Is the Wutai Group of Neoarchean or Paleoproterozoic? A Review of Isotope Chronological Studies
-
摘要: 五台群长期被多数学者作为新太古代地层,自下而上分为石咀亚群、台怀亚群和高凡亚群,但同位素年代学研究给出了一些古元古代年龄,致使五台群形成时代及地层划分对比方案悬而未决.全面收集了五台群已有同位素年龄数据,仅锆石U-Pb谐和年龄数据就有800多组.数据显示,高凡亚群包括洪寺组和羊蹄沟组,沉积时间不早于2 331±38 Ma,属于古元古代层侵纪.台怀亚群包括柏枝岩组和鸿门岩组,鸿门岩组结晶年龄约为2 435±64 Ma,柏枝岩组沉积年龄为2 435±64~2 468±61 Ma,故台怀亚群形成于2 435±64~2 468±61 Ma,属古元古代成铁纪.石咀亚群自下而上分为板峪口组、金岗库组、庄旺组、文溪组,其中,文溪组和板峪口组缺乏同位素年龄数据,庄旺组形成于2 468±61 Ma,金岗库组形成于2 468±61~2 494±29 Ma,属于古元古界底部.结合五台花岗绿岩地体之花岗岩类的年龄(>2 520 Ma),认为五台群之下存在花岗质岩石基底.五台地区锆石年龄还表现出了~2.7 Ga和~2.5 Ga的年龄峰值,指示新太古代发生了两次地壳快速生长.五台地区2.52~2.56 Ga的花岗质岩石显示岛弧特征,表明板块俯冲作用在新太古代地壳生长中扮演了重要角色.Abstract: The Wutai Group includes the Shizui,Taihuai and Gaofan subgroups in ascending sequence and has always been considered as Neoarchean strata. However,results from isotopic chronology studies of the Wutai Group have frequently shown a Paleoproterozoic age,making its formation age and stratigraphic subdivision controversial. In this contribution,we have collected all the available isotopic ages obtained from the Wutai Group,including more than 800 groups of zircon U-Pb concordant age. The age dataset indicates that the Gaofan Subgroup,consisting of the Hongsi Formation and the Yangtigou Formation,is no earlier than 2 331±38 Ma and belongs to the Rhyacian Period. The Taihuai Subgroup,consisting of the Baizhiyan and Hongmenyan formations whose deposition ages are constrained 2 435±64 to 2 468±61 Ma and 2 435±64 Ma,respectively,has deposited during 2 435±64 to 2 468±61 Ma,belonging to the Siderian Period of the Paleoproterozoic Era. The Shizui Subgroup is upwardly divided into the Banyukou,Jin'gangku,Zhuangwang and Wenxi formations. The Wenxi and Banyukou formations are lacking of isotopic dating data. The Zhuangwang and Jin'gangku formations are defined to have formed around 2 468±61 Ma and 2 468±61 to 2 494±29 Ma,respectively. This shows that the Shizui Subgroup was formed at the beginning of the Paleoproterozoic Era,i.e.,the lower Siderian Period. Considering that the granitoids in the Wutai granite-greenstone terrain generally yielded zircon U-Pb ages of >2 520 Ma,it is inferred that the Wutai Group was likely deposited on an Archean granitic basement. The zircon U-Pb ages from the Wutai terrain show two peaks around 2.7 Ga and 2.5 Ga,implying two crustal growth events. The island-arc affinity of the 2.52-2.56 Ga granitoids in the Wutai granite-greenstone terrain indicates that plate subduction played an important role in the late Neoarchean.
-
Key words:
- Wutai Group /
- isotopic dating /
- deposition age /
- Rhyacian /
- Siderian /
- crustal growth
-
0. 引言
华北克拉通是世界著名的克拉通之一, 演化历史与大多数克拉通相似, 又具有某些特点(翟明国, 2008;翟明国等, 2018).五台地区位于华北克拉通中部, 以发育早前寒武纪岩石为特征(万渝生等, 2010;杜利林等, 2011), 包括五台群、滹沱群和花岗岩类.其中, 五台群火山-沉积岩系和花岗质岩相伴分布, 组成花岗绿岩带(刘敦一等, 1984;Wilde et al., 2004)或花岗绿岩地体(Chen et al., 1998).在华北克拉通早前寒武纪绿岩带中, 五台群变质程度最低, 层序保存较好, 研究历史悠久, 长期被作为我国早前寒武地层划分对比的标尺, 对其持续深入研究有利于提升我国早前寒武纪研究水平, 揭示地球早期演化的规律.
德国学者Richthofen于1871年最早开展了五台地区的地质调查(图 1), 1882年他将该地的绿色片岩及有关岩石命名为五台层绿泥片岩;1904年美国学者Willis创立“五台群”(王曰伦等, 1952;刘敦一等, 1984).沈其韩等(1959)报导了五台群的钾氩同位素年龄数据, 其后不少研究者对五台群进行同位素年代学研究和时代归属讨论(沈其韩等, 1959;沈保丰和毛德宝, 2003).对于五台群时代, 前人主要有以下两种认识:一是2 300~2 560 Ma, 属古元古代(刘敦一等, 1984;马杏垣等, 1987;陈衍景, 1990;田永清, 1991b);二是2 500~2 800 Ma, 属新太古代(白瑾, 1986;徐朝雷等, 1991;白瑾等, 1992;沈保丰, 1998).
鉴于五台群形成时代的长期争议、近期高精度同位素测年数据的快速积累以及人们对地质大数据应用的日渐重视, 本文全面收集了来自五台群及相关侵入岩的年龄数据, 将之归类为五台群不同层位副变质岩锆石年龄(附表 1)、五台群变质火山岩锆石年龄(附表 2)、与五台群密切相关的花岗岩类锆石年龄(附表 3), 以及锆石铀铅法之外其它方法获得的五台群及相关侵入岩的同位素年龄(附表 4).在对锆石年龄数据进行分类处理的基础上, 选取谐和度在90%~110%之间的年龄数据进行统计分析, 对五台群的地质时代提出了一些新的认识.在此基础上, 讨论了五台群与花岗岩类之间的关系.
1. 地质背景
五台地体以发育中低级变质岩为特征, 西北和东南分别为恒山和阜平地体, 共同构成了陆-弧-陆的构造格架(魏春景, 2018).据白瑾(1986), 五台地体出露地层有阜平群、龙泉关群、五台群、滹沱群、长城系, 以及部分古生界和新生界.阜平群和龙泉关群仅局限于五台地体东缘与太行山衔接的地带, 前者的典型岩石组合是浅粒岩、斜长片麻岩、斜长角闪岩、透辉大理岩和大理岩;而后者则为一套眼球状片麻岩、变粒岩、斜长片麻岩和斜长角闪岩.五台群和滹沱群在本区分布最为广泛, 五台群主要分布在五台山主峰山脊及其北坡和东坡, 是一套以火山岩为主的中低级变质岩系(见下述);滹沱群主要分布在五台山南坡及西南部地区, 是一套低级变质的碎屑岩-碳酸盐岩沉积建造, 底部发育冰碛岩(陈威宇等, 2018;Chen et al., 2019)和具有碳同位素正异常的碳酸盐岩(陈威宇和陈衍景, 2018), 较好记录了大氧化事件.长城系分布于五台山南北两侧, 呈显著的角度不整合覆盖在前述早前寒武纪变质岩石之上, 主要发育高于庄组白云岩和常州沟组石英岩、砂岩.古生界地层零星出露, 新生界沉积物主要沿水系发育.
