• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    苏鲁造山带威海古元古代泥质麻粒岩锆石U-Pb年龄和Hf同位素特征及其构造属性

    熊志武 续海金 王攀 章军锋 刘强

    熊志武, 续海金, 王攀, 章军锋, 刘强, 2021. 苏鲁造山带威海古元古代泥质麻粒岩锆石U-Pb年龄和Hf同位素特征及其构造属性. 地球科学, 46(2): 504-526. doi: 10.3799/dqkx.2020.036
    引用本文: 熊志武, 续海金, 王攀, 章军锋, 刘强, 2021. 苏鲁造山带威海古元古代泥质麻粒岩锆石U-Pb年龄和Hf同位素特征及其构造属性. 地球科学, 46(2): 504-526. doi: 10.3799/dqkx.2020.036
    Xiong Zhiwu, Xu Haijin, Wang Pan, Zhang Junfeng, Liu Qiang, 2021. Zircon U-Pb Age and Hf Isotope of Paleoproterozoic Pelitic Granulites at Weihai, Sulu Orogen: Implications for Tectonic Affinity. Earth Science, 46(2): 504-526. doi: 10.3799/dqkx.2020.036
    Citation: Xiong Zhiwu, Xu Haijin, Wang Pan, Zhang Junfeng, Liu Qiang, 2021. Zircon U-Pb Age and Hf Isotope of Paleoproterozoic Pelitic Granulites at Weihai, Sulu Orogen: Implications for Tectonic Affinity. Earth Science, 46(2): 504-526. doi: 10.3799/dqkx.2020.036

    苏鲁造山带威海古元古代泥质麻粒岩锆石U-Pb年龄和Hf同位素特征及其构造属性

    doi: 10.3799/dqkx.2020.036
    基金项目: 

    国家自然科学基金项目 42072058

    国家自然科学基金项目 41772054

    国家自然科学基金项目 41572039

    详细信息
      作者简介:

      熊志武(1995-), 男, 硕士研究生, 主要从事变质岩石学研究.ORCID: 0000-0002-2479-6715.E-mail: 1361397442@qq.com

      通讯作者:

      续海金, ORCID: 0000-0002-7648-6655.E-mail: xuhaijin@cug.edu.cn

    • 中图分类号: P597.3

    Zircon U-Pb Age and Hf Isotope of Paleoproterozoic Pelitic Granulites at Weihai, Sulu Orogen: Implications for Tectonic Affinity

    • 摘要: 威海地区出露古元古代泥质麻粒岩,其构造属性仍存在争议.泥质麻粒岩以透镜体的形式出露在花岗质片麻岩中,透镜体从核部到边部的岩性逐渐变化:未变形的粗粒泥质麻粒岩、面理化的细粒泥质麻粒岩、石榴黑云片麻岩和混合岩化麻粒岩.粗粒泥质麻粒岩,粗粒斑状变晶结构,块状构造;细粒泥质麻粒岩,细粒斑状变晶结构,面理发育;石榴黑云片麻岩,斑状变晶结构,片麻状构造,上述3种岩石的主要矿物组合均为石榴子石+黑云母+斜长石(反条纹长石)+石英+矽线石;混合岩,条带状构造,暗色残余体主要矿物组合为石榴子石+斜长石+黑云母+石英+矽线石,浅色体矿物组合为石英+斜长石+钾长石.所有样品均有金红石、锆石和独居石等副矿物.粗粒泥质麻粒岩中的锆石颗粒均为浑圆近等粒,具有典型的麻粒岩相变质锆石的特征:锆石CL图像为均一的云雾状或补丁状结构,低的Th/U比值(0.01~0.30),强烈的Ce正异常和Eu负异常,HREE的亏损及高的Hf/Y比值(19~537).利用锆石Ti温度计获得的变质温度为788~892℃(加权平均值为837±24℃).锆石U-Pb定年获得上交点年龄为1 863±18 Ma,206Pb/238U加权平均年龄为1 832±23 Ma.εHft)值为-3.4~-4.9(加权平均值为-4.23±0.35),相应的两阶段模式年龄(TDM2)为2 716±107 Ma~2 807±93 Ma(加权平均值为2 767±44 Ma).细粒泥质麻粒岩中的锆石也具有麻粒岩相锆石的CL和微量元素特征,Ti含量温度计获得的变质温度为804~909℃(加权平均值为845±23℃),锆石U-Pb上交点年龄为1 823±14 Ma,谐和206Pb/238U年龄加权平均值为1 812±13 Ma,εHft)为-3.7~-5.7(加权平均值为-4.67±0.37),TDM2为2 705±133 Ma~2 826±116 Ma(加权平均值为2 766±46 Ma).石榴黑云片麻岩中的锆石也具有麻粒岩相变质锆石的CL和微量元素特征,锆石Ti含量计算变质温度为785~923℃(加权平均值为820±32℃),锆石U-Pb上交点年龄为1 807±22 Ma,εHft)为-4.5~-9.0(加权平均值为-6.07±0.48),TDM2为2 742±90 Ma~3 020±92 Ma(加权平均值为2 839±41 Ma).混合岩中的锆石大部分具有核-边结构.根据Ti含量温度计获得的混合岩中麻粒岩相变质锆石核的变质温度为754~875℃(加权平均值为818±30℃),U-Pb上交点年龄为1 822±19 Ma,εHft)值为-4.3~-6.3(加权平均值为-5.47±0.35),TDM2为2 742±82 Ma~2 864±91 Ma(加权平均值为2 814±43 Ma).可见,麻粒岩、石榴黑云片麻岩和混合岩经历了相同的麻粒岩相峰期变质作用(~1.8 Ga),具有相同的原岩属性,即晚太古代(2.7~2.8 Ga)的地壳物质.麻粒岩透镜体从核部到边部岩性的变化,可能受到晚三叠纪碰撞造山作用的不同程度改造.因此,威海超高压地体中出露的泥质麻粒岩透镜体,在构造亲属性上可能属于华北克拉通地壳物质,成因上可能与哥伦比亚超大陆的演化有关,在三叠纪大陆俯冲碰撞过程中卷入造山带.

