh, M. , et al. , 2016. Zircon U-Pb Ages of Paleoproterozoic Mafic Granulites from the Huai'an Terrane, North China Craton (NCC): Implications for Timing of Cratonization and Crustal Evolution History. Precambrian Research, 272: 244-263. https://doi.org/10.1016/j.precamres.2015.11.004 [109] Zhang, J. , Zhao, Z. F. , Zheng, Y. F. , et al. , 2010. Post-Collisional Magmatism: Geochemical Constraints on the Petrogenesis of Mesozoic Granitoids in the Sulu Orogen, China. Lithos, 119(3-4): 512-536. https://doi.org/10.1016/j.lithos.2010.08.005 [110] Zhang, R. Y. , Liou, J. G. , Cong, B. L. , 1994. Petrogenesis of Garnet-Bearing Ultramafic Rocks and Associated Eclogites in the Su-Lu Ultrahigh-P Metamorphic Terrane, Eastern China. Journal of Metamorphic Geology, 12(2): 169-186. https://doi.org/10.1111/j.1525-1314.1994.tb00012.x [111] Zhang, R. Y. , Liou, J. G. , Yang, J. S. , et al. , 2003. Ultrahigh-Pressure Metamorphism in the Forbidden Zone: The Xugou Garnet Peridotite, Sulu Terrane, Eastern China. Journal of Metamorphic Geology, 21(6): 539-550. https://doi.org/10.1046/j.1525-1314.2003.00462.x [112] Zhang, R. Y., Liou, J. G., Tsujimori, T., et al., 2006a. Non-Ultrahigh-Pressure Unit Bordering the Sulu Ultrahigh-Pressure Terrane, Eastern China: Transformation of Proterozoic Granulite and Gabbro to Garnet Amphibolite. In: Hacker, B. R., McClelland, W. C., Liou, J. G., eds., Ultrahigh-Pressure Metamorphism: Deep Continental Subduction. Geological Society of America Special Papers, 403: 169-206. https://doi.org/10.1130/2006.2403(10) [113] Zhang, S. B. , Tang, J. , Zheng, Y. F. , 2014. Contrasting Lu-Hf Isotopes in Zircon from Precambrian Metamorphic Rocks in the Jiaodong Peninsula: Constraints on the Tectonic Suture between North China and South China. Precambrian Research, 245: 29-50. https://doi.org/10.1016/j.precamres.2014.01.006 [114] Zhang, S. B. , Zheng, Y. F. , Wu, Y. B. , et al. , 2006b. Zircon U-Pb Age and Hf-O Isotope Evidence for Paleoproterozoic Metamorphic Event in South China. Precambrian Research, 151(3-4): 265-288. https://doi.org/10.1016/j.precamres.2006.08.009 [115] Zhang, S. B. , Zheng, Y. F. , 2013. Formation and Evolution of Precambrian Continental Lithosphere in South China. Gondwana Research, 23(4): 1241-1260. https://doi.org/10.1016/j.gr.2012.09.005 [116] Zhao, G. C. , Cawood, P. A. , Wilde, S. A. , et al. , 2002. Review of Global 2.1-1.8 Ga Orogens: Implications for a Pre-Rodinia Supercontinent. Earth-Science Reviews, 59(1-4): 125-162. https://doi.org/10.1016/S0012-8252(02)00073-9 [117] Zhao, G. C. , Cawood, P. A. , Li, S. Z. , et al. , 2012. Amalgamation of the North China Craton: Key Issues and Discussion. Precambrian Research, 222-223: 55-76. https://doi.org/10.1016/j.precamres.2012.09.016 [118] Zheng, Y. F. , Wu, Y. B. , Zhao, Z. F. , et al. , 2005. Metamorphic Effect on Zircon Lu-Hf and U-Pb Isotope Systems in