• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    二价铁氧化对铁锰循环功能微生物活性的影响及机制

    屈婧祎 童曼 袁松虎

    屈婧祎, 童曼, 袁松虎, 2021. 二价铁氧化对铁锰循环功能微生物活性的影响及机制. 地球科学, 46(2): 632-641. doi: 10.3799/dqkx.2020.029
    引用本文: 屈婧祎, 童曼, 袁松虎, 2021. 二价铁氧化对铁锰循环功能微生物活性的影响及机制. 地球科学, 46(2): 632-641. doi: 10.3799/dqkx.2020.029
    Qu Jingyi, Tong Man, Yuan Songhu, 2021. Effect and Mechanism of Fe(II) Oxygenation on Activities of Iron and Manganese Cycling Functional Microbes. Earth Science, 46(2): 632-641. doi: 10.3799/dqkx.2020.029
    Citation: Qu Jingyi, Tong Man, Yuan Songhu, 2021. Effect and Mechanism of Fe(II) Oxygenation on Activities of Iron and Manganese Cycling Functional Microbes. Earth Science, 46(2): 632-641. doi: 10.3799/dqkx.2020.029

    二价铁氧化对铁锰循环功能微生物活性的影响及机制

    doi: 10.3799/dqkx.2020.029
    基金项目: 

    国家自然科学基金青年基金项目 41703113

    详细信息
      作者简介:

      屈婧祎(1993-), 女, 硕士研究生, 主要从事铁、锰氧化还原循环的研究.ORCID: 0000-0001-8195-9915.E-mail: 1352442194@qq.com

      通讯作者:

      童曼, ORCID: 0000-0002-0286-0608.E-mail: tongman@cug.edu.cn

    • 中图分类号: P641.3

    Effect and Mechanism of Fe(II) Oxygenation on Activities of Iron and Manganese Cycling Functional Microbes

    • 摘要: 地质微生物是沉积环境中铁、锰氧化还原循环的主要驱动因子,铁锰共存环境中二价铁氧化对不同铁、锰循环功能微生物活性的影响差异和机制尚不清楚.以铁还原菌Shewanella oneidensis MR-1、铁氧化菌Pseudogulbenkiania sp.strain 2002、锰氧化菌Pseudomonas putida MnB1和Leptothrix discophora SS-1作为代表性的铁、锰循环功能微生物,利用平板计数、荧光显微镜等手段探究了Fe(II)氧化对功能微生物活性的影响差异及机制.结果表明0.05 mM Fe2+氧化60 min可使MR-1和MnB1的活菌数量降低4~5个数量级,SS-1及S.2002无显著失活.Fe(II)氧化产生的吸附态。OH和胞内。OH是细菌失活的主要原因,胞外H2O2、胞外游离态。OH和三价铁氧化物是细菌失活的次要原因,SS-1及S.2002产生了氧化应激反应,成功抵御了活性氧化物种.

       

    • 图  1  Fe(II)氧化对Pseudogulbenkiania sp. strain 2002、Shewanella oneidensis MR-1、Pseudomonas putida MnB1和Leptothrix discophora SS1活性的影响

      Fig.  1.  Effects of Fe(II) oxygenation on the activities of Pseudogulbenkiania sp. strain 2002, Shewanella oneidensis MR-1, Pseudomonas putida MnB1 and Leptothrix discophora SS1

      图  2  不同氧分压下Fe(II)氧化对Pseudomonas putida MnB1细菌活性的影响

      Fig.  2.  Effect of Fe(II) oxygenation on the activities of Pseudomonas putida MnB1 under various oxygen partial pressure

      图  3  Fe(II)氧化影响前后细菌的荧光显微镜照片

      Fig.  3.  Florescence microscope photos of bacteria before and after Fe(II) oxygenation

      图  4  Fe2+的氧化动力学(a、b)和H2O2、•OH累计浓度(c、d)

      Fig.  4.  The oxidation kinetics of Fe2+ (a, b) and the accumulative concentrations of H2O2 and •OH (c, d)

      图  5  H2O2对细菌活性的影响

      Fig.  5.  Effect of H2O2 on the activities of bacteria

      图  6  H2O2影响前后细菌的荧光显微镜照片

      Fig.  6.  Florescence microscope photos of bacteria before and after the reaction with H2O2

      图  7  体系中H2O2浓度变化

      Fig.  7.  Variations of H2O2 concentration in bacteria suspensions

      图  8  加入活性氧淬灭剂对细菌活性变化的影响

      Fig.  8.  Effect of •OH quencher on the variations of bacteria activities

      图  9  三价铁氧化物对MR-1(a)和MnB1(b)活性的影响

      Fig.  9.  Effect of Fe(III) oxides on the activities of MR-1 (a) and MnB1 (b)