五台群被古元古界滹沱群不整合覆盖(王曰伦等, 1952;马杏垣等, 1957), 主体呈北东东向带状展布, 西起原平, 东至灵丘, 长逾160 km, 宽35 km.五台群在恒山南坡(滹沱河北岸)、河北阜平北部亦有出露, 分别不整合在恒山灰色片麻岩基底和阜平群之上(山西省区测队, 1976).五台群地层总厚度大于7 000 m, 内部发育甘泉不整合和探马石不整合, 据此自下而上分为石咀亚群、台怀亚群和高凡亚群.石咀亚群为一套经历过角闪岩相变质的镁铁质-长英质火山岩夹条带状铁建造(BIF)及富铝沉积岩, 台怀亚群为经历了绿片岩相变质的镁铁质-长英质火山岩夹BIF, 高凡亚群为低绿片岩相的浊积岩夹少量镁铁质火山岩(图 2)(白瑾, 1986;田永清, 1991b;万渝生等, 2010).五台群经历了多期的变形叠加, 构成了北东向的复式向斜(图 1), 两翼由石咀亚群组成, 核部由台怀亚群和高凡亚群组成(刘敦一等, 1984;白瑾, 1986).
2. 锆石U-Pb年龄统计结果
对于五台群的地质时代划分, 一些学者习惯于运用锆石U-Pb加权平均年龄来进行解释, 但对于真正有意义的锆石年龄, 很容易在加权平均年龄的计算中被掩盖掉.因此, 在使用加权平均年龄说明问题的过程中, 也应关注单颗锆石的年龄, 尤其是偏离加权平均年龄的年龄数据.本文在总结了前人大量锆石年龄数据的基础上, 对偏离加权平均年龄的锆石年龄进行了单独解释, 对前人可能忽略的年龄做了说明.
2.1 高凡亚群
高凡亚群不整合覆盖在台怀亚群之上, 同时被滹沱群所不整合覆盖, 分为下部的洪寺组和上部的羊蹄沟组, 羊蹄沟组主要由石英岩、变粉砂岩、千枚岩和千枚状粉砂岩等组成, 洪寺组主要由变余砂状结构的厚层石英岩和薄层石英岩组成, 两个组之间为连续沉积(白瑾, 1986).对于高凡亚群的沉积年龄, 主要有两种认识:(1)沉积于25亿年之前, 属晚太古代(王凯怡等, 2000;沈保丰和毛德宝, 2003;Kusky and Li, 2004;Wilde et al., 2004;Kusky et al., 2007;Li and Kusky, 2007);(2)形成于古元古代(万渝生等, 2010;刘立昂, 2017).
图 3显示了高凡亚群的207Pb/206Pb锆石年龄数据统计结果.高凡亚群的碎屑锆石年龄可以分为3组:~2 700 Ma, ~2 530 Ma和~2 340 Ma(2 359±32 Ma和2 331±38 Ma), 最小的一组碎屑锆石年龄说明高凡亚群的沉积年龄≤2 340 Ma, 甚至晚于2 331±38 Ma.
高凡亚群的变质锆石年龄仅有~2 530 Ma一组, 但被认为是代表岩浆和变质事件的混合年龄(Peng et al., 2017).侵入高凡亚群的岩浆岩锆石年龄分为4组:~2 700 Ma, ~2 530 Ma, ~2 340 Ma和~2 170 Ma.其中, ~2 170 Ma的年龄为侵入岩锆石年龄, 能够有效限定高凡亚群的最小沉积年龄;前3组年龄为侵入岩的继承锆石年龄, 其峰值与碎屑锆石年龄信息相一致, 均说明高凡亚群的物质源区由3个年龄组的岩石组成.
Liu et al.(2016a)获得侵入高凡亚群底部洪寺组的长英质岩脉中LA-MC-ICP-MS锆石加权平均年龄为2 161±59 Ma, 王凯怡等(1997)从侵入高凡亚群的大洼梁花岗岩中获得了2 176±12 Ma和2 107±15 Ma的SHRIMP锆石加权平均年龄, 均说明高凡亚群的最小沉积年龄不会小于2 176±12 Ma. Du et al.(2010)从不整合于高凡亚群之上的滹沱群底部四集庄组玄武安山岩中获得了2 140±14 Ma的SHRIMP锆石加权平均年龄, 进一步支持高凡亚群沉积于2 176±12 Ma之前的认识. Peng et al.(2017)获得高凡亚群顶部变凝灰岩锆石U-Pb加权平均年龄为2 183±5 Ma, 可作为高凡亚群的最小沉积年龄, 使高凡亚群沉积时间被限定于2 183±5~2 331±38 Ma之间.
2.2 台怀亚群
台怀亚群位于五台群中部, 与下伏石咀亚群和上覆高凡亚群均为不整合接触关系, 分为上部的鸿门岩组和下部的柏枝岩组.鸿门岩组主要由绿泥钠长片岩、绿泥绢云片岩、绢云钠长片岩和绢英片岩组成, 柏枝岩组主要由变质砾岩、绿泥片岩夹磁铁石英岩组成, 两个组之间为连续沉积(白瑾, 1986).鸿门岩组火山岩的岩浆锆石207Pb/206Pb年龄呈塔式分布, 峰值年龄为~2 530 Ma, 范围为2 420~2 620 Ma(图 4).此外, 年龄最小的两件数据分别为2 382±71 Ma和2 371±67 Ma, 虽然从逻辑上更应作为火山岩形成年龄, 但它们明显偏离前述众数范围, 偶然性较大, 不宜采用.刘敦一等(1984)测得台怀亚群上部变质酸性火山岩锆石U-Pb上交点年龄为2 522±17 Ma, 与统计数据峰值接近, 似乎指示了鸿门岩组火山岩结晶年龄为~2 530 Ma.但岩浆喷发相对来说是很短暂的过程, 岩浆中的锆石大都是喷发前形成的, 用测定年龄的加权平均值作为岩浆喷发年龄, 有时会比实际年龄偏大, 应该以最年轻的锆石年龄而不是加权平均年龄作为火山岩的结晶年龄(Su et al., 2010;胡广等, 2011;宋彪, 2015).图 4中靠近年龄主体的较小的2 435±64 Ma的SHRIMP锆石年龄, 才是火山岩的喷出年龄, 即鸿门岩组的结晶年龄为2 435±64 Ma.
柏枝岩组的207Pb/206Pb锆石年龄数据统计结果如下图(图 5)所示, 锆石年龄分为2组.一组年龄为~2 700 Ma, 来自古老物质源区的碎屑锆石和继承锆石, 其中碎屑锆石年龄12个, 年龄在2 680± 30 Ma到2 729±32 Ma之间;继承锆石年龄19个, 除2 966±10 Ma和3 613±20 Ma外, 其余的继承锆石年龄在2 668±7 Ma到2 734±6 Ma之间.另一组较小的年龄为~2 530 Ma, 来自碎屑锆石和火山岩岩浆锆石.值得注意的是, 来自于柏枝岩组底部的变质砾岩给出了2 485±66 Ma的LA-MC-ICP-MS碎屑锆石年龄, 说明柏枝岩组的最大沉积年龄应小于2 485±66 Ma.柏枝岩组火山岩中岩浆锆石的年龄在2 482±27 Ma到2 577±4 Ma之间变化, 代表火山岩喷出年龄的最小锆石年龄2 482±27 Ma来自柏枝岩组下部的变安山岩, 略小于柏枝岩组的最大沉积年龄.这样, 柏枝岩组的最大沉积年龄小于2 485±66 Ma, 结合上覆鸿门岩组结晶年龄为2 435±64 Ma, 限定柏枝岩组的沉积年龄在2 435±64~2 485±66 Ma之间.
