Effect and Mechanism of Fe(II) Oxygenation on Activities of Iron and Manganese Cycling Functional Microbes
-
摘要: 地质微生物是沉积环境中铁、锰氧化还原循环的主要驱动因子,铁锰共存环境中二价铁氧化对不同铁、锰循环功能微生物活性的影响差异和机制尚不清楚.以铁还原菌Shewanella oneidensis MR-1、铁氧化菌Pseudogulbenkiania sp.strain 2002、锰氧化菌Pseudomonas putida MnB1和Leptothrix discophora SS-1作为代表性的铁、锰循环功能微生物,利用平板计数、荧光显微镜等手段探究了Fe(II)氧化对功能微生物活性的影响差异及机制.结果表明0.05 mM Fe2+氧化60 min可使MR-1和MnB1的活菌数量降低4~5个数量级,SS-1及S.2002无显著失活.Fe(II)氧化产生的吸附态。OH和胞内。OH是细菌失活的主要原因,胞外H2O2、胞外游离态。OH和三价铁氧化物是细菌失活的次要原因,SS-1及S.2002产生了氧化应激反应,成功抵御了活性氧化物种.Abstract: Geologic microorganisms are the main factors driving the redox cycling of iron and manganese in sedimentary environment. The effect and mechanism of Fe(II) oxygenation on the activities of different iron and manganese cycling functional microbes remain unexplored. In this study,it used Shewanella oneidensis MR-1,Pseudogulbenkiania sp. strain 2002,Pseudomonas putida MnB1,Leptothrix discophora SS-1 as the representative iron and manganese cycling functional microbes,it investigated the difference in effect and mechanisms of Fe(II) oxygenation on the activities of these four bacteria. Results show that the living cell counts of MR-1 and MnB1 decreased by 4-5 lg upon 60 min oxygenation of 0.05 mM Fe(II),but no significant inactivation of SS-1 and S.2002 was observed. The surface absorbed •OH and intracellular •OH produced from Fe(II) oxygenation were the dominant reasons for bacteria inactivation,the extracellular H2O2,extracellular dissolved •OH and Fe(III) oxides are minor causes for bacteria inactivation. SS-1 and S.2002 show oxidative stress responses during Fe2+ oxygenation,which helped to resist the damage of reactive oxygen species.
-
Key words:
- Fe2+ /
- iron and manganese cycling /
- geologic microorganism /
- redox fluctuating /
- biogeochemistry
-
图 1 Fe(II)氧化对Pseudogulbenkiania sp. strain 2002、Shewanella oneidensis MR-1、Pseudomonas putida MnB1和Leptothrix discophora SS1活性的影响
Fig. 1. Effects of Fe(II) oxygenation on the activities of Pseudogulbenkiania sp. strain 2002, Shewanella oneidensis MR-1, Pseudomonas putida MnB1 and Leptothrix discophora SS1
-
[1] Amonette, J. E. , Templeton, J. C. , 1998. Improvements to the Quantitative Assay of Nonrefractory Minerals for Fe(II) and Total Fe Using 1, 10-Phenanthroline. Clays and Clay Minerals, 46(1): 51-62. https://doi.org/10.1346/ccmn.1998.0460106 [2] Butterfield, C. N. , Soldatova, A. V. , Lee, S. W. , et al. , 2013. Mn(II, III) Oxidation and MnO2 Mineralization by an Expressed Bacterial Multicopper Oxidase. PNAS, 110(29): 11731-11735. https://doi.org/10.1073/pnas.1303677110 [3] Chen, R. , Liu, H. , Tong, M. , et al. , 2018. Impact of Fe(II) Oxidation in the Presence of Iron-Reducing Bacteria on Subsequent Fe(III) Bio-Reduction. The Science of the Total Environment, 639: 1007-1014. https://doi.org/10.1016/j.scitotenv.2018.05.241 [4] Crump, B. C. , Kling, G. W. , Bahr, M. , et al. , 2003. Bacterioplankton Community Shifts in an Arctic Lake Correlate with Seasonal Changes in Organic Matter Source. Applied and Environmental Microbiology, 69(4): 2253-2268. https://doi.org/10.1128/aem.69.4.2253-2268.2003 [5] Deng, Y. M. , Wang, Y. X. , Li, H. J. , et al. , 2015. Seasonal Variation of Arsenic Speciation in Shallow Groundwater from Endemic Arsenicosis Area in Jianghan Plain. Earth Science, 40(11): 1876-1886 (in Chinese with English abstract). http://www.researchgate.net/publication/288228393_Seasonal_variation_of_arsenic_speciation_in_shallow_groundwater_from_endemic_arsenicosis_area_in_Jianghan_Plain [6] Duan, Y. H. , Gan, Y. Q. , Guo, X. X. , et al. , 2014. Hydrogeochemistry and Arsenic Contamination of Groundwater in the Monitoring Field, Jianghan Plain. Geological Science and Technology Information, 33(2): 140-147 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ201402024.htm [7] Leach, R.M., Harris, E.D., 1997. Manganese: Handbook of Nutritionally Essential Minerals. Marcel Dekker, New York. [8] Li, D. , Zeng, H. P. , 2014. Biological Purification Technology of High Iron and Manganese Groundwater. China Architecture & Building Press, Beijing (in Chinese). [9] Li, G. B. , Liu, C. , 1989. Eliminating Iron and Manganese from Groundwater (2nd Edition). China Architecture & Building Press, Beijing (in Chinese). [10] Liu, G. F. , Zhu, J. Q. , Yu, H. L. , et al. , 2018. Review on Electron-Shuttle-Mediated Microbial Reduction of Iron Oxides Minerals. Earth Science, 43(Suppl. 1): 157-170 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX2018S1016.htm [11] Londono, S. C. , Hartnett, H. E. , Williams, L. B. , 2017. Antibacterial Activity of Aluminum in Clay from the Colombian Amazon. Environmental Science & Technology, 51(4): 2401-2408. https://doi.org/10.1021/acs.est.6b04670 [12] Ma, S. C. , Tong, M. , Yuan, S. H. , et al. , 2019. Responses of the Microbial Community Structure in Fe(II)-Bearing Sediments to Oxygenation: The Role of Reactive Oxygen Species. ACS Earth and Space Chemistry, 3(5): 738-747. https://doi.org/10.1021/acsearthspacechem.8b00189 [13] Meyerhof, M. S. , Wilson, J. M. , Dawson, M. N. , et al. , 2016. Microbial Community Diversity, Structure and Assembly across Oxygen Gradients in Meromictic Marine Lakes, Palau. Environmental Microbiology, 18(12): 4907-4919. https://doi.org/10.1111/1462-2920.13416 [14] Nevin, K. P. , Lovley, D. R. , 2002. Mechanisms for Fe(III) Oxide Reduction in Sedimentary Environments. Geomicrobiology Journal, 19(2): 141-159. https://doi.org/10.1080/01490450252864253 [15] Nguyen, T. T. M. , Park, H. J. , Kim, J. Y. , et al. , 2013. Microbial Inactivation by Cupric Ion in Combination with H2O2: Role of Reactive Oxidants. Environmental Science & Technology, 47(23): 13661-13667. https://doi.org/10.1021/es403155a [16] Nivière, V. , Fontecave, M. , 2004. Discovery of Superoxide Reductase: An Historical Perspective. JBIC Journal of Biological Inorganic Chemistry, 9(2): 119-123. https://doi.org/10.1007/s00775-003-0519-7 [17] Page, S. E. , Kling, G. W. , Sander, M. , et al. , 2013. Dark Formation of Hydroxyl Radical in Arctic Soil and Surface Waters. Environmental Science & Technology, 47(22): 12860-12867. https://doi.org/10.1021/es4033265 [18] Shcolnick, S. , Summerfield, T. C. , Reytman, L. , et al. , 2009. The Mechanism of Iron Homeostasis in the