Chronology, Geochemistry and Hf Isotope of Granite Porphyry in Wenduermiao-Jining Area, Inner Mongolia and Its Geological Significance
-
摘要: 为了探讨在温都尔庙-集宁地区古亚洲洋的闭合时限以及演化过程,对该地区花岗斑岩进行了岩相学、地球化学、锆石年代学以及Hf同位素组成分析.锆石U-Pb定年显示,夸子梁花岗斑岩形成于中二叠世(270±3 Ma);乌兰淖尔花岗斑岩形成于中三叠世(241±2 Ma),为区域上首次发现的三叠世花岗岩.两者均有较高的SiO2、Al2O3含量及极低的Mg#;轻稀土元素相对富集,重稀土元素相对亏损,存在明显的Eu负异常;富集大离子亲石元素,亏损高场强元素.夸子梁花岗斑岩的锆石εHf(t)呈负值(0.25~-12.33),并具有较为古老的Hf二阶段模式年龄(1 278~2 071 Ma);乌兰淖尔花岗斑岩的锆石εHf(t)呈正值(2.03~5.94),并具有较为年轻的Hf二阶段模式年龄(892~1 144 Ma).综合分析认为:在中二叠世之前,古亚洲在温都尔庙-集宁地区已经闭合;中二叠世期间,区域上处于后碰撞阶段,并产生夸子梁花岗斑岩;晚二叠世-早三叠世,区域上继续碰撞造山;中三叠世期间,处于造山后伸展阶段,并产生乌兰淖尔花岗斑岩.Abstract: In order to explore the closure time and evolution process of the Paleo Asian ocean in Wenduermiao-Jining area, it analyzes the petrology, geochemistry, geochronology and zircon Hf isotope composition. Zircon U-Pb dating shows that, Kuaziliang granite porphyry formed in the Middle Permian (270±3 Ma), while Wulannaoer granite porphyry formed in the Middle Triassic (241±2 Ma) that is the first Triassic granite discovered in the region. These rocks characterize with high contents of SiO2, Al2O3, very low Mg# values. They also display enrichment in LREEs and LILEs, depletion in HREEs and HFSEs, with obviously negative Eu anomalies. Kuaziliang granite porphyry exhibits negative εHf(t) values (0.25 to -12.33), old Hf isotopic tDM2 from 1 278 Ma to 2 071 Ma, indicating that it was derived from partial melting of ancient crustal material, while Wulannaoer granite porphyry exhibits positive εHf(t) values (2.03-5.94), relatively new Hf isotopic tDM2 from 892 Ma to 1 144 Ma, indicating that it was derived from partial melting of juvenile crustal material. Analyzed by synthesis, it speculates that before the Middle Permian, the Paleo-Asian ocean was closed in the Wenduertemple-Jining area; during the Middle Permian, the region is in the post-collision stage, forming the Kuaziliang granite porphyry. During Late Permian through Early Triassic, continuous collision orogeny in the region; the Middle Triassic, the region is in the post-orogenic extension stage, forming the Wulannaoer granite porphyry.
-
图 1 大地构造单元图和土牧尔台研究区的地质简图
1.下二叠统苏吉组;2.上石炭统-下二叠统拴马桩组;3.寒武系-奥陶系阿牙登组;4.白云鄂博群白音宝拉格组;5.白云鄂博群呼吉尔图组;6.中二叠世花岗斑岩;7.中二叠世花岗岩;8.早二叠世花岗闪长岩;9.早二叠世黑云二长花岗岩;10.早二叠世角闪辉长岩;11.实测断层;12.采样位置;大地构造单元图据Xiao et al.(2003)修改
Fig. 1. Simplified geologic map of the Tumuertai study area
图 2 大地构造单元图和温都尔庙研究区地质简图
1.下二叠统三面井组;2.上石炭统阿木山组;3.上石炭统本巴图组;4.上石炭统酒局子组;5.志留系西别河组;6.寒武-奥陶系白乃庙群;7.温都尔庙群哈尔哈达组;8.温都尔庙群桑达来呼都格组;9.中三叠世花岗斑岩;10.早二叠世花岗闪长斑岩;11.早二叠世花岗闪长岩;12.早二叠世黑云角闪石英闪长岩;13.早志留世英云闪长岩;14.晚奥陶世奥长花岗岩;15.早奥陶世蛇纹石化橄榄岩;16.寒武纪第三世辉长岩;17.实测断层;18.采样位置;大地构造单元图据Xiao et al.(2003)修改
Fig. 2. Simplified geologic map of the Wenduermiao study area
图 6 夸子梁及乌兰淖尔花岗斑岩TAS图解(a据Middlemost,1994)和A/NK-A/CNK图解(b)
Fig. 6. TAS (a, after Middlemost, 1994) and A/NK vs. A/CNK (b) classification diagrams for Kuaziliang and Wulannaoer granite porphyries
图 7 夸子梁和乌兰淖尔花岗斑岩的球粒陨石标准化稀土元素配分图(a)和原始地幔标准化微量元素蛛网图(b)
a图标准化值据Boynton(1984);b图标准化值据Sun and McDonough(1989)
Fig. 7. Chondrite-normalized REE patterns (a) and primitive mantle-normalized trace element spider diagrams (b) for Kuaziliang and Wulannaoer granite porphyries
图 9 夸子梁及乌兰淖尔花岗斑岩R1-R2图解(a)和Rb-Y+Nb图解(b)
a据Batchelor and Bowden(1985);b据Pearce et al.(1984)
Fig. 9. R1-R2 (a) and Rb vs. Y+Nb (b) diagrams for Kuaziliang and Wulannaoer granite porphyries