2.3 石咀亚群
石咀亚群与下伏龙泉关群和上覆台怀亚群均为不整合接触, 自上而下分为文溪组、庄旺组、金岗库组和板峪口组.文溪组主要由斜长角闪岩、黑云变粒岩夹磁铁石英岩组成;庄旺组主要由黑云变粒岩和斜长角闪岩组成;金岗库组主要由黑云变粒岩、斜长角闪岩夹磁铁石英岩组成;板峪口组主要由下部变质含砾石英岩、长石石英岩, 中部黑云变粒岩、黑云石英片岩、透闪石大理岩和上部石英岩组成, 不同组之间为连续沉积(白瑾, 1986).庄旺组锆石207Pb/206Pb年龄数据分布(图 6)与柏枝岩组相似, 分为~2 700 Ma和~2 530 Ma两组. ~2 530 Ma年龄组的锆石来自黑云母石英片岩和安山岩, 代表了庄旺组的年轻物源;~2 700 Ma的年龄来自继承锆石和碎屑锆石, 代表着庄旺组较老的物源.庄旺组中上部的黑云母石英片岩给出了2 468±61 Ma的LA-MC-ICP-MS碎屑锆石U-Pb年龄, 说明庄旺组中上部的沉积年龄不会超过2 468±61 Ma.由于已有数据有限, 尚不能精确限定该组形成的时间范围, 暂用2 468±61 Ma代表形成年龄.不过, 该年龄可将更年轻的柏枝岩组的最大沉积时间限定在2 468±61 Ma之后.
金岗库组锆石207Pb/206Pb年龄数据分布范围较宽(图 7).与庄旺组、柏枝岩组以及高凡亚群相似, 金岗库组中的碎屑锆石年龄分为~2 700 Ma和~2 530 Ma两组, 继承锆石年龄较为分散, 从2 487±5 Ma变化到2 733±4 Ma, 这两种锆石均来自古老物源区.金岗库组下部的十字石榴云英片岩碎屑锆石U-Pb年龄为2 494±29 Ma, 说明金岗库组最大沉积年龄小于2 494±29 Ma.由于金岗库组上覆地层庄旺组的形成年龄为2 468±61 Ma, 因此, 金岗库组形成于2 468±61~2 494±29 Ma之间.
金岗库组火山岩的岩浆锆石年龄峰值为~2 530 Ma, 最小岩浆锆石年龄应代表金岗库组火山岩的结晶年龄.但是, 最小的火山岩岩浆锆石年龄为2 489±111 Ma, 误差范围大.另一件较小的岩浆锆石年龄为2 499±39 Ma, 且误差范围也较小, 可以作为金岗库组火山岩结晶年龄.而且, 该年龄与金岗库组的最大沉积年龄(2 494±29 Ma)相一致, 金岗库组形成于古元古代初.
金岗库组29颗变质锆石峰值年龄为~1 930 Ma(图 7), Qian et al.(2013)获得石咀亚群石榴云母片岩变质锆石SHRIMP U-Pb年龄为1 939±14 Ma, 刘树文等(2004)测得金岗库组石榴子石斜长角闪岩的变质独居石U-Pb等时线年龄为1 922±24 Ma.以上数据说明1 930 Ma左右发生了强烈的变质事件.金岗库组被红色王家会岩体侵入, 后者SHRIMP锆石加权平均年龄在2 084± 20 Ma到2 124±19 Ma之间, 代表了层侵纪晚期的岩浆侵入作用.
3. 问题及讨论
3.1 文溪组及板峪口组的沉积年龄
由于缺乏同位素年龄数据, 文溪组和板峪口组的年龄仅可通过上下地层的年龄进行限定.文溪组与下伏庄旺组整合接触, 与上覆柏枝岩组间通过甘泉不整合分隔(白瑾, 1986).虽然有人认为文溪组和柏枝岩组为同时沉积的地层(雍永源和沈亦为, 1983;刘成如等, 2004;沈其韩等, 2011), 但缺乏文溪组的年龄证据.庄旺组中上部的黑云母石英片岩给出的2 468±61 Ma的LA-MC-ICP-MS碎屑锆石U-Pb年龄, 限定了文溪组最大沉积年龄应小于2 468±61 Ma.
五台群最下部的板峪口组尚缺乏直接同位素年龄数据.如果前人层序划分准确的话, 其沉积年龄应大于上覆金岗库组的沉积年龄(2 494± 29 Ma), 也就是说板峪口组的最小沉积年龄为2 494±29 Ma.五台群底部砂岩不整合覆盖的花岗岩锆石U-Pb加权平均年龄为2 560±6 Ma(刘敦一等, 1984), 可以限定板峪口组的最大沉积年龄应小于2 560±6 Ma, 即板峪口组沉积年龄可能为2 494±29~2 560±6 Ma. Sun et al.(2019)最新研究表明, 五台花岗绿岩地体多数花岗岩类的锆石U-Pb年龄介于2 521±12~2 562±24 Ma之间, 说明板峪口组沉积年龄为2 494±29~2 521±12 Ma.
3.2 绿岩带与花岗岩类之间的关系
五台花岗-绿岩地体的花岗岩类分布广泛, 主要包括东部的石佛岩体、光明寺岩体, 东南部的兰芝山岩体, 西部的峨口岩体、王家会岩体、大洼梁岩体以及东北部的车厂-北台岩体(白瑾, 1986;武铁山, 1993).花岗岩类与五台群之间的接触关系长期争议.部分学者认为花岗岩类侵入到五台群之中, 两者之间为侵入接触(赵宗溥, 1954;白瑾, 1986;田永清, 1991a;续世朝, 2014);还有部分学者认为花岗岩类不整合于五台群之下, 两者之间为不整合接触(马杏垣等, 1957;李江海等, 2006, 2009).
围岩为石咀亚群的红色王家会岩体的SHRIMP锆石加权平均年龄在2 084±20 Ma到2 124±19 Ma之间(Wilde et al., 2005), 围岩为高凡亚群的大洼梁岩体的SHRIMP锆石加权平均年龄在2 107±15 Ma到2 176±12 Ma之间(王凯怡等, 1997), 均明显小于高凡亚群的沉积年龄, 说明这些花岗岩类是在高凡亚群沉积之后侵入到五台群之中的.
五台地体多数花岗质岩体SHRIMP锆石加权平均年龄落入新太古代(王凯怡等, 1997;Wilde et al., 2005), 年龄大于五台群地层(绿岩带).例如, 灰色王家会岩体2 517±12 Ma到2 520±9 Ma, 石佛岩体2 531±4 Ma, 兰芝山岩体2 537±10 Ma到2 553±8 Ma, 光明寺岩体2 521±12 Ma到2 531±5 Ma, 峨口岩体2 555±6 Ma到2 566±13 Ma, 车厂-北台岩体2 537±20 Ma到2 552±11 Ma, 都大于金岗库组(2 468~2 494 Ma)以及板峪口组(2 494~2 520 Ma).而且, 这些锆石U-Pb年龄为2 560~2 520 Ma的岩体, 其εHf(t)介于4.7~8.3(Sun et al., 2019), 具有增生型岛弧或洋弧花岗岩类的特征, 构成地体中最初始的地壳成分.如此可以确定, 以灰色王家会岩体、石佛岩体、峨口岩体、车厂-北台岩体为代表的部分花岗质岩体不整合于五台群之下.五台花岗-绿岩地体属于始陆型或C型(陈衍景和富士谷, 1992;胡受奚等, 1997, 1998), 绿岩带总体不整合在花岗质基底之上.
