• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于随机森林的滑坡空间易发性评价:以三峡库区湖北段为例

    吴润泽 胡旭东 梅红波 贺金勇 杨建英

    吴润泽, 胡旭东, 梅红波, 贺金勇, 杨建英, 2021. 基于随机森林的滑坡空间易发性评价:以三峡库区湖北段为例. 地球科学, 46(1): 321-330. doi: 10.3799/dqkx.2020.032
    引用本文: 吴润泽, 胡旭东, 梅红波, 贺金勇, 杨建英, 2021. 基于随机森林的滑坡空间易发性评价:以三峡库区湖北段为例. 地球科学, 46(1): 321-330. doi: 10.3799/dqkx.2020.032
    Wu Runze, Hu Xudong, Mei Hongbo, He Jinyong, Yang Jianying, 2021. Spatial Susceptibility Assessment of Landslides Based on Random Forest: A Case Study from Hubei Section in the Three Gorges Reservoir Area. Earth Science, 46(1): 321-330. doi: 10.3799/dqkx.2020.032
    Citation: Wu Runze, Hu Xudong, Mei Hongbo, He Jinyong, Yang Jianying, 2021. Spatial Susceptibility Assessment of Landslides Based on Random Forest: A Case Study from Hubei Section in the Three Gorges Reservoir Area. Earth Science, 46(1): 321-330. doi: 10.3799/dqkx.2020.032

    基于随机森林的滑坡空间易发性评价:以三峡库区湖北段为例

    doi: 10.3799/dqkx.2020.032
    基金项目: 

    三峡库区后续地质灾害防治信息系统建设 0001212012AC50001

    详细信息
      作者简介:

      吴润泽(1979-), 男, 工程师, 主要从事地质灾害防治信息化研究.ORCID:0000-0003-1063-1431.E-mail:wurunze@163.com

      通讯作者:

      梅红波, ORCID:0000-0001-6377-3877.E-mail:hbmei@cug.edu.cn

    • 中图分类号: P642.2

    Spatial Susceptibility Assessment of Landslides Based on Random Forest: A Case Study from Hubei Section in the Three Gorges Reservoir Area

    • 摘要: 滑坡空间易发性分析有助于开展滑坡防灾减灾工作,训练有效的滑坡预测模型在其中扮演重要角色.以三峡库区湖北段为研究区,选取高程、坡度、斜坡结构、土地利用类型、岩土体类型、断裂距离、路网距离、河网距离、以及归一化植被指数这9个影响因子建立滑坡空间数据库,采用集成学习中的随机森林算法进行滑坡易发性评价.结果显示,随机森林抽样训练的方式有利于确定较优的训练参数,保证随机森林在不过拟合的情况下取得满意的拟合能力和泛化能力.随机森林绘制的滑坡易发性分级图显示出合理的空间分布,其中73.35%的滑坡分布在较高和极高级别区域.而巴东县北部、秭归县中部以及夷陵区南部等区域显示出较高的易发性级别.性能评估及易发性统计结果均表明随机森林是一种出色的算法,在滑坡空间预测领域具有较好的适用性.

       

