Geochronology and Geological Implication in Two Episodes of Meso-Neoproterozoic Magmatism in the Southwestern Yangtze Block
-
摘要: 扬子陆块西南缘发育一系列中-新元古代岩浆岩,对认识扬子陆块构造演化具有重要意义.对会理地区天宝山组流纹岩和盐边地区辉长岩进行SHRIMP锆石U-Pb年代学、地球化学研究.天宝山组流纹岩时代为1 011.9±8.9 Ma,辉长岩时代为910.6±4.7 Ma.天宝山组流纹岩具有高硅、高FeOt/MgO、高钾等特征;稀土含量(∑REE=292×10-6~401×10-6)较高,表现出轻稀土富集重稀土弱亏损的特征[(La/Yb)N=1.77~6.74],Eu负异常明显(δEu=0.43~0.56),与A型花岗岩相似;天宝山组流纹岩来自古老的地壳物质的部分熔融,形成于大陆裂谷环境.盐边群辉长岩稀土含量(∑REE=54×10-6~98×10-6)较低,轻重稀土分异较弱[(La/Yb)N=1.46~4.72],Eu具有轻微的异常(δEu=0.81~1.31);岩石具有明显的Nb-Ta、Ti负异常,无Zr-Hf正异常;地球化学数据显示辉长岩来自被俯冲板片释放的流体/熔体交代的地幔楔部分熔融,形成于岛弧环境.两期岩浆活动指示了扬子西南缘1 000~910 Ma之间构造动力学背景发生了转变,由伸展背景转变为挤压背景.
-
关键词:
- 扬子西南缘 /
- 中-新元古代 /
- SHRIMP锆石U-Pb年龄 /
- 地球化学 /
- 大地构造背景
Abstract: Late Mesoproterozoic to Early Neoproterozoic igneous rocks occur in the southwestern Yangtze block, which had a great bearing on the evolution history of the Yangtze block during the late Mesoproterozoic to early Neoproterozoic. This study reports SHRIMP zircon U-Pb ages and geochemistry data for gabbros that intruded in the Yanbian Group, and that of rhyolites from the upper Tianbaoshan Formation of the Huili Group in the southwestern Yangtze block.The rhyolites were dated at 1 011.9±8.9 Ma and the gabbros were formed at 910.6±4.7 Ma. The rhyolites in the Tianbaoshan Formation were characterized by high SiO2 and K2O contents and high FeOt/MgO ratio. The contents of rare earth elements of rhyolites are high(∑REE=292×10-6-401×10-6), and characterized by LREE-enriched and HREE-depleted patterns[(La/Yb)N=1.77-6.74] with typical depletion of Eu(δEu=0.43-0.56), consistent with the geochemical characteristics of A-type granites. The geochemistry indicates that the rhyolites were derived from the partial melting of previous crust and formed in a continental rift setting. The gabbro shave low rare earth elements(∑REE=54×10-6-98×10-6) and characterized by slightly LREE-enriched and HREE-depleted patterns with unconspicuous Eu anomaly[(La/Yb)N=1.46-4.72, δEu=0.81-1.31] and the trace element patterns with typical depletion of Nb-Ta and Ti but no enrichment of Zr-Hf. The gabbros were derived from the subduction-modified lithospheric mantle wedge and formed in an arc setting. In view of the two episodes of magmatism in the study region, we propose that the tectonic properties changed from a continental rift setting to a compression setting in the southwestern Yangtze Block at 1 000-910 Ma. -
图 1 (a) 华南板块构造格架简图;(b)扬子西南缘川滇地区元古代地层分布图(据耿元生等, 2017修改)
Fig. 1. (a) Simplified tectonic framework of the South China block; (b)geological map of the distribution of Proterozoic strata in Yunnan–Sichuan provinces(modified from Geng et al., 2017)
图 4 (a) 天宝山组流纹岩; (b)侵入盐边群的辉长岩; (c)会理群天宝山组流纹岩镜下特征; (d)侵入盐边群辉长岩镜下特征
Qz.石英; Pl.斜长石; Ch.绿泥石; Hb.角闪石; Bt.黑云母
Fig. 4. (a)Field photo of the rhyolites in the Huili Group; (b) field photos of gabbros the in the Yanbian Group; (c)microscopic photo of the rhyolites in the Huili Group; (d) microscopic photo of the gabbros in the Yanbian Group
图 7 天宝山组流纹岩及盐边群辉长岩稀土元素球粒陨石标准化图和微量元素原始地幔标准化图(Sun and McDonough, 1989)
Fig. 7. Chondrite-normalized REE diagrams and primitive mantle-normalized incompatible trace element multi-element plots for the Tianbaoshan rhyolites (a and b) and the gabbros (c and d)(modified from Sun and McDonough, 1989)
图 8 天宝山组流纹岩地球化学岩石判别图解