表 1 夸子梁花岗斑岩及乌兰淖尔花岗斑岩LA-ICP-MS锆石U-Pb定年分析结果
Table 1. Zircon U-Pb dating results for Kuaziliang and Wulannaoer granite porphyries
测点号 含量(10-6) Th/U 同位素比值 年龄(Ma) Th U 206Pb/238U 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/235U 1σ JN2013-10 1 215 402 0.53 0.038 2 0.000 4 0.268 3 0.012 8 242 3 241 10 2 154 318 0.48 0.038 0 0.000 5 0.266 0 0.011 5 240 3 239 9 3 154 192 0.80 0.040 1 0.001 4 0.280 6 0.025 9 253 8 251 20 4 110 242 0.45 0.038 6 0.000 5 0.286 7 0.014 4 244 3 256 11 5 94 210 0.45 0.038 3 0.000 5 0.252 2 0.012 7 242 3 228 10 6 71 175 0.40 0.038 1 0.000 5 0.287 8 0.014 6 241 3 257 11 7 131 272 0.48 0.037 5 0.000 4 0.256 0 0.010 9 237 3 231 9 8 137 285 0.48 0.038 3 0.000 5 0.273 5 0.010 1 242 3 245 8 9 159 334 0.48 0.037 9 0.000 4 0.263 5 0.010 7 240 3 237 9 10 147 261 0.56 0.036 3 0.000 9 0.256 2 0.016 5 230 5 232 13 11 129 263 0.49 0.038 1 0.000 5 0.271 9 0.011 8 241 3 244 9 12 142 314 0.45 0.038 2 0.000 7 0.291 4 0.020 8 242 4 260 16 13 12 294 0.04 0.038 3 0.001 0 0.296 1 0.016 9 242 6 263 13 14 10 236 0.04 0.037 9 0.000 5 0.280 0 0.013 1 240 3 251 10 15 12 305 0.04 0.038 1 0.000 5 0.291 0 0.010 6 241 3 259 8 P31N40-04 1 115 149 0.77 0.042 8 0.001 3 0.333 5 0.042 1 270 8 292 32 2 446 518 0.86 0.043 9 0.001 6 0.343 9 0.023 0 277 10 300 17 3 236 367 0.64 0.042 5 0.000 8 0.300 1 0.017 6 268 5 266 14 4 166 306 0.54 0.042 0 0.000 8 0.296 9 0.015 3 265 5 264 12 5 191 193 0.99 0.042 2 0.000 9 0.300 7 0.024 3 267 6 267 19 6 115 220 0.52 0.043 4 0.001 0 0.331 4 0.020 7 274 6 291 16 7 208 246 0.84 0.043 2 0.000 8 0.299 9 0.018 1 273 5 266 14 8 151 278 0.54 0.042 0 0.001 2 0.291 1 0.033 2 265 8 259 26 9 237 347 0.68 0.042 6 0.001 1 0.278 9 0.018 0 269 7 250 14 10 293 312 0.94 0.043 0 0.000 7 0.310 5 0.017 5 272 4 275 14 11 90 116 0.77 0.043 2 0.001 8 0.352 4 0.032 1 273 11 307 24 12 208 341 0.61 0.042 8 0.001 7 0.315 3 0.029 4 270 10 278 23 13 118 168 0.71 0.042 3 0.001 4 0.280 9 0.021 6 267 9 251 17 14 285 417 0.68 0.042 6 0.001 3 0.284 2 0.037 7 269 8 254 30 15 66 83 0.80 0.042 8 0.001 1 0.319 2 0.021 4 270 7 281 16 16 62 114 0.55 0.043 6 0.001 3 0.308 2 0.030 0 275 8 273 23 17 39 83 0.47 0.043 1 0.001 1 0.295 7 0.025 0 272 7 263 20 表 2 夸子梁花岗斑岩及乌兰淖尔花岗斑岩锆石Hf同位素分析结果
Table 2. Zircon Hf isotopic data for Kuaziliang and Wulannaoer granite porphyries
测点号 176Yb /177Hf 2σ 176 Lu/177Hf σ 176 Hf/177Hf σ εHf(0) εHf(t) 2σ t(Ma) tDM1(Ma) tDM2(Ma) JN2013-10 1 0.044 575 0.000 209 0.000 871 0.000 004 0.282 761 0.000 023 -0.4 4.77 0.81 240 693 966 2 0.118 626 0.004 567 0.002 157 0.000 087 0.282 753 0.000 026 -0.7 4.54 0.92 253 729 990 3 0.063 023 0.001 190 0.001 125 0.000 012 0.282 683 0.000 027 -3.2 2.03 0.95 244 809 1 144 4 0.154 701 0.002 172 0.002 986 0.000 040 0.282 790 0.000 026 0.6 5.49 0.91 242 691 922 5 0.136 999 0.001 993 0.002 719 0.000 031 0.282 802 0.000 037 1.1 5.94 1.30 241 668 892 6 0.075 786 0.001 540 0.001 342 0.000 019 0.282 729 0.000 027 -1.5 3.50 0.95 237 747 1 045 7 0.153 809 0.001 732 0.003 239 0.000 036 0.282 774 0.000 032 0.1 4.62 1.14 230 721 967 8 0.079 092 0.001 877 0.001 397 0.000 037 0.282 700 0.000 022 -2.5 2.51 0.79 240 790 1 110 P31N40-04 1 0.048 636 0.000 286 0.000 960 0.000 005 0.282 384 0.000 023 -13.7 -7.97 0.81 270 1 225 1 798 2 0.070 741 0.001 252 0.001 407 0.000 021 0.282 337 0.000 020 -15.4 -9.70 0.70 270 1 305 1 907 3 0.100 383 0.002 809 0.002 149 0.000 047 0.282 277 0.000 023 -17.5 -12.01 0.82 268 1 419 2 051 