    • 图  1  研究区地理位置以及滑坡分布

      Fig.  1.  Locations of study area and landslides

      图  2  随机森林OOB误差曲线图

      Fig.  2.  OOB error curves of random forest

      a. mtry=2;b. mtry=3;c. mtry=4;d. mtry=5

      图  3  随机森林ROC曲线

      Fig.  3.  The ROC curve of random fores

      图  4  研究区滑坡易发性评价图

      Fig.  4.  Landslide susceptibility maps in the study area

      表  1  评价因子汇总表

      Table  1.   The summary of conditioning factors

      高程(m) 坡度(°) 斜坡结构
      类别 PA(%) PL(%) FR 类别 PA(%) PL(%) FR 类别 PA(%) PL(%) FR
      ≤200 7.44 10.22 1.37 ≤5 6.22 2.47 0.40 水平坡 0.40 0.52 1.30
      200~400 9.21 30.96 3.36 5~10 11.05 6.49 0.59 顺向坡 18.33 18.50 1.01
      400~600 11.84 20.05 1.69 10~15 15.21 14.59 0.96 顺斜向坡 17.83 18.27 1.02
      600~800 13.75 14.13 1.03 15~20 17.34 22.11 1.28 横向坡 32.79 33.20 1.01
      800~1000 15.28 11.72 0.77 20~25 16.15 23.09 1.43 逆斜向坡 15.56 14.47 0.93
      1 000~1 200 15.60 7.01 0.45 25~30 12.69 16.94 1.34 逆向坡 15.09 15.05 1.00
      1 200~1 400 13.37 3.73 0.28 30~35 9.04 8.50 0.94
      > 1 400 13.51 2.18 0.16 35~40 5.88 3.10 0.53
      > 40 6.43 2.70 0.42
      路网距离(m) NDVI 断裂距离(m)
      类别 PA(%) PL(%) FR 类别 PA(%) PL(%) FR 类别 PA(%) PL(%) FR
      ≤50 15.99 30.96 1.94 ≤-0.1 2.12 3.27 1.54 ≤1000 19.75 17.92 0.91
      50~100 12.52 21.65 1.73 -0.1~0 1.85 2.81 1.52 1 000~2 000 16.07 13.10 0.81
      100~200 17.96 22.63 1.26 0~0.1 4.53 6.66 1.47 2 000~3 000 12.68 10.45 0.82
      200~300 11.97 9.88 0.83 0.1~0.2 10.27 11.60 1.13 3 000~4 000 9.63 8.62 0.89
      300~400 8.36 5.05 0.60 0.2~0.3 19.00 17.69 0.93 4 000~5 000 7.74 6.72 0.87
      400~500 6.11 3.22 0.53 0.3~0.4 27.02 23.95 0.89 5 000~6 000 6.59 8.27 1.26
      500~600 4.66 1.84 0.39 0.4~0.5 25.24 23.43 0.93 6 000~7 000 5.71 9.25 1.62
      600~700 3.60 1.03 0.29 > 0.5 9.96 10.57 1.06 7 000~8 000 4.85 5.51 1.14
      700~800 2.91 1.21 0.41 8 000~9 000 4.10 4.77 1.16
      > 800 15.91 2.53 0.16 > 9 000 12.88 15.39 1.19
      河网距离(m) 土地利用类型 岩土体类型
      类别 PA(%) PL(%) FR 类别 PA(%) PL(%) FR 类别 PA(%) PL(%) FR
      ≤500 17.34 21.83 1.26 农地 14.38 17.98 1.25 松散岩土类 12.09 24.99 2.07
      500~1 000 17.04 18.90 1.11 园地 6.68 22.80 3.41 碎屑岩类 21.63 38.94 1.80
      1 000~1 500 15.72 14.88 0.95 居民地 2.97 8.90 3.00 碳酸盐岩类 52.40 29.47 0.56
      1 500~2 000 13.33 9.13 0.69 林地 72.47 43.54 0.60 岩浆岩及变质岩类 13.88 6.61 0.48
      2 000~2 500 10.30 8.39 0.81 草地 0.56 0.52 0.93
      2 500~3 000 7.79 6.32 0.81 其它 2.95 6.26 2.12
      3 000~3 500 5.65 6.84 1.21
      > 3 500 12.84 13.73 1.07
      下载: 导出CSV

      表  2  随机森林性能统计表

      Table  2.   Performance of random forest

      性能度量指标 准确度 均方根误差 kappa系数
      训练集 0.791 0.390 0.582
      测试集 0.753 0.417 0.507
      下载: 导出CSV

      表  3  易发性评价灾害点分布统计表

      Table  3.   The summary of landslide locations in corresponding susceptibility classes