FG.分异的I、S和M型花岗岩;OGT.未分异的I、S和M型花岗岩;据Whalen et al.(1987)
Fig. 8. Geochemical discrimination diagrams for the felsic igneous rocks in the Tianbaoshan Formation
图 10 盐边群辉长岩(a) Th-Ta-Hf/3和(b) Zr-Ti构造判别图解和天宝山组流纹岩(c)Nb-Y和(d)Rb-(Y+Nb)构造判别图解
图a中:A.正常洋中脊玄武岩; B.富集型洋中脊玄武岩与板内拉斑玄武岩; C.板内碱性玄武岩; D.岛弧拉斑玄武岩; 据Meschede(1986);图b中:AI.板内碱性玄武岩; AII.板内碱性玄武岩与拉斑玄武岩; B.富集型洋中脊玄武岩; C.板内玄武岩和岛弧玄武岩; D.富集型洋中脊玄武岩与岛弧玄武岩; C+D.岛弧玄武岩; a, b.据Wood(1980);c, d.据Pearce(1996)
Fig. 10. Discrimination diagrams of (a) Th-Ta-Hf/3 plot and (b) Zr-Ti plot for the Yanbian gabbros and (c) Nb-Y plot and (d) Rb–Y+Nb plot for the Tianbaoshan rhyolite
-
[1] Cawood, P. A., Zhao, G. C., Yao, J. L., et al., 2018. Reconstructing South China in Phanerozoic and Precambrian Supercontinents. Earth-Science Reviews, 186:173-194. https://doi.org/10.1016/j.earscirev.2017.06.001 [2] Chen, W. T., Zhou, M. F., Zhao, X. F., 2013. Late Paleoproterozoic Sedimentary and Mafic Rocks in the Hekou Area, SW China:Implication for the Reconstruction of the Yangtze Block in Columbia. Precambrian Research, 231:61-77. https://doi.org/10.1016/j.precamres.2013.03.011 [3] Chen, W. T., Sun, W. H., Zhou, M. F., et al., 2018. Ca. 1 050 Ma Intra-Continental Rift-Related A-Type Felsic Rocks in the Southwestern Yangtze Block, South China. Precambrian Research, 309:22-44. https://doi.org/10.1016/j.precamres.2017.02.011 [4] Chen, W. T., Sun, W. H., Wang, W., et al., 2014. "Grenvillian" Intra-Plate Mafic Magmatism in the Southwestern Yangtze Block, SW China. Precambrian Research, 242:138-153. https://doi.org/10.1016/j.precamres.2013.12.019 [5] Crawford, A. J., Beccaluva, L., Serri, G., 1981. Tectono-Magmatic Evolution of the West Philippine-Mariana Region and the Origin of Boninites. Earth and Planetary Science Letters, 54(2):346-356. https://doi.org/10.1016/0012-821x(81)90016-9 [6] Du, L. L., Guo, J. H., Nutman, A. P., et al., 2014. Implications for Rodinia Reconstructions for the Initiation of Neoproterozoic Subduction at~860 Ma on the Western Margin of the Yangtze Block:Evidence from the Guandaoshan Pluton. Lithos, 196-197:67-82. https://doi.org/10.1016/j.lithos.2014.03.002 [7] Eby, G. N., 1992. Chemical Subdivision of the A-Type Granitoids:Petrogenetic and Tectonic Implications. Geology, 20(7):641. https://doi.org/10.1130/0091-7613(1992)020 < 0641:csotat > 2.3.co; 2 doi: 10.1130/0091-7613(1992)020<0641:csotat>2.3.co;2 [8] Geng, Y.S., Yang, C.H., Wang, X.S., et al., 2008. Evolution of Metamorphic Basement in Western Margin of Yangtze Craton. China University of Geosciences Press, Beijing(in Chinese). [9] Geng, Y.S., Kuang, H.W., Liu, Y.Q., et al., 2017. Subdivision and Correlation of the Mesoproterozoic Stratigraphy in the Western and Northern Margins of Yangtze Block. Acta Geologica Sinica., 91(10):2151-2174(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201710001 [10] Guan, J.L., Zheng, L.L., Liu, J.H., et al., 2011. Zircons SHRlMP U-Pb Dating of Diabase from Hekou, Sichuan Province, China, and Its Geological Significance. Acta Geologica Sinica, 85(4):482-490(in Chinese with English abstract). [11] Greentree, M. R., Li, Z. X., Li, X. H., et al., 2006. Late Mesoproterozoic to Earliest Neoproterozoic Basin Record of the Sibao Orogenesis in Western South China and Relationship to the Assembly of Rodinia. Precambrian Research, 