       

    • 图  1  苏鲁造山带地质简图(a)和威海地区采样位置(b)

      图a据Xiang et al. (2014)修改; 图b据Xu et al. (2019)修改

      Fig.  1.  Geological sketch map of Sulu orogen (a) and sample location in the Weihai area (b)

      图  2  泥质麻粒岩透镜体野外露头及采样点(a)和采集的样品照片(b~e)

      Fig.  2.  Field outcrop and sample sites of the pelitic granulite lens (a) and the specimen photographs of pelitic granulite, garnet-biotite-gneiss and migmatite (b-e)

      图  3  样品显微照片

      图a~d为未变形的粗粒泥质麻粒岩(17WH-1); 图e、f为面理化的细粒泥质麻粒岩(17WH-2); 图g~i为石榴黑云片麻岩(17WH-3); 图j~l为混合岩(17WH-5); a. 石榴子石变斑晶中锆石、独居石包裹体及裂隙中黑云母和夕线石,基质中矽线石;b.变斑晶石榴子石中金红石、独居石、石英包裹体及金红石出溶体;c.放射状集合体黑云母及退变为钛铁矿的金红石;d.反条纹长石;e.黑云母与纤维状矽线石;f.石榴子石残余,具有定向性的黑云母;g、h、k.具有强定向性的黑云母和纤维状矽线石;i、l.定向拉长的石英及定向的矽线石;j.石榴子石变斑晶中锆石、独居石、石英和黑云母矿物包裹体. 矿物代号:Gt.石榴子石;Bt.黑云母;Qz.石英;Pl.斜长石;Atp.反条纹长石;Sil.矽线石;Rt.金红石;Kf.钾长石;Zrc.锆石;Mnz.独居石;Ilm.钛铁矿;Melt.熔体

      Fig.  3.  Photomicrographs of the samples

      图  4  代表性锆石CL图像、U-Pb年龄及Hf同位素分析结果

      红色圆圈为U-Pb年龄和微量元素分析点及对应的206Pb/238U年龄(Ma),黄色圆圈代表锆石Hf同位素分析点及对应的εHf(t)值

      Fig.  4.  The CL images of representative zircon grains with 206Pb/238U ages and initial Hf isotope ratios

      图  5  样品锆石Th-U图解

      Fig.  5.  Plots of Th versus U of zircons from the samples

      图  6  样品锆石球粒陨石标准化稀土元素配分模式图(标准化值据Sun and McDonough, 1989

      Fig.  6.  Chondrite-normalized REE patterns of zircons in samples from Weihai (values from Sun and McDonough, 1989)

      图  7  样品锆石U-Pb年龄谐和图

      Fig.  7.  Zircon U-Pb concordia diagrams with weighted mean 206Pb/238U ages of the samples

      图  8  样品锆石分析点年龄和基于锆石Ti含量温度计(Ferry and Watson, 2007)计算的变质温度图解

      括号内数值为所有分析点的平均年龄和平均温度

      Fig.  8.  Zircon 206Pb/238U age spots and corresponding temperature which is calculated based upon Ti concentration in zircon by using the Ti-in-zircon thermometer (Ferry and Watson, 2007)

      图  9  样品中锆石εHf(t)值频率直方图及加权平均值

      Fig.  9.  Histograms of zircon εHf(t) values and corresponding weighted mean values for samples

      图  10  样品中锆石二阶段Hf模式年龄(TDM2)直方图及其加权平均值

      Fig.  10.  Histograms of zircon two-stage Hf model ages (TDM2) with weighted mean values for samples

      图  11  样品锆石二阶段Hf模式年龄(a)和Lu-Hf同位素组成演化图(b)

      Fig.  11.  Two-stage model ages with error bars (a) and schematic diagram for zircon Lu-Hf isotopic evolution (b) of the samples