3.3 陆壳生长事件
早期陆壳的性质、成因及演化过程是地学界关注的热点问题(马超等, 2019).
2.7 Ga左右发生了全球性构造事件, 大量地壳快速形成(Condie, 2000;Condie et al., 2009;Condie and Aster, 2010).相对而言, 华北克拉通构造热事件和陆壳增生在2.5Ga左右更显著(李江海等, 2004;刘敦一等, 2007;万渝生等, 2012), 这也是华北克拉通特殊性所在(Liu et al., 2009;Diwu et al., 2011).近年研究表明, 华北克拉通经历了~2.7 Ga大规模陆壳生长, 在~2.5 Ga又发生陆壳物质再造, 使~2.7 Ga构造热事件被掩盖(第五春荣等, 2012;万渝生等, 2012;翟明国等, 2018).本文通过收集分析五台花岗绿岩地体锆石年龄数据发现, 高凡亚群、柏枝岩组、庄旺组、金岗库组均保留了~2.7 Ga和~2.5 Ga的碎屑锆石或岩浆锆石的年龄峰值记录, 清楚地显示了两期地壳生长的事实.
~2.7 Ga和~2.5 Ga两期大规模地壳生长事件是探讨地壳生长方式和壳幔动力学机制转变的关键地区(王伟等, 2015).有关华北克拉通新太古代晚期(2.52~2.56 Ga)地壳生长存在两种看法:一是地幔柱或板底垫托作用导致了新太古代晚期陆壳生长(Zhao et al., 1998;Geng et al., 2006);二是岛弧岩浆作用模式, 认为板块构造是陆壳生长的主要方式(牛向龙和李江海, 2005;Wilde et al., 2005).
张健等(2004)、王月然等(2005)和刘树文等(2002)通过对五台地区花岗质岩体的微量元素地球化学特征及Sm-Nd同位素研究认为, 五台山晚太古代花岗质岩体形成于岛弧环境, 来源于弧下玄武质初生地壳的部分熔融.本文通过锆石年龄统计分析, 认为绿岩带之下存在花岗质陆壳基底, 属于C型花岗绿岩地体, 具有花岗岩类→绿岩的构造演化形式;早期形成的原始固体表壳(第一次绿岩)经历破坏和硅铝化改造形成了花岗质基底(Chen et al., 1998;陈衍景和富士谷, 1992).花岗岩类显示了岛弧成因(王伟等, 2015), 表明新太古代末期地壳生长主要受洋内俯冲和弧-陆增生作用控制.
4. 结论
根据锆石年龄判断, 高凡亚群沉积于2 183±5~2 331±38 Ma, 属于古元古代层侵纪.台怀亚群形成于2 435±64~2 468±61 Ma, 属古元古代成铁纪.石咀亚群庄旺组形成于2 468±61 Ma左右, 金岗库组形成于2 468±61~2 494±29 Ma, 属元古宙初期.
五台花岗绿岩地体的五台群与花岗岩类之间存在两种接触关系, 一是以红色王家会岩体、大洼梁花岗岩为代表的部分岩体侵入到五台群之中, 二是以灰色王家会岩体、石佛岩体、峨口岩体、车厂-北台岩体为代表的部分岩体构成了五台群绿岩之下的花岗质基底, 与五台群之间可能为不整合接触.
华北克拉通经历了~2.7 Ga和~2.5 Ga两期地壳生长, 新太古代末期(2.52~2.56 Ga)的地壳生长表明俯冲作用在地壳生长和演化中起了重要作用.
致谢:论文写作过程中, 得到了疏孙平、乔雪园、张博、李凯月、齐楠、阿卜力米提、许晨、韩申、黄柏诚等同学的帮助, 在此表示感谢.两位匿名审稿人提供了宝贵意见和建议, 对论文质量提高起了重要作用, 深表谢意!
附表见本刊官网(http://www.earth-science.net).
-
图 3 高凡亚群样品及其侵入岩的锆石207Pb/206Pb年龄频数直方图
数据引自Wilde et al.(2004);Liu et al.(2016a);Peng et al.(2017)
Fig. 3. Zircon 207Pb/206Pb age histogram of the Gaofan Subgroup and its intrusive rocks
图 4 鸿门岩组样品的207Pb/206Pb锆石年龄频数直方图
数据引自Sun et al.(2019);Wilde et al.(2004)
Fig. 4. Zircon 207Pb/206Pb age histogram of the Hongmenyan Formation
图 5 柏枝岩组样品锆石207Pb/206Pb年龄直方图
数据引自Wilde et al.(2004);Liu et al.(2016a, 2016b)
Fig. 5. Zircon 207Pb/206Pb age histogram of the Baizhiyan Formation
图 6 庄旺组样品锆石207Pb/206Pb年龄直方图
数据引自Wilde et al.(2004);Liu et al.(2016a)
Fig. 6. Zircon 207Pb/206Pb age histogram of the Zhuangwang Formation
图 7 金岗库组样品及其侵入岩锆石207Pb/206Pb年龄直方图
数据来源:Wang et al.(2014);陈雪等(2015);Liu et al.(2016a);赵娜等(2019)
Fig. 7. Zircon 207Pb/206Pb age histogram of the Jin'gangku Formation and its intrusive rocks
-
[1] Bai, J., 1986. The Early Precambrian Geology of Wutaishan. Tianjin Science and Technology Press, Tianjin, 1-475 (in Chinese). [2] Bai, J., Wang, R.Z., Guo, J.J., 1992. The Major Geological Events of Early Precambrian and Their Dating in Wutaishan Region. Geological Publishing House, Beijing, 1-63 (in Chinese). [3] Chen, W.Y., Chen, Y.J., 2018. Records of the Great Oxidation Event in the Hutuo Group, Shanxi, China: A Reassessment of the δ13Ccarb Data. Acta Petrologica Sinica, 34(12): 3709-3720 (in Chinese with English abstract). http://www.researchgate.net/publication/343833469_Records_of_the_Great_Oxidation_Event_in_the_Hutuo_Group_Shanxi_China_a_reassessment_of_the_delta13Ccarb_data [4] Chen, W.Y., Chen, Y.J., Li, Q.G., et al., 2018. Detrital Zircon U-Pb Ages of the Sijizhuang Glacial Diamictites of the Hutuo Group in Wutai Shan, Shanxi Province and Implication for Great Oxidation Event. Earth Science Frontiers, 25(5): 1-18 (in Chinese with English abstract). [5] Chen, X., Chen, Y.L., Li, D.P., et al., 2015. LA-ICP-MS Zircon U-Pb and Hf Isotopic Studies of the Wutai Groupand Their Geological Significance. Geological Bulletin of China, 34(5): 861-876 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S1342937X14000392 [6] Chen, Y.J., 1990. Evidences for the Catastrophe in Geologic Environment at about 2 300 Ma and the Discussions on Several Problems. Journal of Stratigraphy, 14(3):178-186 (in Chinese with English abstract). http://www.researchgate.net/publication/274673183_Evidences_for_the_catastrophe_in_geologic_environment_at_about_2300Ma_and_the_discussions_on_several_problems [7] Chen, Y.J., Fu, S.G., 1992. Mineralization of Gold Deposits in West Henan. China Seismological Press, Beijing, 1-234 (in Chinese). [8] Chen, Y. J., Guo, G. J., Li, X., 1998. Metallogenic Geodynamic Background of Mesozoic Gold Deposits in Granite-Greenstone Terrains of North China Craton. Science in China Series D: Earth Sciences, 41(2): 113-120. https://doi.org/10.1007/bf02932429 [9] Chen, Y. J., Chen, W. Y., Li, Q. G., et al., 2019. Discovery of the Huronian Glaciation Event in China: Evidence from Glacigenic Diamictites in the Hutuo Group in Wutai Shan. Precambrian Research, 320: 1-12. https://doi.org/10.1016/j.precamres.2018.10.009 [10] Condie, K. C., 2000. Episodic Continental Growth Models: Afterthoughts and Extensions. Tectonophysics, 322(1/2): 153-162. https://doi.org/10.1016/s0040-1951(00)00061-5 [11] Condie, K. C., Aster, R. C., 2010. Episodic Zircon Age Spectra of Orogenic Granitoids: The Supercontinent Connection and Continental Growth. Precambrian Research, 180(3/4): 227-236. https://doi.org/10.1016/j.precamres.2010.03.008 [12] Condie, K. C., Belousova, E., Griffin, W. L., et al., 2009. Granitoid Events in Space and Time: Constraints from Igneous and Detrital Zircon Age Spectra. Gondwana Research, 15(3/4): 228-242. https://doi.org/10.1016/j.gr.2008.06.001 [13] Diwu, C. R., Sun, Y., Guo, A. L., et al., 2011. Crustal Growth in the North China