      易发性等级 滑坡数 滑坡百分比(%) 栅格数 栅格百分比(%) 滑坡密度
      极高 1 040 58.47 1 839 800 14.57 4.01
      较高 265 14.88 1 475 600 11.69 1.27
      中等 218 12.23 1 695 650 13.43 0.91
      较低 125 7.00 2 232 150 17.68 0.40
      极低 132 7.41 5 382 825 42.63 0.17
      下载: 导出CSV
    • [1] Aditian, A., Kubota, T., Shinohara, Y., 2018. Comparison of GIS-Based Landslide Susceptibility Models Using Frequency Ratio, Logistic Regression, and Artificial Neural Network in a Tertiary Region of Ambon, Indonesia. Geomorphology, 318:101-111. https://doi.org/10.1016/j.geomorph.2018.06.006
      [2] Alcántara-Ayala, I., 2002. Geomorphology, Natural Hazards, Vulnerability and Prevention of Natural Disasters in Developing Countries. Geomorphology, 47(2/3/4):107-124. https://doi.org/10.1016/s0169-555x(02)00083-1
      [3] Bennett, G. L., Miller, S. R., Roering, J. J., et al., 2016. Landslides, Threshold Slopes, and the Survival of Relict Terrain in the Wake of the Mendocino Triple Junction. Geology, 44(5):363-366. https://doi.org/10.1130/g37530.1
      [4] Breiman, L., Friedman, J. H., Olshen, R. A., et al., 1984. Classification and Regression Trees. Chapman & Hall, New York.
      [5] Breiman, L., 2001. Random Forests. Machine Learning, 45(1):5-32. https://doi.org/10.1023/A:1010933404324.
      [6] Feng, H.J., Zhou, A.G., Yu, J.J., et al., 2016. A Comparative Study on Plum-Rain-Triggered Landslide Susceptibility Assessment Models in West Zhejiang Province. Earth Science, 41(3):403-415 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201603006.htm
      [7] Felicísimo, Á. M., Cuartero, A., Remondo, J., et al., 2013. Mapping Landslide Susceptibility with Logistic Regression, Multiple Adaptive Regression Splines, Classification and Regression Trees, and Maximum Entropy Methods:A Comparative Study. Landslides, 10(2):175-189. https://doi.org/10.1007/s10346-012-0320-1
      [8] Fenti, V., Silvano, S., Spagna, V., 1979. Methodological Proposal for an Engineering Geomorphological Map. Forecasting Rockfalls in the Alps. Bulletin of the International Association of Engineering Geology, 19(1):134-138. https://doi.org/10.1007/bf02600465
      [9] Guo, H.J., Tang, N.Q., Lin, J.B., 2010. Sensibility Analysis of Land-Use and Landslide Hazard Based on GIS in Xianyou County. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 39(4):417-420 (in Chinese with English abstract). http://www.cabdirect.org/abstracts/20103284954.html;jsessionid=4FA7BBD33F5E271F97960BEF557B26B0
      [10] Guo, Z.Z., Yin, K.L., Fu, S., et al., 2018. Evaluation of Landslide Susceptibility Based on GIS and WOE-BP Model. Earth Science, 44(12):4299-4312 (in Chinese with English abstract). http://www.researchgate.net/publication/324390254_Evaluation_of_Landslide_Susceptibility_Based_on_GIS_and_WOE-BP_Model
      [11] Guo, Z.Z., Yin, K.L., Liu, Q.L., et al., 2019. Rainfall Warning of Creeping Landslide in Yunyang County of Three Gorges Reservoir Region Based on Displacement Ratio Model. Earth Science, 45(2):672-684 (in Chinese with English abstract).