4 0.084 372 0.000 740 0.001 546 0.000 014 0.282 511 0.000 023 -9.2 -3.69 0.82 265 1 064 1 523 5 0.160 377 0.001 552 0.003 182 0.000 045 0.282 514 0.000 029 -9.1 -3.70 1.02 273 1 108 1 529 6 0.101 801 0.000 584 0.001 837 0.000 016 0.282 481 0.000 027 -10.3 -4.71 0.95 269 1 115 1 591 7 0.071 923 0.000 491 0.001 344 0.000 006 0.282 519 0.000 023 -8.9 -3.20 0.80 273 1 046 1 498 8 0.089 335 0.000 792 0.001 666 0.000 013 0.282 266 0.000 026 -17.9 -12.33 0.91 267 1 416 2 071 9 0.126 973 0.000 983 0.002 404 0.000 018 0.282 622 0.000 022 -5.3 0.25 0.79 272 926 1 278 表 3 夸子梁和乌兰淖尔花岗斑岩主量元素(%)、稀土和微量元素(10-6)
Table 3. Major (%), rare earth and trace element (10-6) for Kuaziliang and Wulannaoer granite porphyries
样品号 乌兰淖尔花岗斑岩 夸子梁花岗斑岩 JN2013-10-1 JN2013-10-2 JN2013-10-3 P31H40-3 P31H40-4 P31H40-5 SiO2 73.5 71.9 71.8 74.4 74.9 75.0 Al2O3 14.05 14.50 14.50 13.05 13.25 13.30 TFe2O3 2.09 2.83 2.47 1.96 1.83 1.89 CaO 0.17 0.10 0.19 0.35 0.42 0.41 MgO 0.09 0.09 0.11 0.16 0.15 0.15 K2O 4.95 5.19 5.08 5.28 5.11 5.24 Na2O 3.55 4.04 4.38 3.18 3.43 3.34 TiO2 0.16 0.22 0.22 0.15 0.15 0.16 P2O5 0.11 0.05 0.06 0.02 0.02 0.03 MnO 0.01 0.02 0.01 0.03 0.04 0.04 LOI 1.37 1.19 1.04 0.89 0.80 0.80 Total 100.05 100.13 99.86 99.47 100.1 100.36 Mg# 7.86 5.93 8.11 13.92 13.97 13.59 Na2O+K2O 8.50 9.23 9.46 8.46 8.54 8.58 A/CNK 1.22 1.17 1.11 1.13 1.11 1.12 Cr < 10 10 10 20 20 20 Rb 146.0 131.0 116.5 182.0 196.5 198.0 Cs 4.24 2.82 0.83 3.13 5.05 3.90 Sr 25.1 35.2 105.0 63.3 69.2 70.2 Ba 241 293 384 912 910 947 V 7 6 23 16 26 14 Sc 5 5 5 5 5 5 Nb 28.7 26.2 25.3 15.4 17.5 17.0 Ta 1.4 1.2 1.1 1.0 1.1 1.1 Zr 408 498 502 264 293 290 Hf 11.3 11.4 11.2 7.9 8.7 8.6 U 6.19 4.09 6.83 2.78 3.94 4.10 Th 27.0 20.8 20.5 19.10 20.7 20.9 La 114.5 73.3 75.9 33.8 37.5 32.1 Ce 222 149.5 149.0 132.5 135.0 137.5 Pr 23.5 16.10 16.75 6.46 7.43 6.43 Nd 75.6 52.5 56.0 21.4 24.9 21.3 Sm 11.55 8.64 9.45 4.02 4.65 4.23 Eu 0.34 0.67 0.74 0.46 0.50 0.48 Gd 9.12 6.95 7.31 4.27 4.73 4.61 Tb 1.28 1.03 1.04 0.82 0.81 0.78 Dy 7.55 6.40 6.34 5.69 5.67 5.80 Ho 1.47 1.29 1.23 1.24 1.22 1.22 Er 4.17 3.68 3.62 4.28 4.40 4.39 Tm 0.61 0.53 0.49 0.63 0.65 0.63 Yb 3.91 3.25 3.30 4.44 4.61 4.36 Lu 0.58 0.48 0.52 0.62 0.66 0.61 Y 38.5 32.3 33.2 35.2 33.6 34.7 ΣREE 476.18 324.32 331.69 220.63 232.73 224.44 LREE 447.49 300.71 307.84 198.64 209.98 202.04 HREE 28.69 23.61 23.85 21.99 22.75 22.40 LREE/HREE 15.60 12.74 12.91 9.03 9.23 9.02 LaN/YbN 21.01 16.18 16.50 5.46 5.83 5.28 δEu 0.10 0.26 0.26 0.34 0.32 0.33 δCe 0.99 1.02 0.98 2.06 1.87 2.21 注:Mg#=100×(MgO/40.304 4)/(MgO/40.304 4+TFe2O3×0.899 8/71.844),A/CNK=Al2O3/(CaO+Na2O+K2O)(摩尔比). -
[1] Baker, M.B., Hirschmann, M.M., Ghiorso, M.S., et al., 1995. Compositions of Near-Solidus Peridotite Melts from Experiments and Thermodynamic Calculations. Nature, 375: 308-311. https://doi.org/10.1038/375308a0 [2] Batchelor, R.A., Bowden, P., 1985. Petrogenetic Interpretation of Granitoid Rock Series Using Multicationic Parameters. Chemical Geology, 48(1-4): 43-55. https://doi.org/10.1016/0009-2541(85)90034-8 [3] Boynton, W.V., 1984. Cosmochemistry of the Rare Earth Elements: Meteorite Studies. Developments in Geochemistry, 2: 63-114. https://doi.org/10.1016/b978-0-444-42148-7.50008-3 http://www.sciencedirect.com/science/article/pii/B9780444421487500083 [4] Cao, H.H., 2013. Geochronology and Geochemistry of the Late Paleozoic-Early Mesozoic Igneous Rocks in the Eastern