Craton at ~2.5 Ga: Evidence from in Situ Zircon U-Pb Ages, Hf Isotopes and Whole-Rock Geochemistry of the Dengfeng Complex. Gondwana Research, 20(1): 149-170. https://doi.org/10.1016/j.gr.2011.01.011 [14] Diwu, C.R., Sun, Y., Wang, Q., 2012. The Crustal Growth and Evolution of North China Craton: Revealed by Hf Isotopes inDetrital Zircons from Modern Rivers. Acta Petrologica Sinica, 28(11): 3520-3530 (in Chinese with English abstract). http://www.oalib.com/paper/1475681 [15] Du, L. L., Yang, C. H., Guo, J. H., et al., 2010. The Age of the Base of the Paleoproterozoic Hutuo Group in the Wutai Mountains Area, North China Craton: SHRIMP Zircon U-Pb Dating of Basaltic Andesite. Chinese Science Bulletin, 55(17): 1782-1789. https://doi.org/10.1007/s11434-009-3611-8 [16] Du, L.L., Yang, C.H., Wang, W., et al., 2011. The Re-examination of the Age andStratigraphic Subdivision of the Hutuo Group in the Wutai Mountains Area, North China Craton: Evidences from Geology and Zircon U-Pb Geochronology. Acta Petrologica Sinica, 27(4): 1037-1055 (in Chinese with English abstract). http://www.oalib.com/paper/1475349 [17] Geng, Y. S., Liu, F. L., Yang, C. H., 2006. Magmatic Event at the End of the Archean in Eastern Hebei Province and Its Geological Implication. Acta Geologica Sinica - English Edition, 80(6): 819-833. https://doi.org/10.1111/j.1755-6724.2006.tb00305.x [18] Geological Survey Team of Shanxi Province, 1976. Regional Geological Survey Report of Pingxingguan Geological Map of 1/200, 000. Geological Survey Team of Shanxi Province Taiyuan (in Chinese). [19] Hu, G., Hu, W.X., Cao, J., et al., 2011. The Zircon U-Pb Dating of the Lower Cretaceous Bantou Formation in Western Fujian and Stratigraphic Correlation. Advances in Earth Science, 26(9): 933-943 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXJZ201109006.htm [20] Hu, S.X., Zhao, Y.Y, Xu, J.F., et al., 1997. Gold Mineralization in North China Platform: Taking South, East and Northeast Margins as Examples to Discuss the Gold Mineralization Regularity. Science Press, Beijing, 1-220 (in Chinese). [21] Hu, S.X., Wang, H.N., Wang, D.Z., et al., 1998. Geology and Geochemistry of Gold Deposits in East China. Science Press, Beijing, 1-343 (in Chinese). [22] Kusky, T. M., Li, J. H., 2004. Paleoproterozoic Tectonic Evolution of the North China Craton. Journal of Asian Earth Sciences, 22(4): 383-397. https:// doi.org/10.1016/s1367-9120(03)00071-3 http://www.sciencedirect.com/science/article/pii/S1367912003000713 [23] Kusky, T., Li, J. H., Santosh, M., 2007. The Paleoproterozoic North Hebei Orogen: North China Craton's Collisional Suture with the Columbia Supercontinent. Gondwana Research, 12(1/2): 4-28. https://doi.org/10.1016/j.gr.2006.11.012 [24] Li, J. H., Kusky, T., 2007. A Late Archean Foreland Fold and Thrust Belt in the North China Craton: Implications for Early Collisional Tectonics. Gondwana Research, 12(1-2): 47-66. https://doi.org/10.1016/j.gr.2006.10.020 [25] Li, J.H., Liu, S.J., Niu, X.L., et al., 2009. Tectonic Pattern of Early Precambrian Collisional Belt and Its Plate Tectonic Implication: A Case Study of Wutaishan Granite-Greenstone Belt, North China Craton. Acta Petrologica Sinica, 25(3): 481-494 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200903002.htm [26] Li, J.H., Niu, X.L., Kusky, T., et al., 2004. Neoarchean Plate TectonicEvolution of North China and Its Correlation with Global Cratonic Blocks. Earth Science Frontiers, 11(3): 273-283 (in Chinese with English abstract). http://www.researchgate.net/publication/292125653_Neoarchean_plate_tectonic_evolution_of_North_China_and_its_correlation_with_global_cratonic_blocks [27] Li, J.H., Niu, X.L., Qian, X.L., et al., 2006. Division of Archean/Proterozoic Boundary and Its Implication for Geological Evolution in Wutaimountain Area, North China. Geotectonica et Metallogenia, 30(4): 409-418 (in Chinese with English abstract). http://www.researchgate.net/publication/281414465_Division_of_ArcheanProterozoic_boundary_and_its_implication_for_geological_evolution_in_Wutai_Mountain_area_North_China [28] Liu, C. H., Liu, F. L., Shi, J. R., et al., 2016a. Depositional Age and Provenance of the Wutai Group: Evidence from Zircon U-Pb and Lu-Hf Isotopes and Whole-Rock Geochemistry. Precambrian Research, 281: 269-290. https://doi.org/10.1016/j.precamres.2016.06.002 [29] Liu, C. H., Zhao, G. C., Liu, F. L., et al., 2016b. Constraints of Volcanic Rocks of the Wutai Complex (Shanxi Province, Northern China) on a Giant Late Neoarchean Intra-Oceanic Arc System in the Trans-North China Orogen. Journal of Asian Earth Sciences, 123: 178-212. https://doi.org/10.1016/j.jseaes.2016.04.006 [30] Liu, C.R., Sun, Z.L., Pan, Y.S., 2004. My Views on Related Geological Problems in Fuping and Wutai Mountain Area. Huabei Land and Resources, 1: 29-32 (in Chinese). [31] Liu, D.Y., Page, R.W., Compston, W., et al., 1984. U-Pb Zircon Geochronology of Precambrian Metamorphic Rocks in the Taihangshan-Wutaishan Area, North China. Bulletin of The Chinese Academy of Geological Sciences, No.8: 57-84 (in Chinese with English abstract). [32] Liu, D.Y., Wan, Y.S., Wu, J.S., 2007. Archean Crustal Evolution and the Oldest Rocks in the North China Craton. Geological Bulletin of China, 26(9):1131-1138 (in Chinese with