    • [1] Bingen, B. , Austrheim, H. , Whitehouse, M. J. , et al. , 2004. Trace Element Signature and U-Pb Geochronology of Eclogite-Facies Zircon, Bergen Arcs, Caledonides of W Norway. Contributions to Mineralogy and Petrology, 147(6): 671-683. https://doi.org/10.1007/s00410-004-0585-z
      [2] Blichert-Toft, J. , Chauvel, C. , Albarède, F. , 1997. Separation of Hf and Lu for High-Precision Isotope Analysis of Rock Samples by Magnetic Sector-Multiple Collector ICP-MS. Contributions to Mineralogy and Petrology, 127(3): 248-260. https://doi.org/10.1007/s004100050278
      [3] Bradley, D. C., Kusky, T. M., Haeussler, P. J., et al., 2003. Geologic Signature of Early Tertiary Ridge Subduction in Alaska. In: Sisson, V. B., Roseske, S. M., Pavlis, T. L., eds., Geology of a Transpressional Orogen Developed during Ridge-Trench Interaction along the North Pacific Margin. Geological Society of America Special Paper, 371: 19-49. https://doi.org/10.1130/0-8137-2371-x.19
      [4] Brown, M. , Johnson, T. , 2019. Time's Arrow, Time's Cycle: Granulite Metamorphism and Geodynamics. Mineralogical Magazine, 83(3): 323-338. https://doi.org/10.1180/mgm.2019.19
      [5] Chen, K. , Gao, S. , Wu, Y. B. , et al. , 2013.2.6-2.7 Ga Crustal Growth in Yangtze Craton, South China. Precambrian Research, 224: 472-490. https://doi.org/10.1016/j.precamres.2012.10.017
      [6] Chen, R. X. , Ding, B. H. , Zheng, Y. F. , et al. , 2015. Multiple Episodes of Anatexis in a Collisional Orogen: Zircon Evidence from Migmatite in the Dabie Orogen. Lithos, 212-215: 247-265. https://doi.org/10.1016/j.lithos.2014.11.004
      [7] Chen, R. X. , Zheng, Y. F. , Zhao, Z. F. , et al. , 2007. Zircon U-Pb Age and Hf Isotope Evidence for Contrasting Origin of Bimodal Protoliths for Ultrahigh-Pressure Metamorphic Rocks from the Chinese Continental Scientific Drilling Project. Journal of Metamorphic Geology, 25(8): 873-894. https://doi.org/10.1111/j.1525-1314.2007.00735.x
      [8] Chen, S. , Li, X. P. , Kong, F. M. , et al. , 2018. Metamorphic Evolution and Zircon U-Pb Ages of the Nanshankou Mafic High Pressure Granulites from the Jiaobei Terrane, North China Craton. Journal of Earth Science, 29(5): 1219-1235. https://doi.org/10.1007/s12583-017-0956-9
      [9] Chen, Y. , Ye, K. , Liu, J. B. , et al. , 2006. Multistage Metamorphism of the Huangtuling Granulite, Northern Dabie Orogen, Eastern China: Implications for the Tectonometamorphic Evolution of Subducted Lower Continental Crust. Journal of Metamorphic Geology, 24(7): 633-654. https://doi.org/10.1111/j.1525-1314.2006.00659.x
      [10] Collins, W. J. , 2002a. Hot Orogens, Tectonic Switching, and Creation of Continental Crust. Geology, 30(6): 535. https://doi.org/10.1130/0091-7613(2002)0300535:hotsac>2.0.co;2 doi: 10.1130/0091-7613(2002)0300535:hotsac>2.0.co;2
      [11] Collins, W. J. , 2002b. Nature of Extensional Accretionary Orogens. Tectonics, 21(4): 6-1-6-12. https://doi.org/10.1029/2000tc001272
      [12] Condie, K. C. , Aster, R. C, 2010. Episodic Zircon Age Spectra of Orogenic Granitoids: The Supercontinent Connection and Continental Growth. Precambrian Research, 180(3-4): 227-236. https://doi.org/10.1016/j.precamres.2010.03.008
      [13] Condie, K. C. , Belousova, E. , Griffin, W. L. , et al. , 2009. Granitoid Events in Space and Time: Constraints from Igneous and Detrital Zircon Age Spectra. Gondwana Research, 15(3-4): 228-242. https://doi.org/10.1016/j.gr.2008.06.001
      [14] Cui, X. , Zhu, W. B. , Ge, R. F. , 2014. Provenance and Crustal Evolution of the Northern Yangtze Block Revealed by Detrital Zircons from Neoproterozoic-Early Paleozoic Sedimentary Rocks in the Yangtze Gorges Area, South China. The Journal of Geology, 122(2): 217-235. https://doi.org/10.1086/674801
      [15] Ewing, T. A. , Hermann, J. , Rubatto, D. , 2013. The Robustness of the Zr-in-Rutile and Ti-in-Zircon Thermometers during High-Temperature Metamorphism (Ivrea-Verbano Zone, Northern Italy). Contributions to Mineralogy and Petrology, 165(4): 757-779. https://doi.org/10.1007/s00410-012-0834-5
      [16] Feng, P. , Wang, L. , Brown, M. , et al. , 2020. Separating Multiple Episodes of Partial Melting in Polyorogenic Crust: An Example from the Haiyangsuo Complex, Northern Sulu Belt, Eastern China. GSA Bulletin, 132(5-6): 1235-1256. https://doi.org/10.1130/b35210.1
      [17] Ferry, J. M. , Watson, E. B. , 2007. New Thermodynamic Models and Revised Calibrations for the Ti-in-Zircon and Zr-in-Rutile Thermometers. Contributions to Mineralogy and Petrology, 154(4): 429-437. https://doi.org/10.1007/s00410-007-0201-0
      [18] Fisher, C. M. , Vervoort, J. D. , Hanchar, J. M. , 2014. Guidelines for Reporting Zircon Hf Isotopic Data by LA-MC-ICPMS and Potential Pitfalls in the Interpretation of These Data. Chemical Geology, 363: 125-133. https://doi.org/10.1016/j.chemgeo.2013.10.019
      [19] Gao, M. D. , Xu, H. J. , Zhang, J. F. , et al. , 2018. Incipient Melt during Partial Melting of the Deeply Subducted Continental Crust: Evidence from Leucosome of Migmatite in Sulu Ultra-high Pressure Terrane. Acta Petrologica Sinica, 34(3): 547-566(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_acta-petrologica-sinica_thesis/0201252011765.html
      [20] Gao, S. , Yang, J. , Zhou, L. , et al. , 2011. Age and Growth of the Archean Kongling Terrain, South China, with Emphasis on 3.3 Ga Granitoid Gneisses. American Journal of Science, 311(2): 153-182. https://doi.org/10.2475/02.2011.03
      [21] Geng, K. , Wang, R. J. , Li, H. K. , et al. , 2016. Granulite and Granulite Facies Metamorphism in Shandong Province: Research Status and Implications to Precambrian Geotectonic Evolution. Geological Review, 62(1): 153-170(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZLP201601021.htm
      [22] Geng, Y. S. , Du, L. L. , Ren, L. D. , 2012. Growth and Reworking of the Early Precambrian Continental Crust in the North China Craton: Constraints from Zircon Hf Isotopes. Gondwana Research, 21(2-3): 517-529. https://doi.org/10.1016/j.gr.2011.07.006