    • [1] Amonette, J. E. , Templeton, J. C. , 1998. Improvements to the Quantitative Assay of Nonrefractory Minerals for Fe(II) and Total Fe Using 1, 10-Phenanthroline. Clays and Clay Minerals, 46(1): 51-62. https://doi.org/10.1346/ccmn.1998.0460106
      [2] Butterfield, C. N. , Soldatova, A. V. , Lee, S. W. , et al. , 2013. Mn(II, III) Oxidation and MnO2 Mineralization by an Expressed Bacterial Multicopper Oxidase. PNAS, 110(29): 11731-11735. https://doi.org/10.1073/pnas.1303677110
      [3] Chen, R. , Liu, H. , Tong, M. , et al. , 2018. Impact of Fe(II) Oxidation in the Presence of Iron-Reducing Bacteria on Subsequent Fe(III) Bio-Reduction. The Science of the Total Environment, 639: 1007-1014. https://doi.org/10.1016/j.scitotenv.2018.05.241
      [4] Crump, B. C. , Kling, G. W. , Bahr, M. , et al. , 2003. Bacterioplankton Community Shifts in an Arctic Lake Correlate with Seasonal Changes in Organic Matter Source. Applied and Environmental Microbiology, 69(4): 2253-2268. https://doi.org/10.1128/aem.69.4.2253-2268.2003
      [5] Deng, Y. M. , Wang, Y. X. , Li, H. J. , et al. , 2015. Seasonal Variation of Arsenic Speciation in Shallow Groundwater from Endemic Arsenicosis Area in Jianghan Plain. Earth Science, 40(11): 1876-1886 (in Chinese with English abstract). http://www.researchgate.net/publication/288228393_Seasonal_variation_of_arsenic_speciation_in_shallow_groundwater_from_endemic_arsenicosis_area_in_Jianghan_Plain
      [6] Duan, Y. H. , Gan, Y. Q. , Guo, X. X. , et al. , 2014. Hydrogeochemistry and Arsenic Contamination of Groundwater in the Monitoring Field, Jianghan Plain. Geological Science and Technology Information, 33(2): 140-147 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ201402024.htm
      [7] Leach, R.M., Harris, E.D., 1997. Manganese: Handbook of Nutritionally Essential Minerals. Marcel Dekker, New York.
      [8] Li, D. , Zeng, H. P. , 2014. Biological Purification Technology of High Iron and Manganese Groundwater. China Architecture & Building Press, Beijing (in Chinese).
      [9] Li, G. B. , Liu, C. , 1989. Eliminating Iron and Manganese from Groundwater (2nd Edition). China Architecture & Building Press, Beijing (in Chinese).
      [10] Liu, G. F. , Zhu, J. Q. , Yu, H. L. , et al. , 2018. Review on Electron-Shuttle-Mediated Microbial Reduction of Iron Oxides Minerals. Earth Science, 43(Suppl. 1): 157-170 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX2018S1016.htm
      [11] Londono, S. C. , Hartnett, H. E. , Williams, L. B. , 2017. Antibacterial Activity of Aluminum in Clay from the Colombian Amazon. Environmental Science & Technology, 51(4): 2401-2408. https://doi.org/10.1021/acs.est.6b04670
      [12] Ma, S. C. , Tong, M. , Yuan, S. H. , et al. , 2019. Responses of the Microbial Community Structure in Fe(II)-Bearing Sediments to Oxygenation: The Role of Reactive Oxygen Species. ACS Earth and Space Chemistry, 3(5): 738-747. https://doi.org/10.1021/acsearthspacechem.8b00189
      [13] Meyerhof, M. S. , Wilson, J. M. , Dawson, M. N. , et al. , 2016. Microbial Community Diversity, Structure and Assembly across Oxygen Gradients in Meromictic Marine Lakes, Palau. Environmental Microbiology, 18(12): 4907-4919. https://doi.org/10.1111/1462-2920.13416
      [14] Nevin, K. P. , Lovley, D. R. , 2002. Mechanisms for Fe(III) Oxide Reduction in Sedimentary Environments. Geomicrobiology Journal, 19(2): 141-159. https://doi.org/10.1080/01490450252864253
      [15] Nguyen, T. T. M. , Park, H. J. , Kim, J. Y. , et al. , 2013. Microbial Inactivation by Cupric Ion in Combination with H2O2: Role of Reactive Oxidants. Environmental Science & Technology, 47(23): 13661-13667. https://doi.org/10.1021/es403155a
      [16] Nivière, V. , Fontecave, M. , 2004. Discovery of Superoxide Reductase: An Historical Perspective. JBIC Journal of Biological Inorganic Chemistry, 9(2): 119-123. https://doi.org/10.1007/s00775-003-0519-7