Unicellular Cyanobacterium Synechocystis sp. PCC 6803 and Its Relationship to Oxidative Stress. Plant Physiology, 150(4): 2045-2056. https://doi.org/10.1104/pp.109.141853 [19] Sun, B. , Guan, X. H. , Fang, J. Y. , et al. , 2015. Activation of Manganese Oxidants with Bisulfite for Enhanced Oxidation of Organic Contaminants: The Involvement of Mn(III). Environmental Science & Technology, 49(20): 12414-12421. https://doi.org/10.1021/acs.est.5b03111 [20] Sunda, W. G. , Kieber, D. J. , 1994. Oxidation of Humic Substances by Manganese Oxides Yields Low-Molecular-Weight Organic Substrates. Nature, 367(6458): 62-64. doi: 10.1038/367062a0 [21] Tong, M. , Yuan, S. H. , Ma, S. C. , et al. , 2016. Production of Abundant Hydroxyl Radicals from Oxygenation of Subsurface Sediments. Environmental Science & Technology, 50(1): 214-221. https://doi.org/10.1021/acs.est.5b04323 [22] Wang, X. , Dong, H. L. , Zeng, Q. , et al. , 2017. Reduced Iron-Containing Clay Minerals as Antibacterial Agents. Environmental Science & Technology, 51(13): 7639-7647. https://doi.org/10.1021/acs.est.7b00726 [23] Weber, K. A. , Achenbach, L. A. , Coates, J. D. , 2006. Microorganisms Pumping Iron: Anaerobic Microbial Iron Oxidation and Reduction. Nature Reviews Microbiology, 4(10): 752-764. https://doi.org/10.1038/nrmicro1490 [24] Williams, L. B. , Metge, D. W. , Eberl, D. D. , et al. , 2011. What Makes a Natural Clay Antibacterial? Environmental Science & Technology, 45(8): 3768-3773. https://doi.org/10.1021/es1040688 [25] Swanner, E. D. , Mloszewska, A. M. , Cirpka, O. A. , et al. , 2015. Modulation of Oxygen Production in Archaean Oceans by Episodes of Fe(II) Toxicity. Nature Geoscience, 8(2): 126-130. https://doi.org/10.1038/ngeo2327 [26] Tolar, B. B. , Powers, L. C. , Miller, W. L. , et al. , 2016. Ammonia Oxidation in the Ocean can be Inhibited by Nanomolar Concentrations of Hydrogen Peroxide. Frontiers in Marine Science, 3: 237. https://doi.org/10.3389/fmars.2016.00237 [27] Zhang, X. , Chen, T. H. , Wang, J. , et al. , 2018. Influence of Iron Oxides on Methanogenic Process of Organic Matter and Related Mechanism. Earth Science, 43(Suppl. 1): 136-144 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_earth-science_thesis/0201272213930.html [28] Zhou, F. , Zhu, J. , Zhang, P. , et al. , 2017. Effect of Groundwater Components on Hydroxyl Radical Production by Fe(Ⅱ) Oxygenation. Earth Science, 42(6): 1039-1044 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201706013.htm [29] 邓娅敏, 王焰新, 李慧娟, 等, 2015. 江汉平原砷中毒病区地下水砷形态季节性变化特征. 地球科学, 40(11): 1876-1886. doi: 10.3799/dqkx.2015.168 [30] 段艳华, 甘义群, 郭欣欣, 等, 2014. 江汉平原高砷地下水监测场水化学特征及砷富集影响因素分析. 地质科技情报, 33(2): 140-147. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201402024.htm [31] 李冬, 曾辉平, 2014. 高铁锰地下水生物净化技术. 北京: 中国建筑工业出版社. [32] 李圭白, 刘超, 1989. 地下水除铁除锰(第2版). 北京: 中国建筑工业出版社. [33] 柳广飞, 朱佳琪, 于华莉, 等, 2018. 电子穿梭体介导微生物还原铁氧化物的研究进展. 地球科学, 43(增刊1): 157-170. doi: 10.3799/dqkx.2018.590 [34] 张勋, 陈天虎, 王进, 等, 2018. 铁氧化物对有机质厌氧产甲烷过程的影响及其机制. 地球科学, 43(增刊1): 136-144. doi: 10.3799/dqkx.2018.545 [35] 周帆, 朱健, 张鹏, 等, 2017. 地下水化学组成对Fe2+氧化产生羟自由基的影响. 地球科学, 42(6): 1039-1044. doi: 10.3799/dqkx.2017.082