Segment of the Northern Margin of the North China Block (Dissertation). Jilin University, Changchun(in Chinese with English abstract). [5] Chen, J.S., 2018. Petrogenesis of the Late Paleozoic to Early Mesozoic Granitic from the Chifeng Region and Their Tectonic Implication (Dissertation). Jilin University, Changchun(in Chinese with English abstract). [6] Dong, X.J., Wang, W.Q., Sha, Q., et al., 2016. Suzy Volcanic Rocks in the Northern Margin of the North China Craton and Its Formation Mechanism. Acta Petrologica Sinica, 32(9): 2765-2779(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201609012.htm [7] Fan, H.R., Hu, F.F., Chen, F.K., et al., 2006. Intrusive Age of No. 1 Carbonatite Dyke from Bayan Obo REE-Nb-Fe Deposit, Inner Mongolia: With Answers to Comment of Dr. Le Bas. Acta Petrologica Sinica, 22(2): 519-520(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_acta-petrologica-sinica_thesis/0201252030377.html [8] Fan, Y.X., Li, T.D., Xiao, Q.H., et al., 2019. Zircon U-Pb Ages, Geochemical Characteristics of Late Permian Granite in West Ujimqin Banner, Inner Mongolia, and Tectonic Significance. Geological Review, 65(1): 248-266(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZLP201901026.htm [9] Feng, G.X., Li, S.C., Deng, S.Y., et al., 2015. A New Explanation of SHRIMP Age of Wenduermiao Group in Inner Mongolia. Mineral Resources and Geology, 29(2): 267-272(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCYD201502024.htm [10] Foley, S., Peccerillo, A., 1992. Potassic and Ultrapotassic Magmas and Their Origin. Lithos, 28(3-6): 181-185. https://doi.org/10.1016/0024-4937(92)90005-j doi: 10.1016/0024-4937(92)90005-J [11] Hong, D.W., Wang, S.G., Han, B.F., et al., 1996. Post-Orogenic Alkaline Granites from China and Comparisons with Anorogenic Alkaline Granites Elsewhere. Journal of Asian Earth Sciences, 13(1): 13-27. doi: 10.1016/0743-9547(96)00002-5 [12] Hou, K.J., Li, Y.H., Tian, Y.R., 2009. In Situ U-Pb Zircon Dating Using Laser Ablation-Multi Ion Counting-ICP-MS. Mineral Deposits, 28(4): 481-492(in Chinese with English abstract). http://adsabs.harvard.edu/abs/2009GeCAS..73R.552H [13] Hou, K.J., Li, Y.H., Zou, T.R., et al., 2007. Laser Ablation-MC-ICP-MS Technique for Hf Isotope Microanalysis of Zircon and Its Geological Applications. Acta Petrologica Sinica, 23(10): 2595-2604(in Chinese with English abstract). http://www.researchgate.net/publication/303721491_Laser_ablation-MC-ICP-MS_technique_for_Hf_isotope_microanalysis_of_zircon_and_its_geological_applications [14] Ionov, D.A., Grégoire, M., Prikhod'Ko, V.S., 1999. Feldspar-Ti-Oxide Metasomatism in Off-Cratonic Continental and Oceanic Upper Mantle. Earth and Planetary Science Letters, 165(1): 37-44. https://doi.org/10.1016/s0012-821x(98)00253-2 doi: 10.1016/S0012-821X(98)00253-2 [15] Li, C.D., Ran, H., Zhao, L.G., et al., 2012. LA-MC-ICPMS U-Pb Geochronology of Zircons from the Wenduermiao Group and Its Tectonic Significance. Acta Petrologica Sinica, 28(11): 3705-3714(in Chinese with English abstract). http://www.oalib.com/paper/1473999 [16] Li, H.K., Geng, J.Z., Hao, S., et al., 2009. Study on the Determination of Zircon U-Pb Isotopic Age by LA-MC-ICPMS. Acta Mineralogica Sinica, 29(Suppl. 