      [23] Guo, J. L. , Gao, S. , Wu, Y. B. , et al. , 2014.3.45 Ga Granitic Gneisses from the Yangtze Craton, South China: Implications for Early Archean Crustal Growth. Precambrian Research, 242: 82-95. https://doi.org/10.1016/j.precamres.2013.12.018
      [24] Hacker, B. R. , Ratschbacher, L. , Webb, L. , et al. , 2000. Exhumation of Ultrahigh-Pressure Continental Crust in East Central China: Late Triassic-Early Jurassic Tectonic Unroofing. Journal of Geophysical Research: Solid Earth, 105(B6): 13339-13364. https://doi.org/10.1029/2000jb900039
      [25] Harley, S. L. , 2008. Refining the P-T Records of UHT Crustal Metamorphism. Journal of Metamorphic Geology, 26(2): 125-154. https://doi.org/10.1111/j.1525-1314.2008.00765.x
      [26] Harley, S. L. , Kelly, N. M. , Möller, A. , 2007. Zircon Behaviour and the Thermal Histories of Mountain Chains. Elements, 3(1): 25-30. https://doi.org/10.2113/gselements.3.1.25
      [27] Hermann, J. , Rubatto, D. , 2003. Relating Zircon and Monazite Domains to Garnet Growth Zones: Age and Duration of Granulite Facies Metamorphism in the Val Malenco Lower Crust. Journal of Metamorphic Geology, 21(9): 833-852. https://doi.org/10.1046/j.1525-1314.2003.00484.x
      [28] Hou, G. T. , Santosh, M. , Qian, X. L. , et al. , 2008. Configuration of the Late Paleoproterozoic Supercontinent Columbia: Insights from Radiating Mafic Dyke Swarms. Gondwana Research, 14(3): 395-409. https://doi.org/10.1016/j.gr.2008.01.010
      [29] Hu, Z. C. , Liu, Y. S. , Gao, S. , et al. , 2012a. A "Wire" Signal Smoothing Device for Laser Ablation Inductively Coupled Plasma Mass Spectrometry Analysis. Spectrochimica Acta Part B: Atomic Spectroscopy, 78: 50-57. https://doi.org/10.1016/j.sab.2012.09.007
      [30] Hu, Z. C. , Liu, Y. S. , Gao, S. , et al. , 2012b. Improved In Situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS. Journal of Analytical Atomic Spectrometry, 27(9): 1391. https://doi.org/10.1039/c2ja30078h
      [31] Hu, Z. C. , Zhang, W. , Liu, Y. S. , et al. , 2015. "Wave" Signal-Smoothing and Mercury-Removing Device for Laser Ablation Quadrupole and Multiple Collector ICPMS Analysis: Application to Lead Isotope Analysis. Analytical Chemistry, 87(2): 1152-1157. https://doi.org/10.1021/ac503749k
      [32] Hyndman, R. D. , Currie, C. A. , Mazzotti, S. P. , 2005. Subduction Zone Backarcs, Mobile Belts, and Orogenic Heat. GSA Today, 15(2): 4-10. https://doi.org/10.1130/1052-5173(2005)0154:szbmba>2.0.co;2 doi: 10.1130/1052-5173(2005)0154:szbmba>2.0.co;2
      [33] Jahn, B. M. , Liu, D. Y. , Wan, Y. S. , et al. , 2008. Archean Crustal Evolution of the Jiaodong Peninsula, China, as Revealed by Zircon SHRIMP Geochronology, Elemental and Nd-Isotope Geochemistry. American Journal of Science, 308(3): 232-269. https://doi.org/10.2475/03.2008.03
      [34] Jiang, N. , Guo, J. H. , Zhai, M. G. , et al. , 2010. ~2.7 Ga Crust Growth in the North China Craton. Precambrian Research, 179(1-4): 37-49. https://doi.org/10.1016/j.precamres.2010.02.010
      [35] Jiao, S. J. , Guo, J. H. , 2011. Application of the Two-Feldspar Geothermometer to Ultrahigh-Temperature (UHT) Rocks in the Khondalite Belt, North China Craton and Its Implications. American Mineralogist, 96(2-3): 250-260. https://doi.org/10.2138/am.2011.3500
      [36] Kato, T. , Enami, M. , Zhai, M. , 1997. Ultra-High-Pressure (UHP) Marble and Eclogite in the Su-Lu UHP Terrane, Eastern China. Journal of Metamorphic Geology, 15(2): 169-182. https://doi.org/10.1111/j.1525-1314.1997.00013.x
      [37] Kelly, N. M. , Harley, S. L. , 2005. An Integrated Microtextural and Chemical Approach to Zircon Geochronology: Refining the Archaean History of the Napier Complex, East Antarctica. Contributions to Mineralogy and Petrology, 149(1): 57-84. https://doi.org/10.1007/s00410-004-0635-6
      [38] Korhonen, F. J. , Clark, C. , Brown, M. , et al. , 2013. How Long-Lived is Ultrahigh Temperature (UHT) Metamorphism? Constraints from Zircon and Monazite Geochronology in the Eastern Ghats Orogenic Belt, India. Precambrian Research, 234: 322-350. https://doi.org/10.1016/j.precamres.2012.12.001
      [39] Lei, H. C. , Xiang, H. , Zhang, Z. M. , et al. , 2014. Paleoproterozoic UHT Granulite in the Sulu Orogen and Its Tectonic Implications. Acta Petrologica Sinica, 30(8): 2435-2445(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201408023.htm
      [40] Lei, H. C. , Xu, H. J. , 2018. A Review of Ultrahigh Temperature Metamorphism. Journal of Earth Science, 29(5): 1167-1180. https://doi.org/10.1007/s12583-018-0846-9
      [41] Lei, H. C. , Xu, H. J. , Xiang, H. , 2020. Basement Evolution of the Sulu Orogenic Belt: Constraints on Zircon U-Pb Ages and Trace Elements from the Weihai Gneisses. Geological Journal, 55(4): 2646-2661. https://doi.org/10.1002/gj.3538
      [42] Lei, H. C. , Xu, H. J. , Zhang, J. F. , et al. , 2019. A Record of Ultrahigh Temperature Metamorphism in the Dabie Orogen during Triassic Continental Collision. Gondwana Research, 72: 54-64. https://doi.org/10.1016/j.gr.2019.02.009
      [43] Lei, N. Z. , Wu, Y. B. , 2008. Zircon U-Pb Age, Trace Element, and Hf Isotope Evidence for Paleoproterozoic Granulite-Facies Metamorphism and Archean Crustal Remnant in the Dabie Orogen. Journal of China University of Geosciences, 19(2): 110-134. https://doi.org/10.1016/s1002-0705(08)60031-x
      [44] Li, S. Z. , Zhao, G. C. , 2007. SHRIMP U-Pb Zircon Geochronology of the Liaoji Granitoids: Constraints on the Evolution of the Paleoproterozoic Jiao-Liao-Ji Belt in the Eastern Block of the North China Craton. Precambrian Research, 158(1-2): 1-16. https://doi.org/10.1016/j.precamres.2007.04.001
      [45] Li, X. H. , Li, W. X. , Li, Z. X. , et al. , 2008.850-790 Ma Bimodal Volcanic and Intrusive Rocks in Northern Zhejiang, South China: A Major Episode of Continental Rift Magmatism during the Breakup of Rodinia. Lithos, 102(1-2): 341-357. https://doi.org/10.1016/j.lithos.2007.04.007