151(1/2):79-100. https://doi.org/10.1016/j.precamres.2006.08.002 [12] Guo, J. L., Gao, S., Wu, Y. B., et al., 2014.3.45 Ga Granitic Gneisses from the Yangtze Craton, South China:Implications for Early Archean Crustal Growth. Precambrian Research, 242:82-95. https://doi.org/10.1016/j.precamres.2013.12.018 [13] Han, Q. S., Peng, S. B., Kusky, T., et al., 2017. A Paleoproterozoic Ophiolitic Mélange, Yangtze Craton, South China:Evidence for Paleoproterozoic Suturing and Microcontinent Amalgamation. Precambrian Research, 293:13-38. https://doi.org/10.1016/j.precamres.2017.03.004 [14] Han, Q. S., Peng, S. B., Polat, A., et al., 2019. Petrogenesis and Geochronology of Paleoproterozoic Magmatic Rocks in the Kongling Complex:Evidence for a Collisional Orogenic Event in the Yangtze Craton. Lithos, 342-343:513-529. https://doi.org/10.1016/j.lithos.2019.05.015 [15] Hu, P. Y., Zhai, Q. G., Wang, J., et al., 2017. The Shimian Ophiolite in the Western Yangtze Block, SW China:Zircon SHRIMP U-Pb Ages, Geochemical and Hf-O Isotopic Characteristics, and Tectonic Implications. Precambrian Research, 298:107-122. https://doi.org/10.1016/j.precamres.2017.06.005 [16] Hui, B., Dong, Y. P., Cheng, C., et al., 2017. Zircon U-Pb Chronology, Hf Isotope Analysis and Whole-Rock Geochemistry for the Neoarchean-Paleoproterozoic Yudongzi Complex, Northwestern Margin of the Yangtze Craton, China. Precambrian Research, 301:65-85. https://doi.org/10.1016/j.precamres.2017.09.003 [17] Jiang, G. Q., Sohl, L. E., Christie-Blick, N., 2014. Neoproterozoic Stratigraphic Comparison of the Lesser Himalaya (India) and Yangtze Block (south China):Paleogeographic Implications. Geology, 31(10):917. https://doi.org/10.1130/g19790.1 [18] Landenberger, B., Collins, W. J., 1996. Derivation of A-Type Granites from a Dehydrated Charnockitic Lower Crust:Evidence from the Chaelundi Complex, Eastern Australia. Journal of Petrology, 37(1):145-170. https://doi.org/10.1093/petrology/37.1.145 [19] Li, X.H., Wang, X.C., Li, W.X., et al., 2008. Petrogenesis and Tectonic Significance of Neoproterozoic Basaltic Rocks in South China:from Orogenesis to Intracontinental Rifting. Geochimica, 37(4):382-398(in Chinese with English abstract). [20] Li, X. H., Li, W. X., Li, Z. X., et al., 2009. Amalgamation between the Yangtze and Cathaysia Blocks in South China:Constraints from SHRIMP U-Pb Zircon Ages, Geochemistry and Nd-Hf Isotopes of the Shuangxiwu Volcanic Rocks. Precambrian Research, 174(1/2):117-128. https://doi.org/10.1016/j.precamres. 2009.07.004 doi: 10.1016/j.precamres.2009.07.004 [21] Li, X. H., Li, Z. X., Sinclair, J. A., et al., 2006. Revisiting the "Yanbian Terrane":Implications for Neoproterozoic Tectonic Evolution of the Western Yangtze Block, South China. Precambrian Research, 151(1/2):14-30. https://doi.org/10.1016/j.precamres.2006.07.009 [22] Li, Z. X., Bogdanova, S. V., Collins, A. S., et al., 2008. Assembly, Configuration, and Break-up History of Rodinia:A Synthesis. Precambrian Research, 160(1/2):179-210. https://doi.org/10.1016/j.precamres.2007.04.021 [23] Li, Q. W., Zhao, J. H., 2018. The Neoproterozoic High-Mg Dioritic Dikes in South China Formed by High Pressures Fractional Crystallization of Hydrous Basaltic Melts. Precambrian Research, 309:198-211. https://doi.org/10.1016/j.precamres.2017.04.009 [24] Lu, G. M., Wang, W., Ernst, R. E., et al., 2019. Petrogenesis of Paleo-Mesoproterozoic Mafic Rocks in the Southwestern Yangtze Block of South China:Implications for Tectonic Evolution and Paleogeographic Reconstruction. Precambrian Research, 322:66-84. https://doi.org/10.1016/j.precamres.2018.12.019 [25] Meschede, M., 1986. A Method of Discriminating between Different Types of Mid-Ocean Ridge Basalts and Continental Tholeiites with the Nb-Zr-Y Diagram. Chemical Geology, 56(3/4):207-218. https://doi.org/10.1016/0009-2541(86)90004-5 [26] Pearce, J., 1996. Sources and Settings of Granitic Rocks. Episodes, 19(4):120-125. https://doi.org/10.18814/epiiugs/1996/v19i4/005 [27] Peng, M., Wu, Y. B., Wang, J., et al., 2009. Paleoproterozoic Mafic Dyke from Kongling Terrain in the Yangtze Craton and Its Implication. Chinese Science Bulletin, 54(6):1098-1104. https://doi.org/10.1007/s11434-008-0558-0 [28] Ren, G.M., Pang, W.H., Pan, G.T., et al., 2017. Ascertainment of the Mesoproterozoic Caiziyuan Ophiolitic Mélange on the Western Margin of the Yangtze Block and Its Geological Significance. Geological Bulletin of China, 36(11):2061-2075 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201711016 [29] Saunders, A. D., Tarney, J., 1984. Geochemical Characteristics of Basaltic Volcanism within Back-Arc Basins. Geological Society, London, Special Publications, 16(1):59-76. https://doi.org/10.1144/gsl.sp.1984.016.01.05 [30] SBGMR (Sichuan Bureau of Geology and Mineral Resources), 1991. Regional Geology of Sichuan Province. Geological Publishing House, Beijing (in Chinese). [31] Sharma, M., 1997. Siberian Traps. In: Mahoney, J.J., Coffin, M.F., eds., Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism, Vol. 100. American Geophysical Union. Geophysical Monograph, New York, 273-295. [32] Sun, S.S., McDonough, W.F., 1989. Magmatism in the Ocean Basins, Vol. 42. Geological Society Special Publication, London. [33] Sun, W. H., Zhou, M. F., 2008a. The ∼860 Ma, Cordilleran-Type Guandaoshan Dioritic Pluton in the Yangtze Block, SW China:Implications for the Origin of Neoproterozoic Magmatism. The Journal of Geology, 116(3):238-253. https://doi.org/10.1086/587881 [34] Sun, W. H., Zhou, M. F., Gao, J. F., et al., 2009. Detrital Zircon U-Pb Geochronological and Lu-Hf Isotopic Constraints on the Precambrian Magmatic and Crustal Evolution of the Western Yangtze Block, SW China. Precambrian Research, 172(1/2):99-126. https://doi.org/10.1016/j.precamres.2009.03.010 [35] Sun, W., Zhou, M., Yan, D., et al., 2008b. Provenance and Tectonic Setting of the Neoproterozoic Yanbian Group, Western Yangtze Block (SW China). Precambrian Research, 167(1/2):213-236. https://doi.org/10.1016/j.precamres.2008.08.001 [36] Tang, Z.C., Wang, F.X., Zhou, H.W., et al., 2020. Neoproterozoic (~800 Ma) Subduction of Ocean-Continent Transition:Constraint from Arc Magmatic Sequence in Kaihua, Western Zhejiang. Earth Science. 