1): 600-601(in Chinese with English abstract). [17] Lian, C.Q., Li, G.Z., Yu, Y., et al., 2021. LA-ICP-MS Zircon U-Pb Age and Whole-Rock Geochemistry of the Triassic Intrusive Rocks in the Solon Obo Area, Inner Mongolia and Its Geological Significance. Earth Science, 46(1): 87-100(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2019.014 [18] Liegeoiset, J.P., 1998. Some Words on the Post-Collisional Magmatism. Lithos, 45(1-4): 15-17. http://www.researchgate.net/publication/259369329_Preface_-_Some_words_on_the_post-collisional_magmatism [19] Liu, C.F., 2010. Paleozoic-Early Mesozoic Magmatic Belts and Tectonic Significance in Siziwangqi Area, Inner Mongolia (Dissertation). China University of Geosciences, Beijing(in Chinese with English abstract). [20] Liu, C.F., Yang, S.S., Wu, J.W., et al., 2010. Dating and Petrogenesis of Late Permian-Early Triassic Peraluminous Granites in the Siziwangqi Area, Inner Mongolia. Acta Geologica Sinica, 84(7): 1002-1016(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dizhixb201007006 [21] Liu, P.H., Zou, L., Tian, Z.H., et al., 2019. Determination of Late Paleozoic Metamorphic Event in the Langshan Area, Western Inner Mongolia: New Evidence from LA-ICP-MS Zircon U-Pb Dating of the Wulashan Group. Geological Bulletin of China, 38(10): 1691-1710(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZQYD201910010.htm [22] Liu, Y.L., Chen, J.F., Li, H.M., et al., 2006. Geochronology of the Carbonatite Dykes in the Bayan Obo Orefield Revisit. Geological Review, 52(3): 415-422(in Chinese with English abstract). doi: 10.1007/s11442-006-0415-5 [23] Liu, Y.S., Hu, Z.C., Zong, K.Q., et al., 2010. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535-1546. https://doi.org/10.1007/s11434-010-3052-4 [24] Ma, H.W., 1992. Discrimination of Genetic Types of Granitoid Rocks. Acta Petrologica Sinica, 8(4): 341-350(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB199204004.htm [25] Middlemost, E.A.K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3-4): 215-224. https://doi.org/10.1016/0012-8252(94)90029-9 [26] Möller, A., O'Brien, P.J., Kennedy, A., et al., 2003. Linking Growth Episodes of Zircon and Metamorphic Textures to Zircon Chemistry: An Example from the Ultrahigh-Temperature Granulites of Rogaland (SW Norway). Geological Society, London, Special Publications, 220(1): 65-81. https://doi.org/10.1144/gsl.sp.2003.220.01.04 doi: 10.1144/GSL.SP.2003.220.01.04 [27] National Technical Supervision Bureau, 1994. Determination of Primary and Secondary Elements by Chemical Analysis of Silicate Rocks by X-Ray Fluorescence Spectrometry. China Standard Press, Beijing(in Chinese). [28] Niu, S.W., Zhang, P.Y., Sun, S.F., et al., 2016. The Discovery of Manifold Kind Fossils in the Bayan Obo Group in Inner Mongolia and the Establishment of the Kuangou Group. Geological Bulletin of China, 35(11): 1753-1770(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201611001.htm [29] Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956-983. https://doi.org/10.1093/petrology/25.4.956 [30] Peng, P., Guo, J.H., Windley, B.F., et al., 2012. Petrogenesis of Late Paleoproterozoic Liangcheng Charnockites and S-Type Granites in the Central-Northern Margin of the North China Craton: Implications for Ridge Subduction. Precambrian Research, 222-223: 107-123. https://doi.org/10.1016/j.precamres.2011.06.002 [31] Shao, J.A., Tang, K.D., He, G.Q., 2014. Early Permian Tectono-Palaeogeographic Reconstruction of Inner Mongolia, China. Acta Petrologica Sinica, 30(7): 