      [46] Liou, J. G. , Tsujimori, T. , Chu, W. , et al. , 2006. Protolith and Metamorphic Ages of the Haiyangsuo Complex, Eastern China: A Non-UHP Exotic Tectonic Slab in the Sulu Ultrahigh-Pressure Terrane. Mineralogy and Petrology, 88(1-2): 207-226. https://doi.org/10.1007/s00710-006-0156-2
      [47] Liu, F. L. , Gerdes, A. , Liou, J. G. , et al. , 2006. SHRIMP U-Pb Zircon Dating from Sulu-Dabie Dolomitic Marble, Eastern China: Constraints on Prograde, Ultrahigh-Pressure and Retrograde Metamorphic Ages. Journal of Metamorphic Geology, 24(7): 569-589. https://doi.org/10.1111/j.1525-1314.2006.00655.x
      [48] Liu, F. L. , Gerdes, A. , Zeng, L. S. , et al. , 2008a. SHRIMP U-Pb Dating, Trace Elements and the Lu-Hf Isotope System of Coesite-bearing Zircon from Amphibolite in the SW Sulu UHP Terrane, Eastern China. Geochimica et Cosmochimica Acta, 72(12): 2973-3000. https://doi.org/10.1016/j.gca.2008.04.007
      [49] Liu, X. M. , Gao, S. , Diwu, C. R. , et al. , 2008b. Precambrian Crustal Growth of Yangtze Craton as Revealed by Detrital Zircon Studies. American Journal of Science, 308(4): 421-468. https://doi.org/10.2475/04.2008.02
      [50] Liu, F. L. , Liu, P. H. , Wang, F. , et al. , 2014. U-Pb Dating of Zircons from Granitic Leucosomes in Migmatites of the Jiaobei Terrane, Southwestern Jiao-Liao-Ji Belt, North China Craton: Constraints on the Timing and Nature of Partial Melting. Precambrian Research, 245: 80-99. https://doi.org/10.1016/j.precamres.2014.01.001
      [51] Liu, F. L. , Liu, C. H. , Itano, K. , et al. , 2017a. Geochemistry, U-Pb Dating, and Lu-Hf Isotopes of Zircon and Monazite of Porphyritic Granites within the Jiao-Liao-Ji Orogenic Belt: Implications for Petrogenesis and Tectonic Setting. Precambrian Research, 300: 78-106. https://doi.org/10.1016/j.precamres.2017.08.007
      [52] Liu, F. L. , Liu, L. S. , Liu, P. H. , et al. , 2017b. A Relic Slice of Archean-Early Paleoproterozoic Basement of Jiaobei Terrane Identified within the Sulu UHP Belt: Evidence from Protolith and Metamorphic Ages from Meta-Mafic Rocks, TTG-Granitic Gneisses, and Metasedimentary Rocks in the Haiyangsuo Region. Precambrian Research, 303: 117-152. https://doi.org/10.1016/j.precamres.2017.03.014
      [53] Liu, F. L. , Xu, Z. Q. , Xue, H. M. , 2004. Tracing the Protolith, UHP Metamorphism, and Exhumation Ages of Orthogneiss from the SW Sulu Terrane (Eastern China): SHRIMP U-Pb Dating of Mineral Inclusion-bearing Zircons. Lithos, 78(4): 411-429. https://doi.org/10.1016/j.lithos.2004.08.001
      [54] Liu, J. H. , Liu, F. L. , Ding, Z. J. , et al. , 2013. The Growth, Reworking and Metamorphism of Early Precambrian Crust in the Jiaobei Terrane, the North China Craton: Constraints from U-Th-Pb and Lu-Hf Isotopic Systematics, and REE Concentrations of Zircon from Archean Granitoid Gneisses. Precambrian Research, 224: 287-303. https://doi.org/10.1016/j.precamres.2012.10.003
      [55] Liu, L. S. , Liu, F. L. , Ji, L. , et al. , 2018. The Polygenetic Meta-Granitic Rocks and Their Geological Significance, within the North Sulu Ultrahigh-Pressure Belt. Acta Petrologica Sinica, 34(6): 1557-1580(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201806002.htm
      [56] Liu, L. S. , Liu, F. L. , Liu, P. H. , et al. , 2018. Petrology, Geochemistry and Geochronology of the Meta-Mafic Rocks in the North Sulu Ultrahigh-Pressure Belt: Implications for Their Petrogenetic Diversity and Complex Tectonic Evolution. Precambrian Research, 316: 127-154. https://doi.org/10.1016/j.precamres.2018.08.002
      [57] Liu, L. S. , Liu, F. L. , Wang, W. , 2017. The Polygenetic Meta-Mafic Rocks from the Northeast of Sulu Ultrahigh-Pressure Metamorphic Belt: Insight from Petrology, Isotope Geochronology and Geochemistry. Acta Petrologica Sinica, 33(9): 2899-2924(in Chinese with English abstract). http://www.researchgate.net/publication/320144745_The_polygenetic_meta-mafic_rocks_from_the_northeast_of_Sulu_ultrahigh-pressure_metamorphic_belt_Insight_from_petrology_isotope_geochronology_and_geochemistry
      [58] Liu, P. H. , Liu, F. L. , Wang, F. , et al. , 2015. P-T-t Paths of the Multiple Metamorphic Events of the Jiaobei Terrane in the Southeastern Segment of the Jiao-Liao-Ji Belt(JLJB), in the North China Craton: Impication for Formation and Evolution of the JLJB. Acta Petrologica Sinica, 31(10): 2889-2941(in Chinese with English abstract). http://www.researchgate.net/publication/285470639_P-T-t_paths_of_the_multiple_metamorphic_events_of_the_Jiaobei_terrane_in_the_southeastern_segment_of_the_Jiao-Liao-Ji_Belt_JLJB_in_the_North_China_Craton_Impication_for_formation_and_evolution_of_the_
      [59] Liu, P. H. , Liu, F. L. , Yang, H. , et al. , 2012. Protolith Ages and Timing of Peak and Retrograde Metamorphism of the High-Pressure Granulites in the Shandong Peninsula, Eastern North China Craton. Geoscience Frontiers, 3(6): 923-943. https://doi.org/10.1016/j.gsf.2012.04.001
      [60] Liu, Y. S. , Gao, S. , Hu, Z. C. , et al. , 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2): 537-571. https://doi.org/10.1093/petrology/egp082
      [61] Lu, X. P. , Wu, F. Y. , Guo, J. H. , et al. , 2006. Zircon U-Pb Geochronological Constraints on the Paleoproterozoic Crustal Evolution of the Eastern Block in the North China Craton. Precambrian Research, 146(3-4): 138-164. https://doi.org/10.1016/j.precamres.2006.01.009
      [62] Ludwig, K. R., 2003. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley.
      [63] Möller, A. , O'Brien, P. J. , Kennedy, A. , et al. , 2003. Linking Growth Episodes of Zircon and Metamorphic Textures to Zircon Chemistry: An Example from the Ultrahigh-Temperature Granulites of Rogaland (SW Norway). Geological Society, London, Special Publications, 220(1): 65-81. https://doi.org/10.1144/gsl.sp.2003.220.01.04
      [64] Qiu, Y. M. , Gao, S. , McNaughton, N. J. , et al. , 2000. First Evidence of > 3.2 Ga Continental Crust in the Yangtze Craton of South China and Its Implications for Archean Crustal Evolution and Phanerozoic Tectonics. Geology, 28(1): 11-14. https://doi.org/10.1130/0091-7613(2000)0280011:feogcc>2.3.co;2 doi: 10.1130/0091-7613(2000)0280011:feogcc>2.3.co;2