English abstract). http://www.researchgate.net/publication/279618237_Archean_crustal_evolution_and_the_oldest_rocks_in_the_North_China_craton [33] Liu, F., Guo, J. H., Lu, X. P., et al., 2009. Crustal Growth at ∼2.5 Ga in the North China Craton: Evidence from Whole-Rock Nd and Zircon Hf Isotopes in the Huai'an Gneiss Terrane. Science Bulletin, 54(24): 4704-4713. https://doi.org/10.1007/s11434-009-0288-y [34] Liu, L.A., 2017. A New Understanding of Early Precambrian Stratigraphic Division and Correlation in the Wutaishan-Zhongtiaoshan Area. Huabei Land and Resources, 3: 57-58, 61 (in Chinese). [35] Liu, S.W., Li, J.H., Pan, Y.M., et al, 2002. Taihangshan-Hengshan Archean Ancient Landmass: Chronology and Geochemical Constraints. Progress in Natural Science, 12(8):826-833 (in Chinese). [36] Liu, S.W., Shu, G.M., Pan, Y.M., et al., 2004. Electron-Microprobe Dating of Monazite and Metamorphic Ageof Wutai Group, Wutai Mountains. Geological Journal of China Universities, 10(3): 356-363 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX200403005.htm [37] Ma, C., Tang, Y.J., Ying, J.F., 2019. Magmatism in Subduction Zones and Growth of Continental Crust. Earth Science, 44(4): 1128-1142 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201904006.htm [38] Ma, X.Y., Bai, J., Suo, S.T., et al., 1987. Precambrian Tectonic Framework in China and Its Research Methods. Geological Publishing House, Beijing, 1-131 (in Chinese). [39] Ma, X.Y., Jiang, Y.C., Wei, B.H., et al., 1957. Tectonic Features of Wutaishan Area, Shanxi Province, China. Geological Publishing House, Beijing, 1-75 (in Chinese). [40] Niu, X.L., Li, J.H., 2005. Geochronology and Geological Event Sequences of Hengshan-Wutai Precambrian Complex. Acta Geoscientica Sinca, 26: 115-117 (in Chinese with English abstract). http://www.researchgate.net/publication/285762558_Geochronology_and_geological_event_sequences_of_Hengshan-Wutai_Precambrian_complex [41] Peng, P., Feng, L. J., Sun, F. B., et al., 2017. Dating the Gaofan and Hutuo Groups - Targets to Investigate the Paleoproterozoic Great Oxidation Event in North China. Journal of Asian Earth Sciences, 138: 535-547. https://doi.org/10.1016/j.jseaes.2017.03.001 [42] Qian, J. H., Wei, C. J., Zhou, X. W., et al., 2013. Metamorphic P-T Paths and New Zircon U-Pb Age Data for Garnet-mica Schist from the Wutai Group, North China Craton. Precambrian Research, 233: 282-296. https://doi.org/10.1016/j.precamres.2013.05.012 [43] Shen, B.F., Luo, H., Mao, D.B., et al., 1998. Geology of Gold Deposits in Wutaishan-Hengshan Greenstone Belt. Geological Publishing House, Beijing, 1-180 (in Chinese). [44] Shen, B.F., Mao, D.B., 2003. On Wutai Group Geochronology. Geological Survey and Research, 26(2): 72-79 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-QHWJ200302001.htm [45] Shen, Q.H., Lu, Z.B., Chen, R.H., 1959. New Data of Absolute Age Determination of Wutai Strata over Fansi Red Rock in Shanxi Province. Geological Review, 19(6): 279 (in Chinese). [46] Shen, Q.H., Song, H.X., Yang, C.H., et al., 2011. Petrochemical Characteristics and Geological Significance of Banded Iron Ore in Wutaishan, Shanxi Province and Qian'an Area of East Hebei Province. Acta Petrologica et Mineralogica, 30(2): 161-171 (in Chinese with English abstract). [47] Song, B., 2015. A Method for Determining the Zircon U-Pb Ages by SHRIMP. Geological Bulletin of China, 34(10): 5-16 (in Chinese with English abstract). [48] Su, Y. P., Zheng, J. P., Griffin, W. L., et al., 2010. Zircon U-Pb and Hf Isotopes of Volcanic Rocks from the Batamayineishan Formation in the Eastern Junggar Basin. Chinese Science Bulletin, 55(36): 4150-4161. https://doi.org/10.1007/s11434-010-4151-y [49] Sun, D., Li, Q. G., Liu, S. W., et al., 2019. Neoarchean-Paleoproterozoic Magmatic Arc Evolution in the Wutai-Hengshan-Fuping Area, North China Craton: New Perspectives from Zircon U-Pb Ages and Hf Isotopic Data. Precambrian Research, 331: 105368. https://doi.org/10.1016/j.precamres.2019.105368 [50] Tian, Y.Q., 1991a. Wutaishan-Hengshan Mt. Greenstone Belt Geology and Gold Metallogenesis. Shanxi Science and Technology Publishing House, Taiyuan, 1-244 (in Chinese). [51] Tian, Y.Q., 1991b. New Advances and Trends in Researches of Wutai Group, Shanxi. Shanxi Geology, 6(1): 93-100 (in Chinese with English abstract). [52] Wan, Y. S., Miao, P. S., Liu, D. Y., et al., 2010. Formation Ages and Source Regions of the Palaeoproterozoic Gaofan, Hutuo and Dongjiao Groups in the Wutai and Dongjiao Areas of the North China Craton from SHRIMP U-Pb Dating of Detrital Zircons: Resolution of Debates over Their Stratigraphic Relationships. Chinese Science Bulletin, 55(13): 1278-1284. https://doi.org/10.1007/s11434-009-0615-3 [53] Wan, Y.S., Dong, C.Y., Hu, H.Q., et al., 2012. Formation Ages of Early Precambrian BIFs in the North China Craton: SHRIMP Zircon U-Pb Dating. Acta Geologica Sinica, 86(9):1447-1478 (in Chinese with English abstract). http://www.researchgate.net/publication/284059161_Formation_ages_of_early_Precambrian_BIFs_in_the_North_China_Craton_SHRIMP_zircon_U-Pb_dating [54] Wang, C. L., Zhang, L. C., Lan, C. Y., et al., 2014. Petrology and Geochemistry of the Wangjiazhuang Banded Iron Formation and Associated Supracrustal Rocks from the Wutai Greenstone