1858-1866(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_acta-petrologica-sinica_thesis/0201252017590.html [32] Sisson, T.W., 1994. Hornblende-Melt Trace-Element Partitioning Measured by Ion Microprobe. Chemical Geology, 117(1-4): 331-344. https://doi.org/10.1016/0009-2541(94)90135-x doi: 10.1016/0009-2541(94)90135-X [33] Sun, S.S., McDonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 doi: 10.1144/GSL.SP.1989.042.01.19 [34] Sun, Y.W., Ding, H.S., Liu, H., et al., 2016. Fossil Plants from the Guadalupian Yujiabeigou Formation in the North Margin of North China Plate and Their Tectonic Implications. Journal of Jilin University (Earth Science Edition), 46(5): 1268-1283(in Chinese with English abstract). http://www.researchgate.net/publication/309577664_Fossil_plants_from_the_Guadalupian_Yujiabeigou_Formation_in_the_north_margin_of_North_China_Plate_and_their_tectonic_implications [35] Taylor, S.R., McLennan, S.S., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publications, Oxford. [36] Teng, C., Li, S.C., Cao, J., et al., 2019. Geochronological and Geochemical Features and Tectonic Environment of Ondor Sum Group in Yuejin Commune Area of Xilinhot, Inner Mongolia. Geological Bulletin of China, 38(7): 1146-1157(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_geological-bulletin-china_thesis/0201272959590.html [37] Wang, S.J., Xu, Z.Y., Dong, X.J., et al., 2018. Geochemical Characteristics and Zircon U-Pb Age of the Granodiorite-Norite Gabbro in the Northern Margin of the North China Block and Their Formation Mechanism. Earth Science, 43(9): 3267-3284(in Chinese with English abstract). http://www.researchgate.net/publication/329031137_Geochemical_Characteristics_and_Zircon_U-Pb_Age_of_the_Granodiorite-Norite_Gabbro_in_the_Northern_Margin_of_the_North_China_Block_and_Their_Formation_Mechanism [38] Wang, W.Q., 2014. Late Paleozoic Tectonic Evolution of the Central-Northern Margin of the North China Plate: Constraints from Zircon U-Pb Ages and Geochemistry of Igneous Rocks in Ondor Sum-Jining Area (Dissertation). Jilin University, Changchun(in Chinese with English abstract). [39] Wang, W.Q., Xu, Z.Y., Liu, Z.H., et al., 2013. Early-Middle Permian Tectonic Evolution of the Central-Northern Margin of the North China Craton: Constraints from Zircon U-Pb Ages and Geochemistry of the Granitoids. Acta Petrologica Sinica, 29(9): 2987-3003(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201309003.htm [40] Wang, Y.N., Xu, W.L., Wang, F., et al., 2018. New Insights on the Early Mesozoic Evolution of Multiple Tectonic Regimes in the Northeastern North China Craton from the Detrital Zircon Provenance of Sedimentary Strata. Solid Earth, 9(6): 1375-1397. https://doi.org/10.5194/se-9-1375-2018 [41] Watson, E.B., Harrison, T.M., 1983. Zircon Saturation Revisited: Temperature and Composition Effects in a Variety of Crustal Magma Types. Earth and Planetary Science Letters, 64(2): 295-304. https://doi.org/10.1016/0012-821x(83)90211-x doi: 10.1016/0012-821X(83)90211-X [42] Wu, F.Y., Li, X.H., Yang, J.H., et al., 2007. Discussions on the Petrogenesis of Granites. Acta Petrologica Sinica, 23(6): 1217-1238(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB200706000.htm [43] Wu, R.Z., Zhang, S.D., Lai, L., 2015. Geochronological and Geochemical Characteristics of Triassic Aluminous A-Type Granites in Wulanwutai Area of Inner