      [65] O'Brien, P. J. , 2000. The Fundamental Variscan Problem: High-Temperature Metamorphism at Different Depths and High-Pressure Metamorphism at Different Temperatures. Geological Society, London, Special Publications, 179(1): 369-386. https://doi.org/10.1144/gsl.sp.2000.179.01.22
      [66] Rogers, J. J. W. , Santosh, M. , 2009. Tectonics and Surface Effects of the Supercontinent Columbia. Gondwana Research, 15(3-4): 373-380. https://doi.org/10.1016/j.gr.2008.06.008
      [67] Rubatto, D. , 2002. Zircon Trace Element Geochemistry: Partitioning with Garnet and the Link between U-Pb Ages and Metamorphism. Chemical Geology, 184(1-2): 123-138. https://doi.org/10.1016/s0009-2541(01)00355-2
      [68] Santosh, M. , Liu, S. J. , Tsunogae, T. , et al. , 2012. Paleoproterozoic Ultrahigh-Temperature Granulites in the North China Craton: Implications for Tectonic Models on Extreme Crustal Metamorphism. Precambrian Research, 222-223: 77-106. https://doi.org/10.1016/j.precamres.2011.05.003
      [69] Song, Y. R. , Xu, H. J. , Zhang, J. F. , et al. , 2014. Syn-Exhumation Partial Melting and Melt Segregation in the Sulu UHP Terrane: Evidences from Leucosome and Pegmatitic Vein of Migmatite. Lithos, 202-203: 55-75. https://doi.org/10.1016/j.lithos.2014.05.017
      [70] Sun, M. , Chen, N. , Zhao, G. C. , et al. , 2008. U-Pb Zircon and Sm-Nd Isotopic Study of the Huangtuling Granulite, Dabie-Sulu Belt, China: Implication for the Paleoproterozoic Tectonic History of the Yangtze Craton. American Journal of Science, 308(4): 469-483. https://doi.org/10.2475/04.2008.03
      [71] Sun, S. S. , McDonough, W. F. , 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      [72] Tam, P. Y. , Zhao, G. C. , Liu, F. L. , et al. , 2011. Timing of Metamorphism in the Paleoproterozoic Jiao-Liao-Ji Belt: New SHRIMP U-Pb Zircon Dating of Granulites, Gneisses and Marbles of the Jiaobei Massif in the North China Craton. Gondwana Research, 19(1): 150-162. https://doi.org/10.1016/j.gr.2010.05.007
      [73] Tam, P. Y. , Zhao, G. C. , Sun, M. , et al. , 2012a. Metamorphic P-T Path and Tectonic Implications of Medium-Pressure Pelitic Granulites from the Jiaobei Massif in the Jiao-Liao-Ji Belt, North China Craton. Precambrian Research, 220-221: 177-191. https://doi.org/10.1016/j.precamres.2012.08.008
      [74] Tam, P. Y. , Zhao, G. C. , Sun, M. , et al. , 2012b. Petrology and Metamorphic P-T Path of High-Pressure Mafic Granulites from the Jiaobei Massif in the Jiao-Liao-Ji Belt, North China Craton. Lithos, 155: 94-109. https://doi.org/10.1016/j.lithos.2012.08.018
      [75] Tang, J. , Zheng, Y. F. , Wu, Y. B. , et al. , 2007. Geochronology and Geochemistry of Metamorphic Rocks in the Jiaobei Terrane: Constraints on Its Tectonic Affinity in the Sulu Orogen. Precambrian Research, 152(1-2): 48-82. https://doi.org/10.1016/j.precamres.2006.09.001
      [76] Tang, J. , Zheng, Y. F. , Wu, Y. B. , et al. , 2008. Zircon U-Pb Age and Geochemical Constraints on the Tectonic Affinity of the Jiaodong Terrane in the Sulu Orogen, China. Precambrian Research, 161(3-4): 389-418. https://doi.org/10.1016/j.precamres.2007.09.008
      [77] Taylor, R. J. M. , Harley, S. L. , Hinton, R. W. , et al. , 2015. Experimental Determination of REE Partition Coefficients between Zircon, Garnet and Melt: A Key to Understanding High-T Crustal Processes. Journal of Metamorphic Geology, 33(3): 231-248. https://doi.org/10.1111/jmg.12118
      [78] Tian, Z. H. , Liu, F. L. , Windley, B. F. , et al. , 2017. Polyphase Structural Deformation of Low- to Medium-Grade Metamorphic Rocks of the Liaohe Group in the Jiao-Liao-Ji Orogenic Belt, North China Craton: Correlations with Tectonic Evolution. Precambrian Research, 303: 641-659. https://doi.org/10.1016/j.precamres.2017.08.017
      [79] Tomkins, H. S. , Powell, R. , Ellis, D. J. , 2007. The Pressure Dependence of the Zirconium-in-Rutile Thermometer. Journal of Metamorphic Geology, 25(6): 703-713. https://doi.org/10.1111/j.1525-1314.2007.00724.x
      [80] Tong, L. X. , Xu, Y. G. , Cawood, P. A. , et al. , 2014. Anticlockwise P-T Evolution at ~280 Ma Recorded from Ultrahigh-Temperature Metapelitic Granulite in the Chinese Altai Orogenic Belt, a Possible Link with the Tarim Mantle Plume? Journal of Asian Earth Sciences, 94: 1-11. https://doi.org/10.1016/j.jseaes.2014.07.043
      [81] Vavra, G. , Gebauer, D. , Schmid, R. , et al. , 1996. Multiple Zircon Growth and Recrystallization during Polyphase Late Carboniferous to Triassic Metamorphism in Granulites of the Ivrea Zone (Southern Alps): An Ion Microprobe (SHRIMP) Study. Contributions to Mineralogy and Petrology, 122(4): 337-358. https://doi.org/10.1007/s004100050132
      [82] Vavra, G. , Schmid, R. , Gebauer, D. , 1999. Internal Morphology, Habit and U-Th-Pb Microanalysis of Amphibolite-to-Granulite Facies Zircons: Geochronology of the Ivrea Zone (Southern Alps). Contributions to Mineralogy and Petrology, 134(4): 380-404. https://doi.org/10.1007/s004100050492
      [83] Wan, Y. S. , Liu, D. Y. , Wang, S. J. , et al. , 2011. ~2.7 Ga Juvenile Crust Formation in the North China Craton (Taishan-Xintai Area, Western Shandong Province): Further Evidence of an Understated Event from U-Pb Dating and Hf Isotopic Composition of Zircon. Precambrian Research, 186(1-4): 169-180. https://doi.org/10.1016/j.precamres.2011.01.015
      [84] Wang, L. J. , Griffin, W. L. , Yu, J. H. , et al. , 2010. Precambrian Crustal Evolution of the Yangtze Block Tracked by Detrital Zircons from Neoproterozoic Sedimentary Rocks. Precambrian Research, 177(1-2): 131-144. https://doi.org/10.1016/j.precamres.2009.11.008
      [85] Wang, X. M. , Liou, J. G. , Mao, H. K. , 1989. Coesite-bearing Eclogite from the Dabie Mountains in Central China. Geology, 17(12): 1085-1088. https://doi.org/10.1130/0091-7613(1989)0171085:cbeftd>2.3.co;2 doi: 10.1130/0091-7613(1989)0171085:cbeftd>2.3.co;2