Belt in the North China Craton: Implications for their Origin and Tectonic Setting. Precambrian Research, 255: 603-626. https://doi.org/10.1016/j.precamres.2014.08.002 [55] Wang, K.Y., Hao, J., Wilde, S.A., et al., 2000. Reconsideration of Some Key Geological Problems of Late Archaean-Early Proterozoic in The Wutaishan-Hengshan Area: Constraints from SHRIMP U-Pb Zircon Data. Scientia Geologica Sinica, 35(2): 175-184 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKX200002005.htm [56] Wang, K.Y., Hao, J., Zhou, S.P., et al., 1997. Constraints of Dating of Single Zircon Ion Probe Mass Spectrometry on Wutai Orogenic Event. Chinese Science Bulletin, 42(12): 1295-1298 (in Chinese). doi: 10.1360/csb1997-42-12-1295 [57] Wang, W., Liu, S.W., Bai, X., et al., 2015. Precambrian Geodynamics (Ⅷ): Late Archean Crustal Growth Models Recorded in the North China Craton. Earth Science Frontiers, 22(6): 109-124 (in Chinese with English abstract). http://www.researchgate.net/profile/Shuwen_Liu2/publication/287251573_Precambrian_geodynamics_VIII_Late_Archean_crustal_growth_models_recorded_in_the_North_China_Craton/links/56de3b3908ae46f1e99f9b62/Precambrian-geodynamics-VIII-Late-Archean-crustal-growth-models-recorded-in-the-North-China-Craton.pdf [58] Wang, Y.L., et al., 1952. New Insights into the Wutai Group in Wutai Mountain. Acta Geologica Sinica, 32(4): 325-353 (in Chinese). [59] Wang, Y.R., Liu, S.W., Li, Q.G., et al., 2005. Late Paleoproterozoic Geodynamic Setting in Wutai Mountains: Constraints from Geochemistry of Wangjiahui Granitoids. Acta Scientiarum Naturalium Universitatis Pekinensis, 41(6): 840-850 (in Chinese with English abstract). http://www.researchgate.net/publication/285797656_Late_paleoproterozoic_geodynamic_setting_in_Wutai_mountains_constraints_from_geochemistry_of_Wangjiahui_granitoids [60] Wei, C.J., 2018. Paleoproterozoic Metamorphism and Tectonic Evolutionin Wutai-Hengshan Region, Trans-North China Orogen. Earth Science, 43(1): 24-43 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201801003.htm [61] Wilde, S. A., Cawood, P. A., Wang, K. Y., et al., 2004. Determining Precambrian Crustal Evolution in China: A Case-Study from Wutaishan, Shanxi Province, Demonstrating the Application of Precise SHRIMP U-Pb Geochronology. Geological Society, London, Special Publications, 226(1): 5-25. https://doi.org/10.1144/gsl.sp.2004.226.01.02 [62] Wilde, S.A., Cawood, P.A., Wang, K.Y., et al., 2005. Granitoid Evolution in the Late Archean Wutai Complex, North China Craton. Journal of Asian Earth Sciences, 24(5): 597-613. https://doi.org/10.1016/j.jseaes.2003.11.006 [63] Wu, T.S., 1993. A Preliminary Discussion on Granite Types and Their Spectrum Unit Classification in Wutaishan Archean Granite-Greenstone Belt. Shanxi Geology, 8(3): 282-290 (in Chinese with English abstract). [64] Xu, C.L., Xu, Y.H., Fan, S.K., et al., 1991. The Lower and Upper Age Limits of the Wutai Group-A Disscussion. Geochimica, 4: 321-330 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX199104001.htm [65] Xu, S.Z., 2014. Tectonic Rock Stratigraphic Division of the Wutai Group in Hengshan-Wutaishan Area. Huabei Land and Resources, 5: 60-63 (in Chinese). [66] Yong, Y.Y., Shen, Y.W., 1983. New Recognition on theStratigraphy and Structure of the Wutai Group in the Wutai Mountains Area. Regional Geology of China, 5: 112-122 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD198303010.htm [67] Zhai, M.G., 2008. Lower Crust and Lithospheric Mantle Beneath the North China Craton before the Mesozoic Lithospheric Disruption. Acta Petrologica Sinica, 24(10): 2185-2204 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200810001.htm [68] Zhai, M.G., Zhang, L.C., Chen, B., et al., 2018. Precambrian Geological Events and Mineralization in North China Craton. Science Press, Beijing, 1-177 (in Chinese). [69] Zhang, J., Liu, S.W., Pan, Y.M., et al., 2004. Petrogenesis of Neoarchean Wutaishan Granitoids and Its Geodynamic Significances. Acta Scientiarum Naturalium Universitatis Pekinensis, 40(2): 216-227 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-BJDZ200402008.htm [70] Zhao, G. C., Wilde, S. A., Cawood, P. A., et al., 1998. Thermal Evolution of Archean Basement Rocks from the Eastern Part of the North China Craton and its Bearing on Tectonic Setting. International Geology Review, 40(8): 706-721. https://doi.org/10.1080/00206819809465233 [71] Zhao, N., Wang, Z.M., Wang, H., et al., 2019. Mineralization of Jingangku Deposit in Wutai, North Shanxi Province. Chinese Journal of Geology, 54(2): 608-641 (in Chinese with English abstract). http://www.researchgate.net/publication/333043250_Mineralization_of_Jingangku_deposit_in_Wutai_North_Shanxi_Province [72] Zhao, Z.P., 1954. Precambrian Stratigraphy in China. Acta Geologica Sinica, 34(2): 169-195+216 (in Chinese). [73] 白瑾, 1986.五台山早前寒武纪地质.天津:天津科学技术出版社, 1-475. [74] 白瑾, 王汝铮, 郭进京, 1992.五台山早前寒武纪重大地质事件及其年代.北京:地质出版社, 1-63. [75] 陈威宇, 陈衍景, 2018.大氧化事件在山西滹沱群中的记录:碳酸盐岩碳同位素资料分析.岩石学报, 34(12): 3709-3720. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201812017.htm [76] 陈威宇, 陈衍景, 李秋根, 等, 2018.山西五台山滹沱群四集庄冰碛岩碎屑锆石年龄及其对大氧化事件研究意义.地学前缘, 25(5):1-18. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201805002.htm [77] 陈雪, 陈岳龙, 李大鹏, 等, 2015.华北克拉通五台群LA-ICP-MS锆石U-Pb年龄和Hf同位素特征.