      [12] Jiang, R., 2010. Research on Generation Mechanism and Service of Slope Disaster Warning Information in Kunming City(Dissertation). Kunming University of Science and Technology, Kunming (in Chinese with English abstract).
      [13] Kornejady, A., Ownegh, M., Bahremand, A., 2017. Landslide Susceptibility Assessment Using Maximum Entropy Model with Two Different Data Sampling Methods. CATENA, 152:144-162. https://doi.org/10.1016/j.catena.2017.01.010
      [14] Li, S.L., Xu, Q., Tang, M.G., et al., 2018. Study on Spatial Distribution and Key Influencing Factors of Landslides in Three Gorges Reservoir Area. Earth Science, 45(1):341-354 (in Chinese with English abstract).
      [15] Li, Y.Y., Mei, H.B., Ren, X.J., et al., 2018.Geological Disaster Susceptibility Evaluation Based on Certainty Factor and Support Vector Machine. Journal of Geo-Information Science, 20(12):1699-1709 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQXX201812003.htm
      [16] Liu, L.N., Xu, C., Xu, X.W., et al., 2014. GIS-Based Landslide Hazard Evaluation Using AHP Method in the 2013 Lushan Earthquake Region. Journal of Catastrophology, 29(4):183-191 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZHXU201404037.htm
      [17] Nie, J., Lian, J., Hu, Z.W., 2014. Spatial Variation of Landslides in Wenchuan Earthquake-Stricken Areas. Geographical Research, 33 (2):214-224 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DLYJ201402003.htm
      [18] Shi, X.G., Xu, J.H., Jiang, H.J., et al., 2019. Slope Stability State Monitoring and Updating of the Outang Landslide, Three Gorges Area with Time Series InSAR Analysis. Earth Science, 44(12):4284-4292 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201912038.htm
      [19] Pham, B. T., Pradhan, B., Tien Bui, D., et al., 2016. A Comparative Study of Different Machine Learning Methods for Landslide Susceptibility Assessment:A Case Study of Uttarakhand Area (India). Environmental Modelling & Software, 84:240-250. https://doi.org/10.1016/j.envsoft.2016.07.005
      [20] Song, Y. Q., Gong, J. H., Gao, S., et al., 2012. Susceptibility Assessment of Earthquake-Induced Landslides Using Bayesian Network:A Case Study in Beichuan, China. Computers & Geosciences, 42:189-199. https://doi.org/10.1016/j.cageo.2011.09.011
      [21] Tehrany, M. S., Pradhan, B., Jebur, M. N., 2013. Spatial Prediction of Flood Susceptible Areas Using Rule Based Decision Tree (DT) and a Novel Ensemble Bivariate and Multivariate Statistical Models in GIS. Journal of Hydrology, 504:69-79. https://doi.org/10.1016/j.jhydrol.2013.09.034
      [22] Wang, L.L., 2016. Feature Processing Method in Rainfall-induced Landslide Susceptibility Assessment (Dissertation). Zhejiang University, Hangzhou (in Chinese with English abstract).
      [23] Wu, S., Li, L.W., Li, S.J., 2012. Analysis on the Influence of Coupling Relationship between Rock Mass Structural Plane and Water on Slope Stability. Journal of Jingchu University of Technology, 27(2):33-36 (in Chinese with English abstract).