      [17] Page, S. E. , Kling, G. W. , Sander, M. , et al. , 2013. Dark Formation of Hydroxyl Radical in Arctic Soil and Surface Waters. Environmental Science & Technology, 47(22): 12860-12867. https://doi.org/10.1021/es4033265
      [18] Shcolnick, S. , Summerfield, T. C. , Reytman, L. , et al. , 2009. The Mechanism of Iron Homeostasis in the Unicellular Cyanobacterium Synechocystis sp. PCC 6803 and Its Relationship to Oxidative Stress. Plant Physiology, 150(4): 2045-2056. https://doi.org/10.1104/pp.109.141853
      [19] Sun, B. , Guan, X. H. , Fang, J. Y. , et al. , 2015. Activation of Manganese Oxidants with Bisulfite for Enhanced Oxidation of Organic Contaminants: The Involvement of Mn(III). Environmental Science & Technology, 49(20): 12414-12421. https://doi.org/10.1021/acs.est.5b03111
      [20] Sunda, W. G. , Kieber, D. J. , 1994. Oxidation of Humic Substances by Manganese Oxides Yields Low-Molecular-Weight Organic Substrates. Nature, 367(6458): 62-64. doi: 10.1038/367062a0
      [21] Tong, M. , Yuan, S. H. , Ma, S. C. , et al. , 2016. Production of Abundant Hydroxyl Radicals from Oxygenation of Subsurface Sediments. Environmental Science & Technology, 50(1): 214-221. https://doi.org/10.1021/acs.est.5b04323
      [22] Wang, X. , Dong, H. L. , Zeng, Q. , et al. , 2017. Reduced Iron-Containing Clay Minerals as Antibacterial Agents. Environmental Science & Technology, 51(13): 7639-7647. https://doi.org/10.1021/acs.est.7b00726
      [23] Weber, K. A. , Achenbach, L. A. , Coates, J. D. , 2006. Microorganisms Pumping Iron: Anaerobic Microbial Iron Oxidation and Reduction. Nature Reviews Microbiology, 4(10): 752-764. https://doi.org/10.1038/nrmicro1490
      [24] Williams, L. B. , Metge, D. W. , Eberl, D. D. , et al. , 2011. What Makes a Natural Clay Antibacterial? Environmental Science & Technology, 45(8): 3768-3773. https://doi.org/10.1021/es1040688
      [25] Swanner, E. D. , Mloszewska, A. M. , Cirpka, O. A. , et al. , 2015. Modulation of Oxygen Production in Archaean Oceans by Episodes of Fe(II) Toxicity. Nature Geoscience, 8(2): 126-130. https://doi.org/10.1038/ngeo2327
      [26] Tolar, B. B. , Powers, L. C. , Miller, W. L. , et al. , 2016. Ammonia Oxidation in the Ocean can be Inhibited by Nanomolar Concentrations of Hydrogen Peroxide. Frontiers in Marine Science, 3: 237. https://doi.org/10.3389/fmars.2016.00237
      [27] Zhang, X. , Chen, T. H. , Wang, J. , et al. , 2018. Influence of Iron Oxides on Methanogenic Process of Organic Matter and Related Mechanism. Earth Science, 43(Suppl. 1): 136-144 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_earth-science_thesis/0201272213930.html
      [28] Zhou, F. , Zhu, J. , Zhang, P. , et al. , 2017. Effect of Groundwater Components on Hydroxyl Radical Production by Fe(Ⅱ) Oxygenation. Earth Science, 42(6): 1039-1044 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201706013.htm
      [29] 邓娅敏, 王焰新, 李慧娟, 等, 2015. 江汉平原砷中毒病区地下水砷形态季节性变化特征. 地球科学, 40(11): 1876-1886. doi: 10.3799/dqkx.2015.168
      [30] 段艳华, 甘义群, 郭欣欣, 等, 2014. 江汉平原高砷地下水监测场水化学特征及砷富集影响因素分析. 地质科技情报, 33(2): 140-147. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201402024.htm
      [31] 李冬, 曾辉平, 2014. 高铁锰地下水生物净化技术. 北京: 中国建筑工业出版社.
      [32] 李圭白, 刘超, 1989. 地下水除铁除锰(第2版). 北京: 中国建筑工业出版社.
      [33] 柳广飞, 朱佳琪, 于华莉, 等, 2018. 电子穿梭体介导微生物还原铁氧化物的研究进展. 地球科学, 43(增刊1): 157-170. doi: 10.3799/dqkx.2018.590
      [34] 张勋, 陈天虎, 王进, 等, 2018. 铁氧化物对有机质厌氧产甲烷过程的影响及其机制. 地球科学, 43(增刊1): 136-144. doi: 10.3799/dqkx.2018.545
      [35] 周帆, 朱健, 张鹏, 等, 2017. 地下水化学组成对Fe2+氧化产生羟自由基的影响. 地球科学, 42(6): 1039-1044. doi: 10.3799/dqkx.2017.082
    • 加载中
    图(9)
    计量
    • 文章访问数:  834
    • HTML全文浏览量:  210
    • PDF下载量:  61
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-11-14
    • 刊出日期:  2021-02-15

    目录

      /

      返回文章
      返回