45(1):180-195(in Chinese with English abstract). [37] Takagi, T., Orihashi, Y., Naito, K., et al., 1999. Petrology of a Mantle-Derived Rhyolite, Hokkaido, Japan. Chemical Geology, 160(4):425-445. https://doi.org/10.1016/s0009-2541(99)00111-4 [38] Tamura, Y., Ishizuka, O., Stern, R. J., et al., 2014. Mission Immiscible:Distinct Subduction Components Generate Two Primary Magmas at Pagan Volcano, Mariana Arc. Journal of Petrology, 55(1):63-101. https://doi.org/10.1093/petrology/egt061 [39] Wang, D. B., Wang, B. D., Yin, F. G., et al., 2019a. Petrogenesis and Tectonic Implications of Late Mesoproterozoic A1- and A2-Type Felsic Lavas from the Huili Group, Southwestern Yangtze Block. Geological Magazine, 156(8):1425-1439. https://doi.org/10.1017/s0016756818000882 [40] Wang, X. L., Zhou, J. C., Griffin, W. L., et al., 2014. Geochemical Zonation across a Neoproterozoic Orogenic Belt:Isotopic Evidence from Granitoids and Metasedimentary Rocks of the Jiangnan Orogen, China. Precambrian Research, 242:154-171. https://doi.org/10.1016/j.precamres.2013.12.023 [41] Wang, Y. J., Zhu, W. G., Huang, H. Q., et al., 2019b. Ca. 1.04 Ga Hot Grenville Granites in the Western Yangtze Block, Southwest China. Precambrian Research, 328:217-234. https://doi.org/10.1016/j.precamres.2019.04.024 [42] Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites:Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4):407-419. https://doi.org/10.1007/bf00402202 [43] Wu, G.Y., 2006. Division of the Precambrian in South China in the Light of Key Geological Events. Journal of Stratigraphy, 30(3):271-286(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dcxzz200603012 [44] Wood, D. A., 1980. The Application of a Th-Hf-Ta Diagram to Problems of Tectonomagmatic Classification and to Establishing the Nature of Crustal Contamination of Basaltic Lavas of the British Tertiary Volcanic Province. Earth and Planetary Science Letters, 50(1):11-30. https://doi.org/10.1016/0012-821x(80)90116-8 [45] Yin, F.G., Sun, Z.M., Ren, G.M., et al., 2012. Geological Record of Paleo- and Mesoproterozoic Orogenesis in the Western Margin of Upper Yangtze Block. Acta Geologica Sinica. 86(12):1917-1932(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201212005 [46] Zhang, C.H., Gao, L.Z., Wu, Z.J., et al., 2007. SHRIMP U-Pb Zircon Age of Tuff from the Kunyang Group in Central Yunnan:Evidence for Grenvillian Orogeny in South China. Chinese Science Bulletin, 52(7):818-824(in Chinese). [47] Zhao, J. H., Asimow, P. D., Zhou, M. F., et al., 2017. An Andean-Type Arc System in Rodinia Constrained by the Neoproterozoic Shimian Ophiolite in South China. Precambrian Research, 296:93-111. https://doi.org/10.1016/j.precamres.2017.04.017 [48] Zhao, J. H., Li, Q. W., Liu, H., et al., 2018. Neoproterozoic Magmatism in the Western and Northern Margins of the Yangtze Block (South China) Controlled by Slab Subduction and Subduction-Transform-Edge-Propagator. Earth-Science Reviews, 187:1-18. https://doi.org/10.1016/j.earscirev.2018.10.004 [49] Zhao, X. F., Zhou, M. F., Hitzman, M. W., et al., 2012. Late Paleoproterozoic to Early Mesoproterozoic Tangdan Sedimentary Rock-Hosted Strata-Bound Copper Deposit, Yunnan Province, Southwest China. Economic Geology, 107(2):357-375. https://doi.org/10.2113/econgeo.107.2.357 [50] Zhao, X. F., Zhou, M. F., Li, J. W., et al., 2010. Late Paleoproterozoic to Early Mesoproterozoic Dongchuan Group in Yunnan, SW China:Implications for Tectonic Evolution of the Yangtze Block. Precambrian Research, 182(1/2):57-69. https://doi.org/10.1016/j.precamres.2010.06.021 [51] Zhang, K.X., Xu, Y.D., He, W.H., et al., 2018. Oceanic and Continental Blocks Distribution during Neoproterozoic Early