      [24] Wu, X.L., Shen, S.Q., Niu, R.Q., 2016. Landslide Susceptibility Prediction Using GIS and PSO-SVM. Geomatics and Information Science of Wuhan University, 41(5):665-671 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-WHCH201605015.htm
      [25] Xiang, L.Z., Cui, P., 2014. Triggering Factors Susceptibility of Earthquake-Induced Collapses and Landslides in Wenchuan County. Journal of Sichuan University (Engineering Science Edition), 42(5):105-112 (in Chinese with English abstract). http://www.researchgate.net/publication/289748349_Triggering_factors_susceptibility_of_earthquake-induced_collapses_and_landslides_in_Wenchuan_County
      [26] Xiao T., 2007. GIS-Based Research on Spatial Simulation of Landslide in Lanzhou City (Dissertation). Lanzhou University, Lanzhou (in Chinese with English abstract).
      [27] Zare, M., Pourghasemi, H. R., Vafakhah, M., et al., 2013. Landslide Susceptibility Mapping at Vaz Watershed (Iran) Using an Artificial Neural Network Model:A Comparison between Multilayer Perceptron (MLP) and Radial Basic Function (RBF) Algorithms. Arabian Journal of Geosciences, 6(8):2873-2888. https://doi.org/10.1007/s12517-012-0610-x
      [28] 冯杭建, 周爱国, 俞剑君, 等, 2016.浙西梅雨滑坡易发性评价模型对比.地球科学, 41(3):403-415. doi: 10.3799/dqkx.2016.032
      [29] 郭慧娟, 唐南奇, 林金宝, 2010.基于GIS的仙游县土地利用与滑坡灾害敏感性分析.福建农林大学学报(自然科学版), 39(4):417-420. https://www.cnki.com.cn/Article/CJFDTOTAL-FJND201004018.htm
      [30] 郭子正, 殷坤龙, 付圣, 等, 2018.基于GIS与WOE-BP模型的滑坡易发性评价.地球科学, 44(12):4299-4312. doi: 10.3799/dqkx.2016.032
      [31] 郭子正, 殷坤龙, 刘庆丽, 等, 2019.基于位移比模型的三峡库区云阳县域内蠕变型滑坡降雨预警.地球科学45(2):672-684. doi: 10.3799/dqkx.2019.005
      [32] 蒋锐, 2010.昆明市斜坡灾害预警信息生成机理及服务研究(博士学位论文).昆明: 昆明理工大学.
      [33] 李松林, 许强, 汤明高, 等, 2018.三峡库区滑坡空间发育规律及其关键影响因子.地球科学, 45(1):341-354. doi: 10.3799/dqkx.2017.576
      [34] 李远远, 梅红波, 任晓杰, 等, 2018.基于确定性系数和支持向量机的地质灾害易发性评价.地球信息科学学报, 20(12):1699-1709. doi: 10.12082/dqxxkx.2018.180349
      [35] 刘丽娜, 许冲, 徐锡伟, 等, 2014. GIS支持下基于AHP方法的2013年芦山地震区滑坡危险性评价.灾害学, 29(4):183-191. doi: 10.3969/j.issn.1000-811X.2014.04.034
      [36] 聂娟, 连健, 胡卓玮, 2014.汶川地震灾区滑坡空间特征变化分析.地理研究, 33(2):214-224. https://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ201402003.htm
      [37] 史绪国, 徐金虎, 蒋厚军, 等, 2019.时序InSAR技术三峡库区藕塘滑坡稳定性监测与状态更新.地球科学, 44(12):4284-4292. doi: 10.3799/dqkx.2019.180
      [38] 王丽丽, 2016.降雨型滑坡地质灾害易发性评价中的特征处理方法.杭州: 浙江大学.
      [39] 武尚, 李利文, 李世佳, 2012.岩体结构面与水耦合关系对边坡稳定性的影响分析.荆楚理工学院学报, 27(2):33-36 doi: 10.3969/j.issn.1008-4657.2012.02.007
      [40] 武雪玲, 沈少青, 牛瑞卿, 2016. GIS支持下应用PSO-SVM模型预测滑坡易发性.武汉大学学报(信息科学版), 41(5):665-671. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201605015.htm
      [41] 向灵芝, 崔鹏, 2014.汶川县地震诱发崩滑灾害影响因素的敏感性分析.四川大学学报(工程科学版), 42(5):105-112. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201005016.htm
      [42] 肖桐, 2007.基于GIS的兰州市滑坡空间模拟研究(硕士学位论文).兰州: 兰州大学.
    • 加载中
    图(4) / 表(3)
    计量
    • 文章访问数:  1005
    • HTML全文浏览量:  252
    • PDF下载量:  70
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-02-21
    • 刊出日期:  2021-01-15

    目录

      /

      返回文章
      返回