Mongolia. Journal of Earth Sciences and Environment, 37(6): 47-58(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-XAGX201506008.htm [44] Xiao, W.J., Shu, L.S., Gao, J., et al., 2008. Continental Dynamics of the Central Asian Orogenic Belt and Its Metallogeny. Xinjiang Geology, 26(1): 4-8(in Chinese with English abstract). http://www.researchgate.net/publication/302506364_Continental_dynamics_of_the_central_Asian_orogenic_belt_and_its_metallogeny [45] Xiao, W.J., Windley, B.F., Hao, J., et al., 2003. Accretion Leading to Collision and the Permian Solonker Suture, Inner Mongolia, China: Termination of the Central Asian Orogenic Belt. Tectonics, 22(6): 1069. https://doi.org/10.1029/2002tc001484 http://petrology.oxfordjournals.org/external-ref?access_num=10.1029/2002TC001484&link_type=DOI [46] Xiao, W.J., Windley, B.F., Huang, B.C., et al., 2009. End-Permian to Mid-Triassic Termination of the Accretionary Processes of the Southern Altaids: Implications for the Geodynamic Evolution, Phanerozoic Continental Growth, and Metallogeny of Central Asia. International Journal of Earth Sciences, 98(6): 1189-1217. https://doi.org/10.1007/s00531-008-0407-z [47] Xu, B., Charvet, J., Chen, Y., et al., 2013. Middle Paleozoic Convergent Orogenic Belts in Western Inner Mongolia (China): Framework, Kinematics, Geochronology and Implications for Tectonic Evolution of the Central Asian Orogenic Belt. Gondwana Research, 23(4): 1342-1364. https://doi.org/10.1016/j.gr.2012.05.015 [48] Xu, B., Xu, Y., Li, J., et al., 2016. Age of the Ondor Sum Group in Western Inner Mongolia and Its Position in the Central Asia Orogenic Belt. Earth Science Frontiers, 23(6): 120-127(in Chinese with English abstract). http://www.researchgate.net/publication/316512606_Age_of_the_Ondor_Sum_Group_in_western_Inner_Mongolia_and_its_position_in_the_Central_Asia_Orogenic_Belt [49] Xu, B., Zhao, P., Bao, Q.Z., et al., 2014. Preliminary Study on the Pre-Mesozoic Tectonic Unit Division of the Xing-Meng Orogenic Belt (XMOB). Acta Petrologica Sinica, 30(7): 1841-1857(in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201407001.htm [50] Xu, W.L., Sun, C.Y., Tang, J., et al., 2019. Basement Nature and Tectonic Evolution of the Xing'an-Mongolian Orogenic Belt. Earth Science, 44(5): 1620-1646(in Chinese with English abstract). http://www.researchgate.net/publication/337905371_Basement_nature_and_tectonic_evolution_of_the_Xing'an-Mongolian_Orogenic_Belt_in_Chinese/download [51] Zhang, J.R., Wei, C.J., Chu, H., 2018. New Model for the Tectonic Evolution of Xing'an-Inner Mongolia Orogenic Belt: Evidence from Four Different Phases of Metamorphism in Central Inner Mongolia. Acta Petrologica Sinica, 34(10): 2857-2872(in Chinese with English abstract). [52] Zhang, Q., 2012. Could Granitic Magmas Experience Fractionation and Evolution? Acta Petrologica et Mineralogica, 31(2): 252-260(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_acta-petrologica-mineralogica_thesis/0201254449823.html [53] Zhang, Q., Wang, Y.L., Jin, W.J., et al., 2008. Criteria for the Recognition of Pre-, Syn- and Post-Orogenic Granitic Rocks. Geological Bulletin of China, 27(1): 1-18(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200801002.htm [54] Zhang, S.H., Zhao, Y., Liu, J.M., et al., 2010. Geochronology, Geochemistry and Tectonic Setting of the Late Paleozoic-Early Mesozoic Magmatism in the