Qingbaikouan Period (1 000-820 Ma) in China. Earth Science, 43(11):3837-3852(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201811004 [52] Zhou, G. Y., Wu, Y. B., Li, L., et al., 2018. Identification of Ca. 2.65 Ga TTGs in the Yudongzi Complex and Its Implications for the Early Evolution of the Yangtze Block. Precambrian Research, 314:240-263. https://doi.org/10.1016/j.precamres.2018.06.011 [53] Zhou, M., Ma, Y., Yan, D., et al., 2006a. The Yanbian Terrane (Southern Sichuan Province, SW China):A Neoproterozoic Arc Assemblage in the Western Margin of the Yangtze Block. Precambrian Research, 144(1/2):19-38. https://doi.org/10.1016/j.precamres.2005.11.002 [54] Zhou, M. F., Yan, D. P., Wang, C. L., et al., 2006b. Subduction-Related Origin of the 750 Ma Xuelongbao Adakitic Complex (Sichuan Province, China):Implications for the Tectonic Setting of the Giant Neoproterozoic Magmatic Event in South China. Earth and Planetary Science Letters, 248(1/2):286-300. https://doi.org/10.1016/j.epsl.2006.05.032 [55] Zhu, G. L., Yu, J. H., Zhou, X. Y., et al., 2019. The Western Boundary between the Yangtze and Cathaysia Blocks, New Constraints from the Pingbian Group Sediments, Southwest South China Block. Precambrian Research, 331:105350. https://doi.org/10.1016/j.precamres.2019.105350 [56] Zhu, W. G., Zhong, H., Li, Z. X., et al., 2016. SIMS Zircon U-Pb Ages, Geochemistry and Nd-Hf Isotopes of Ca. 1.0 Ga Mafic Dykes and Volcanic Rocks in the Huili Area, SW China:Origin and Tectonic Significance. Precambrian Research, 273:67-89. https://doi.org/10.1016/j.precamres.2015.12.011 [57] Zhu, Y., Lai, S.C., Qin, J.F., et al., 2019a. Petrogenesis and Geodynamic Implications of Neoproterozoic Gabbro-Diorites, Adakitic Granites, and A-Type Granites in the Southwestern Margin of the Yangtze Block, South China. Journal of Asian Earth Sciences, 183:1367-9120. [58] Zhu, Y., Lai, S.C., Qin, J.F., et al., 2019b. Neoproterozoic Peraluminous Granites in the Western Margin of the Yangtze Block, South China:Implications for the Reworking of Mature Continental Crust. Precambrian Research, 201(9):333. [59] 耿元生, 杨崇辉, 王新社, 等, 2008.扬子地台西缘变质基底演化.北京:北京地大彩印厂, 1-50. [60] 耿元生, 旷红伟, 柳永清, 等, 2017.扬子地块西、北缘中元古代地层的划分与对比.地质学报, 91(10):2151-2174. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201710001 [61] 关俊雷, 郑来林, 刘建辉, 等, 2011.四川省会理县河口地区辉绿岩体的锆石SHRIMP U-Pb年龄及其地质意义.地质学报, 85(4):482-490. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201104004 [62] 李献华, 王选策, 李武显, 等, 2008.等华南新元古代玄武质岩石成因与构造意义:从造山运动到陆内裂谷.地球科学, 37(4):382-398. http://www.cnki.com.cn/Article/CJFDTotal-DQHX200804011.htm [63] 任光明, 庞维华, 潘桂棠, 等, 2017.扬子陆块西缘中元古代菜子园蛇绿混杂岩的厘定及其地质意义.地质通报.36(11):2061-2075. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201711016 [64] 四川省地质矿产局, 1991.四川省区域地质志.北京:地质出版社, 1-730. [65] 唐增才, 汪发祥, 周汉文, 等, 2020.浙西开化地区新元古代(~800 Ma)洋陆俯冲来自活动陆缘弧火山岩序列组合的制约.地球科学, 45(1):180-193. doi: 10.3799/dqkx.2018.244 [66] 吴根耀, 2006.从关键地质事件看华南的前寒武系划分.地层学杂志, 30(3):271-286. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dcxzz200603012 [67] 尹福光, 孙志明, 任光明, 等, 2012.上扬子陆块西南缘早-中元古代造山运动的地质记录.地质学报, 86(12):1917-1932. [68] 张传恒, 高林志, 武振杰, 等, 2007.滇中昆阳群凝灰岩锆石SHRIMP U-Pb年龄:华南格林威而期造山的证据.科学通报, 52(7):818-824. [69] 张克信, 徐亚东, 何卫红, 等, 2018.中国新元古代青白口纪早期(1 000~820 Ma)洋陆分布.地球科学.43(11):3837-3852. doi: 10.3799/dqkx.2018.339 -
dqkx-45-7-2452-Table1-2.doc