Ultrahigh-Pressure Eclogite-Facies Metagranite and Metabasite. Earth and Planetary Science Letters, 240(2): 378-400. https://doi.org/10.1016/j.epsl.2005.09.025 [119] Zhou, J. B. , Wilde, S. A. , Zhao, G. C. , et al. , 2008a. SHRIMP U-Pb Zircon Dating of the Neoproterozoic Penglai Group and Archean Gneisses from the Jiaobei Terrane, North China, and Their Tectonic Implications. Precambrian Research, 160(3-4): 323-340. https://doi.org/10.1016/j.precamres.2007.08.004 [120] Zhou, X. W. , Zhao, G. C. , Wei, C. J. , et al. , 2008b. EPMA U-Th-Pb Monazite and SHRIMP U-Pb Zircon Geochronology of High-Pressure Pelitic Granulites in the Jiaobei Massif of the North China Craton. American Journal of Science, 308(3): 328-350. https://doi.org/10.2475/03.2008.06 [121] Zong, K. Q. , Klemd, R. , Yuan, Y. , et al. , 2017. The Assembly of Rodinia: The Correlation of Early Neoproterozoic (ca. 900 Ma) High-Grade Metamorphism and Continental Arc Formation in the Southern Beishan Orogen, Southern Central Asian Orogenic Belt (CAOB). Precambrian Research, 290: 32-48. https://doi.org/10.1016/j.precamres.2016.12.010 [122] Zou, Y. , Zhai, M. G. , Santosh, M. , et al. , 2017. High-Pressure Pelitic Granulites from the Jiao-Liao-Ji Belt, North China Craton: A Complete P-T Path and Its Tectonic Implications. Journal of Asian Earth Sciences, 134: 103-121. https://doi.org/10.1016/j.jseaes.2016.10.015 [123] 高名迪, 续海金, 章军锋, 等, 2018. 深俯冲陆壳部分熔融初始熔体的厘定: 来自苏鲁超高压地体混合岩中浅色体证据. 岩石学报, 34(3): 547-566. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201803002.htm [124] 耿科, 王瑞江, 李洪奎, 等, 2016. 山东省麻粒岩与麻粒岩相变质作用: 研究现状及对前寒武纪大地构造演化的启示. 地质论评, 62(1): 153-170. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201601021.htm [125] 雷恒聪, 向华, 张泽明, 等, 2014. 苏鲁造山带古元古代超高温麻粒岩及其构造意义. 岩石学报, 30(8): 2435-2445. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201408023.htm [126] 刘利双, 刘福来, 冀磊, 等, 2018. 北苏鲁超高压变质带内多成因类型的变花岗质岩石及其地质意义. 岩石学报, 34(6): 1557-1580. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201806002.htm [127] 刘利双, 刘福来, 王伟, 2017. 苏鲁超高压变质带东北端多种成因类型变基性岩: 来自岩石学、同位素年代学及地球化学属性的制约. 岩石学报, 33(9): 2899-2924. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201709016.htm [128] 刘平华, 刘福来, 王舫, 等, 2015. 胶北地体多期变质事件的P-T-t轨迹及其对胶-辽-吉带形成与演化的制约. 岩石学报, 31(10): 2889-2941. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201510005.htm [129] 吴元保, 郑永飞, 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589-1604. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200416001.htm [130] 续海金, 宋衍茹, 叶凯, 2013. 苏鲁超高压地体部分熔融时间的厘定: 荣成花岗质片麻岩中浅色条带的锆石U-Pb定年、微量元素和Lu-Hf同位素证据. 岩石学报, 29(5): 1594-1606. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201305012.htm [131] 许志琴, 戚学祥, 杨经绥, 等, 2006. 苏鲁高压-超高压变质地体的陆-陆碰撞深俯冲剥蚀模式. 地球科学, 31(4): 427-436. http://www.earth-science.net/article/id/1590 [132] 翟明国, 刘文军, 2001. 麻粒岩的形成及其对大陆地壳演化的贡献. 岩石学报, 17(1): 28-38. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200101004.htm