      [86] Watson, E. B. , Wark, D. A. , Thomas, J. B. , 2006. Crystallization Thermometers for Zircon and Rutile. Contributions to Mineralogy and Petrology, 151(4): 413-433. https://doi.org/10.1007/s00410-006-0068-5
      [87] Whitehouse, M. J. , Platt, J. P. , 2003. Dating High-Grade Metamorphism: Constraints from Rare-Earth Elements in Zircon and Garnet. Contributions to Mineralogy and Petrology, 145(1): 61-74. https://doi.org/10.1007/s00410-002-0432-z
      [88] Wu, M. L. , Zhao, G. C. , Sun, M. , et al. , 2014. Zircon U-Pb Geochronology and Hf Isotopes of Major Lithologies from the Jiaodong Terrane: Implications for the Crustal Evolution of the Eastern Block of the North China Craton. Lithos, 190-191: 71-84. https://doi.org/10.1016/j.lithos.2013.12.004
      [89] Wu, Y. B. , Gao, S. , Gong, H. J. , et al. , 2009. Zircon U-Pb Age, Trace Element and Hf Isotope Composition of Kongling Terrane in the Yangtze Craton: Refining the Timing of Palaeoproterozoic High-Grade Metamorphism. Journal of Metamorphic Geology, 27(6): 461-477. https://doi.org/10.1111/j.1525-1314.2009.00826.x
      [90] Wu, Y. B. , Zheng, Y. F. , 2004. Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age. Chinese Science Bulletin, 49(16): 1589-1604(in Chinese). doi: 10.1360/csb2004-49-16-1589
      [91] Wu, Y. B. , Zheng, Y. F. , Gao, S. , et al. , 2008. Zircon U-Pb Age and Trace Element Evidence for Paleoproterozoic Granulite-Facies Metamorphism and Archean Crustal Rocks in the Dabie Orogen. Lithos, 101(3-4): 308-322. https://doi.org/10.1016/j.lithos.2007.07.008
      [92] Xiang, H. , Zhang, Z. M. , Lei, H. C. , et al. , 2014. Paleoproterozoic Ultrahigh-Temperature Pelitic Granulites in the Northern Sulu Orogen: Constraints from Petrology and Geochronology. Precambrian Research, 254: 273-289. https://doi.org/10.1016/j.precamres.2014.09.004
      [93] Xiang, H. , Zhang, Z. M. , Zhao, L. M. , et al. , 2018. Metamorphic P-T-t Path of UHT Granulites from the North Tongbai Orogen, Central China. Journal of Earth Science, 29(5): 1116-1131. https://doi.org/10.1007/s12583-018-0855-8
      [94] Xu, H. J. , Lei, H. C. , Xiong, Z. W. , et al. , 2019. Paleoproterozoic Ultrahigh-Temperature Granulite-Facies Metamorphism in the Sulu Orogen, Eastern China: Evidence from Zircon and Monazite in the Pelitic Granulite. Precambrian Research, 333: 105430. https://doi.org/10.1016/j.precamres.2019.105430
      [95] Xu, H. J. , Song, Y. R. , Ye, K. , 2013. Partial Melting Time of the Sulu UHP Terrane: Constraints from Zircon U-Pb Age, Trace Element and Lu-Hf Isotope Composition of Leucosome in Rongcheng Granitic Gneiss. Acta Petrologica Sinica, 29(5): 1594-1606(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201305012.htm
      [96] Xu, H. J. , Ye, K. , Song, Y. R. , et al. , 2013. Prograde Metamorphism, Decompressional Partial Melting and Subsequent Melt Fractional Crystallization in the Weihai Migmatitic Gneisses, Sulu UHP Terrane, Eastern China. Chemical Geology, 341: 16-37. https://doi.org/10.1016/j.chemgeo.2013.01.002
      [97] Xu, H. J. , Zhang, J. F. , 2018. Zircon Geochronological Evidence for Participation of the North China Craton in the Protolith of Migmatite of the North Dabie Terrane. Journal of Earth Science, 29(1): 30-42. https://doi.org/10.1007/s12583-017-0805-x
      [98] Xu, H. J. , Zhang, J. F. , Wang, Y. F. , et al. , 2016. Late Triassic Alkaline Complex in the Sulu UHP Terrane: Implications for Post-Collisional Magmatism and Subsequent Fractional Crystallization. Gondwana Research, 35: 390-410. https://doi.org/10.1016/j.gr.2015.05.017
      [99] Xu, S. T. , Liu, Y. C. , Chen, G. B. , et al. , 2003. New Finding of Micro-Diamonds in Eclogites from Dabie-Sulu Region in Central-Eastern China. Chinese Science Bulletin, 48(10): 988-994. https://doi.org/10.1007/bf03184213
      [100] Xu, Z. Q. , Qi, X. X. , Yang, J. S. , et al. , 2006. Deep Subduction Erosion Model for Continent-Continent Collision of the Sulu HP-UHP Metamorphic Terrain. Earth Science, 31(4): 427-436(in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dqkx200604000.htm
      [101] Yakymchuk, C. , Kirkland, C. L. , Clark, C. , 2018. Th/U Ratios in Metamorphic Zircon. Journal of Metamorphic Geology, 36(6): 715-737. https://doi.org/10.1111/jmg.12307
      [102] Yang, J. S. , Wooden, J. L. , Wu, C. L. , et al. , 2003. SHRIMP U-Pb Dating of Coesite-Bearing Zircon from the Ultrahigh-Pressure Metamorphic Rocks, Sulu Terrane, East China. Journal of Metamorphic Geology, 21(6): 551-560. https://doi.org/10.1046/j.1525-1314.2003.00463.x
      [103] Ye, K. , Cong, B. L. , Ye, D. N. , 2000a. The Possible Subduction of Continental Material to Depths Greater than 200 km. Nature, 407(6805): 734-736. https://doi.org/10.1038/35037566
      [104] Ye, K. , Yao, Y. P. , Katayama, I. , et al. , 2000b. Large Areal Extent of Ultrahigh-Pressure Metamorphism in the Sulu Ultrahigh-Pressure Terrane of East China: New Implications from Coesite and Omphacite Inclusions in Zircon of Granitic Gneiss. Lithos, 52(1-4): 157-164. https://doi.org/10.1016/S0024-4937(99)00089-4
      [105] Zhai, M. G. , Cong, B. L. , Guo, J. H. , et al. , 2000. Sm-Nd Geochronology and Petrography of Garnet Pyroxene Granulites in the Northern Sulu Region of China and Their Geotectonic Implication. Lithos, 52(1-4): 23-33. https://doi.org/10.1016/s0024-4937(99)00082-1
      [106] Zhai, M. G. , Liu, W. J, 2001. The Formation of Granulite and Its Contribution to Evolution of the Continental Crust. Acta Petrologica Sinica, 17(1): 28-38(in Chinese with English abstract).
      [107] Zhai, M. G. , Santosh, M. , 2011. The Early Precambrian Odyssey of the North China Craton: A Synoptic Overview. Gondwana Research, 20(1): 6-25. https://doi.org/10.1016/j.gr.2011.02.005
      [108] Zhang, H. F. , Wang, H. Z. , Santosh, M. , et al. , 2016. Zircon U-Pb Ages of Paleoproterozoic Mafic Granulites from the Huai'an Terrane, North China Craton (NCC): Implications for Timing of Cratonization and Crustal Evolution History. Precambrian Research, 272: 244-263. https://doi.org/10.1016/j.precamres.2015.11.004