地质通报, 34(5):861-876. doi: 10.3969/j.issn.1671-2552.2015.05.006 [78] 陈衍景, 1990. 23亿年地质环境突变的证据及若干问题的讨论.地层学杂志, 14(3):178-186. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ199003001.htm [79] 陈衍景, 富士谷, 1992.豫西金矿成矿规律.北京:地震出版社, 1-234. [80] 第五春荣, 孙勇, 王倩, 2012.华北克拉通地壳生长和演化:来自现代河流碎屑锆石Hf同位素组成的启示.岩石学报, 28(11):3520-3530. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201211009.htm [81] 杜利林, 杨崇辉, 王伟, 等, 2011.五台地区滹沱群时代与地层划分新认识:地质学与锆石年代学证据.岩石学报, 27(4):1037-1055. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201104015.htm [82] 胡广, 胡文瑄, 曹剑, 等, 2011.闽西下白垩统坂头组锆石U-Pb年龄及地层对比.地球科学进展, 26(9):933-943. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201109006.htm [83] 胡受奚, 赵懿英, 徐金方, 等, 1997.华北地台金成矿地质.北京:科学出版社, 1-220. [84] 胡受奚, 王鹤年, 王德滋, 等, 1998.中国东部金矿床地质学及地球化学.北京:科学出版社, 1-343. [85] 李江海, 刘守偈, 牛向龙, 等, 2009.早期碰撞造山带的构造样式及其板块构造演化意义:以华北克拉通五台山花岗岩—绿岩区为例.岩石学报, 25(3):481-494. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200903002.htm [86] 李江海, 牛向龙, 钱祥麟, 等, 2006.五台山区太古宙/元古宙界线划分及其地球演化意义.大地构造与成矿学, 30(4):409-418. doi: 10.3969/j.issn.1001-1552.2006.04.001 [87] 李江海, 牛向龙, Kusky, T., 等, 2004.从全球对比探讨华北克拉通早期地质演化与板块构造过程.地学前缘, 11(3):273-283. doi: 10.3321/j.issn:1005-2321.2004.03.026 [88] 刘成如, 孙占亮, 潘永胜, 2004.阜平、五台山地区有关地质问题之我见.华北国土资源, 1:29-32. https://www.cnki.com.cn/Article/CJFDTOTAL-HBGT200401010.htm [89] 刘敦一, Page, R.W., Compston, W., 等, 1984.太行山-五台山区前寒武纪变质岩系同位素地质年代学研究.中国地质科学院院报, 第8号: 57-84. [90] 刘敦一, 万渝生, 伍家善, 等, 2007.华北克拉通太古宙地壳演化和最古老的岩石.地质通报, 26(9):1131-1138. doi: 10.3969/j.issn.1671-2552.2007.09.015 [91] 刘立昂, 2017.五台山-中条山区早前寒武纪地层划分对比新认识.华北国土资源, 3:57-58+61. https://www.cnki.com.cn/Article/CJFDTOTAL-HBGT201703028.htm [92] 刘树文, 李江海, 潘元明, 等, 2002.太行山-恒山太古代古老陆块:年代学和地球化学制约.自然科学进展, 12(8):826-833. doi: 10.3321/j.issn:1002-008X.2002.08.008 [93] 刘树文, 舒桂明, 潘元明, 等, 2004.电子探针独居石定年法及五台群的变质时代.高校地质学报, 10(3):356-363. doi: 10.3969/j.issn.1006-7493.2004.03.006 [94] 马超, 汤艳杰, 英基丰, 2019.俯冲带岩浆作用与大陆地壳生长.地球科学, 44(4):1128-1142. doi: 10.3799/dqkx.2019.026 [95] 马杏垣, 白瑾, 索书田, 等, 1987.中国前寒武纪构造格架及研究方法.北京:地质出版社, 1-131. [96] 马杏垣, 蒋荫昌, 尉葆衡, 等, 1957.五台山区地质构造基本特征.北京:地质出版社, 1-75. [97] 牛向龙, 李江海, 2005.恒山—五台地区同位素年代学与地质事件演化系列的建立.地球学报, 26:115-117. doi: 10.3321/j.issn:1006-3021.2005.z1.039 [98] 山西省区测队, 1976.1/20万平型关幅地质图区域地质调查报告.太原: 山西省区测队. [99] 沈保丰, 骆辉, 毛德宝, 等, 1998.五台山-恒山绿岩带金矿床地质.北京:地质出版社, 1-180. [100] 沈保丰, 毛德宝, 2003.论五台群的地质时代.地质调查与研究, 26(2):72-79. doi: 10.3969/j.issn.1672-4135.2003.02.002 [101] 沈其韩, 陆宗斌, 陈荣辉, 1959.山西繁峙红岩上一带五台系地层的绝对年龄测定新资料.地质论评, 19(6):279. doi: 10.3321/j.issn:0371-5736.1959.06.015 [102] 沈其韩, 宋会侠, 杨崇辉, 等, 2011.山西五台山和冀东迁安地区条带状铁矿的岩石化学特征及其地质意义.岩石矿物学杂志, 30(2):161-171. doi: 10.3969/j.issn.1000-6524.2011.02.001 [103] 宋彪, 2015.用SHRIMP测定锆石U-Pb年龄的工作方法.地质通报, 34 (10):5-16. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201510001.htm [104] 田永清, 1991a.五台山-恒山绿岩带地质及金的成矿作用.太原:山西科学技术出版社, 1-244. [105] 田永清, 1991b.五台山五台群研究的新进展和动向.山西地质, 6(1):93-100. [106] 万渝生, 苗培森, 刘敦一, 等, 2010.华北克拉通高凡群、滹沱群和东焦群的形成时代和物质来源:碎屑锆石SHRIMP U-Pb同位素年代学制约.科学通报, 55(7):572-578. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201007007.htm [107] 万渝生, 董春艳, 胡颃强, 等, 2012.华北克拉通早前寒武纪条带状铁建造形成时代SHRIMP锆石U-Pb定年.地质学报, 86(9):1447-1478. doi: 10.3969/j.issn.0001-5717.2012.09.008 [108] 王凯怡, 郝杰, Wilde, S.A., 等, 2000.山西五台山-恒山地区晚太古-早元古代若干关键地质问题的再认识:单颗粒锆石离子探针质谱年龄提出的地质制约.地质科学, 35(2):175-184. doi: 10.3321/j.issn:0563-5020.2000.02.006 [109] 王凯怡, 郝杰, 周少平, 等, 1997.单颗粒锆石离子探针质谱定年结果对五台造山事件的制约.科学通报, 42(12):1295-1298. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199712016.htm [110] 王伟, 刘树文, 白翔, 等, 2015.前寒武纪地球动力学(Ⅷ):华北克拉通太古宙末期地壳生长方式.地学前缘, 22(6):109-124. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201506010.htm [111] 王曰伦, 等, 1952.五台山五台纪地层的新见.地质学报, 32(4):325-353. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE195204004.htm [112] 王月然, 刘树文, 李秋根, 等, 2005.五台山古元古代晚期的动力学背景:王家会花岗岩地球化学的制约.北京大学学报(自然科学版), 41(6):840-850. doi: 10.3321/j.issn:0479-8023.2005.06.003 [113] 魏春景, 2018.华北中部造山带五台-恒山地区古元古代变质作用与构造演化.地球科学, 43(1):24-43. doi: 10.3969/j.issn.1672-6561.2018.01.005 [114] 武铁山, 1993.五台山太古代花岗-绿岩带中花岗岩的类型及谱系单元划分.山西地质, 8(3):282-290. [115] 徐朝雷, 徐有华, 范嗣昆, 等, 1991.关于五台群上、下限年龄的讨论.地球化学, 4:321-330. doi: 10.3321/j.issn:0379-1726.1991.04.002 [116] 续世朝, 2014.论恒山-五台山区五台岩群构造岩石地层划分.华北国土资源, 5:60-63. https://www.cnki.com.cn/Article/CJFDTOTAL-HBGT201405032.htm [117] 雍永源, 沈亦为, 1983.五台山区五台群层序及构造的新认识.中国区域地质, 5:112-122. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD198303010.htm [118] 翟明国, 2008.华北克拉通中生代破坏前的岩石圈地幔与下地壳.岩石学报, 24(10):2185-2204. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200810001.htm [119] 翟明国, 张连昌, 陈斌, 等, 2018.华北克拉通前寒武纪重大地质事件与成矿.北京:科学出版社, 1-177. [120] 张健, 刘树文, 潘元明, 等, 2004.五台山晚太古代花岗岩的成因及其动力学意义.北京大学学报(自然科学版), 40(2):216-227. doi: 10.3321/j.issn:0479-8023.2004.02.007 [121] 赵娜, 王忠梅, 王浩, 等, 2019.山西五台金岗库矿床成矿作用研究.地质科学, 54(2):608-641. [122] 赵宗溥, 1954.中国前寒武纪地层问题.地质学报, 34(2):169-195, 216. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE195402003.htm 期刊类型引用(5)
1. 李超,雷勇,韩伟,冯志强,李建荣,闫涛,唐臣燕,崔杰. 五台滹沱群建安村组地质时代界定及其意义. 太原理工大学学报. 2024(02): 296-305 . 百度学术
2. 白璐,关平,呼其图,宋丹丹. 五台地区高凡群沉积年代、物源性质与构造环境. 北京大学学报(自然科学版). 2024(02): 210-226 . 百度学术
3. 唐荣贞,陈衍景. 华北克拉通古元古代条带状铁建造同位素年代学研究进展. 岩石学报. 2024(11): 3663-3684 . 百度学术
4. 李秋根,黄萧,初航,孙迪,刘文煜. 华北克拉通五台绿岩带锆石年代学及地质意义. 岩石学报. 2024(11): 3426-3447 . 百度学术
5. 谢宝增,孙龙飞,方浩,史晓颖,汤冬杰. 山西新太古界柏芝岩组条带状铁建造中的菱铁矿:成因机制与古环境意义. 古地理学报. 2021(01): 175-190 . 百度学术
其他类型引用(2)
-
dqkxzx-47-10-1-附表.docx
-