      [109] Zhang, J. , Zhao, Z. F. , Zheng, Y. F. , et al. , 2010. Post-Collisional Magmatism: Geochemical Constraints on the Petrogenesis of Mesozoic Granitoids in the Sulu Orogen, China. Lithos, 119(3-4): 512-536. https://doi.org/10.1016/j.lithos.2010.08.005
      [110] Zhang, R. Y. , Liou, J. G. , Cong, B. L. , 1994. Petrogenesis of Garnet-Bearing Ultramafic Rocks and Associated Eclogites in the Su-Lu Ultrahigh-P Metamorphic Terrane, Eastern China. Journal of Metamorphic Geology, 12(2): 169-186. https://doi.org/10.1111/j.1525-1314.1994.tb00012.x
      [111] Zhang, R. Y. , Liou, J. G. , Yang, J. S. , et al. , 2003. Ultrahigh-Pressure Metamorphism in the Forbidden Zone: The Xugou Garnet Peridotite, Sulu Terrane, Eastern China. Journal of Metamorphic Geology, 21(6): 539-550. https://doi.org/10.1046/j.1525-1314.2003.00462.x
      [112] Zhang, R. Y., Liou, J. G., Tsujimori, T., et al., 2006a. Non-Ultrahigh-Pressure Unit Bordering the Sulu Ultrahigh-Pressure Terrane, Eastern China: Transformation of Proterozoic Granulite and Gabbro to Garnet Amphibolite. In: Hacker, B. R., McClelland, W. C., Liou, J. G., eds., Ultrahigh-Pressure Metamorphism: Deep Continental Subduction. Geological Society of America Special Papers, 403: 169-206. https://doi.org/10.1130/2006.2403(10)
      [113] Zhang, S. B. , Tang, J. , Zheng, Y. F. , 2014. Contrasting Lu-Hf Isotopes in Zircon from Precambrian Metamorphic Rocks in the Jiaodong Peninsula: Constraints on the Tectonic Suture between North China and South China. Precambrian Research, 245: 29-50. https://doi.org/10.1016/j.precamres.2014.01.006
      [114] Zhang, S. B. , Zheng, Y. F. , Wu, Y. B. , et al. , 2006b. Zircon U-Pb Age and Hf-O Isotope Evidence for Paleoproterozoic Metamorphic Event in South China. Precambrian Research, 151(3-4): 265-288. https://doi.org/10.1016/j.precamres.2006.08.009
      [115] Zhang, S. B. , Zheng, Y. F. , 2013. Formation and Evolution of Precambrian Continental Lithosphere in South China. Gondwana Research, 23(4): 1241-1260. https://doi.org/10.1016/j.gr.2012.09.005
      [116] Zhao, G. C. , Cawood, P. A. , Wilde, S. A. , et al. , 2002. Review of Global 2.1-1.8 Ga Orogens: Implications for a Pre-Rodinia Supercontinent. Earth-Science Reviews, 59(1-4): 125-162. https://doi.org/10.1016/S0012-8252(02)00073-9
      [117] Zhao, G. C. , Cawood, P. A. , Li, S. Z. , et al. , 2012. Amalgamation of the North China Craton: Key Issues and Discussion. Precambrian Research, 222-223: 55-76. https://doi.org/10.1016/j.precamres.2012.09.016
      [118] Zheng, Y. F. , Wu, Y. B. , Zhao, Z. F. , et al. , 2005. Metamorphic Effect on Zircon Lu-Hf and U-Pb Isotope Systems in Ultrahigh-Pressure Eclogite-Facies Metagranite and Metabasite. Earth and Planetary Science Letters, 240(2): 378-400. https://doi.org/10.1016/j.epsl.2005.09.025
      [119] Zhou, J. B. , Wilde, S. A. , Zhao, G. C. , et al. , 2008a. SHRIMP U-Pb Zircon Dating of the Neoproterozoic Penglai Group and Archean Gneisses from the Jiaobei Terrane, North China, and Their Tectonic Implications. Precambrian Research, 160(3-4): 323-340. https://doi.org/10.1016/j.precamres.2007.08.004
      [120] Zhou, X. W. , Zhao, G. C. , Wei, C. J. , et al. , 2008b. EPMA U-Th-Pb Monazite and SHRIMP U-Pb Zircon Geochronology of High-Pressure Pelitic Granulites in the Jiaobei Massif of the North China Craton. American Journal of Science, 308(3): 328-350. https://doi.org/10.2475/03.2008.06
      [121] Zong, K. Q. , Klemd, R. , Yuan, Y. , et al. , 2017. The Assembly of Rodinia: The Correlation of Early Neoproterozoic (ca. 900 Ma) High-Grade Metamorphism and Continental Arc Formation in the Southern Beishan Orogen, Southern Central Asian Orogenic Belt (CAOB). Precambrian Research, 290: 32-48. https://doi.org/10.1016/j.precamres.2016.12.010
      [122] Zou, Y. , Zhai, M. G. , Santosh, M. , et al. , 2017. High-Pressure Pelitic Granulites from the Jiao-Liao-Ji Belt, North China Craton: A Complete P-T Path and Its Tectonic Implications. Journal of Asian Earth Sciences, 134: 103-121. https://doi.org/10.1016/j.jseaes.2016.10.015
      [123] 高名迪, 续海金, 章军锋, 等, 2018. 深俯冲陆壳部分熔融初始熔体的厘定: 来自苏鲁超高压地体混合岩中浅色体证据. 岩石学报, 34(3): 547-566. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201803002.htm
      [124] 耿科, 王瑞江, 李洪奎, 等, 2016. 山东省麻粒岩与麻粒岩相变质作用: 研究现状及对前寒武纪大地构造演化的启示. 地质论评, 62(1): 153-170. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201601021.htm
      [125] 雷恒聪, 向华, 张泽明, 等, 2014. 苏鲁造山带古元古代超高温麻粒岩及其构造意义. 岩石学报, 30(8): 2435-2445. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201408023.htm
      [126] 刘利双, 刘福来, 冀磊, 等, 2018. 北苏鲁超高压变质带内多成因类型的变花岗质岩石及其地质意义. 岩石学报, 34(6): 1557-1580. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201806002.htm
      [127] 刘利双, 刘福来, 王伟, 2017. 苏鲁超高压变质带东北端多种成因类型变基性岩: 来自岩石学、同位素年代学及地球化学属性的制约. 岩石学报, 33(9): 2899-2924. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201709016.htm
      [128] 刘平华, 刘福来, 王舫, 等, 2015. 胶北地体多期变质事件的P-T-t轨迹及其对胶-辽-吉带形成与演化的制约. 岩石学报, 31(10): 2889-2941. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201510005.htm
      [129] 吴元保, 郑永飞, 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589-1604. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200416001.htm
      [130] 续海金, 宋衍茹, 叶凯, 2013. 苏鲁超高压地体部分熔融时间的厘定: 荣成花岗质片麻岩中浅色条带的锆石U-Pb定年、微量元素和Lu-Hf同位素证据. 岩石学报, 29(5): 1594-1606. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201305012.htm
      [131] 许志琴, 戚学祥, 杨经绥, 等, 2006. 苏鲁高压-超高压变质地体的陆-陆碰撞深俯冲剥蚀模式. 地球科学, 31(4): 427-436. http://www.earth-science.net/article/id/1590
      [132] 翟明国, 刘文军, 2001. 麻粒岩的形成及其对大陆地壳演化的贡献. 岩石学报, 17(1): 28-38. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200101004.htm
    • 加载中
    图(11)
    计量
    • 文章访问数:  598
    • HTML全文浏览量:  210
    • PDF下载量:  55
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-12-19
    • 刊出日期:  2021-02-15

    目录

      /

      返回文章
      返回