Northern Margin of the North China Block: A Preliminary Review. Acta Petrologica et Mineralogica, 29(6): 824-842(in Chinese with English abstract). http://www.researchgate.net/publication/281629857_Geochronology_geochemistry_and_tectonic_setting_of_the_Late_Paleozoic-Early_Mesozoic_magmatism_in_the_northern_margin_of_the_North_China_block_A_preliminary_review/download [55] Zhang, W., Jian, P., Liu, D.Y., et al., 2010. Geochemistry, Geochronology and Hf Isotopic Compositions of Triassic Granodiorite-Diorite and Shoshonite from the Damaoqi Area, Central Inner Mongolia, China. Geological Bulletin of China, 29(6): 821-832(in Chinese with English abstract). [56] Zhang, X., Lü, H.B., Dong, X.P., et al., 2013. Olistostromes Discovered in the Halahuogete Formation, Bayan Obo Group and Its Geological Significance. Geological Review, 59(6): 1199-1206(in Chinese with English abstract). http://www.cqvip.com/QK/91067X/201306/48044070.html [57] Zhang, X.H., Zhang, H.F., Tang, Y.J., et al., 2006. Early Triassic A-Type Felsic Volcanism in the Xilinhaote-Xiwuqi, Central Inner Mongolia: Age, Geochemistry and Tectonic Implications. Acta Petrologica Sinica, 22(11): 2769-2780(in Chinese with English abstract). http://www.researchgate.net/publication/285763417_Early_Triassic_A-type_felsic_volcanism_in_the_Xilinhaote-Xiwuqi_central_Inner_Mongolia_Age_geochemistry_and_tectonic_implications [58] Zhang, Y.X., Lü, H.B., Wang, J., et al., 2012. Analysis of Ore-Forming Tectonic Settings of the Bayan Obo REE Deposit. Acta Geologica Sinica, 86(5): 767-774(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dizhixb201205009 [59] Zhou, Z.G., Wang, G.S., Zhang, D., et al., 2016. Zircon Ages of Gabbros in the Siziwangqi, Inner Mongolia and Its Constrain on the Formation Time of the Bayan Obo Group. Acta Petrologica Sinica, 32(6): 1809-1822(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201606016.htm [60] Zou, L., Liu, P.H., Tian, Z.H., et al., 2019. Late Paleozoic Metamorphic Complex of Precambrian Metamorphic Basement from Estern Alxa Block: New Evidence from Zircon LA-ICP-MS U-Pb Dating of Boluositanmiao Complex. Earth Science, 44(4): 1406-1423(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.386 http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201904025.htm [61] 曹花花, 2013. 华北板块北缘东段晚古生代-早中生代火成岩的年代学与地球化学研究(博士学位论文). 长春: 吉林大学. [62] 陈井胜, 2018. 赤峰地区晚古生代-早中生代花岗岩成因及其构造意义(博士学位论文). 长春: 吉林大学. [63] 董晓杰, 王挽琼, 沙茜, 等, 2016. 华北克拉通北缘中段二叠纪苏吉火山岩及其形成机制. 岩石学报, 32(9): 2765-2779. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201609012.htm [64] 范宏瑞, 胡芳芳, 陈福坤, 等, 2006. 白云鄂博超大型REE-Nb-Fe矿区碳酸岩墙的侵位年龄: 兼答Le Bas博士的质疑. 岩石学报, 22(2): 519-520. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200602027.htm [65] 范玉须, 李廷栋, 肖庆辉, 等, 2019. 内蒙古西乌珠穆沁旗晚二叠世花岗岩的锆石U-Pb年龄、地球化学特征及其构造意义. 地质论评, 65(1): 248-266. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201901026.htm [66] 冯桂兴, 李树才, 邓绍颖, 等, 2015. 内蒙古温都尔庙群SHRIMP年龄新解. 矿产与地质, 29(2): 267-272. https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD201502024.htm [67] 国家技术监督局, 1994. 硅酸盐岩石化学分析方法X射线荧光光谱测定主、次元素量. 北京: 中国标准出版社. [68] 侯可军, 李延河, 田有荣, 2009. LA-MC-ICP-MS锆石微区原位U-Pb定年技术. 矿床地质, 28(4): 481-492. doi: 10.3969/j.issn.0258-7106.2009.04.010 [69] 侯可军, 李延河, 邹天人, 等, 2007. LA-MCI-CP-MS锆石Hf同位素的分析方法及地质应用. 岩石学报, 23(10): 2595-2604. doi: 10.3969/j.issn.1000-0569.2007.10.025 [70] 李承东, 冉皞, 赵利刚, 等, 2012. 温都尔庙群锆石的LA-MC-ICPMS U-Pb年龄及构造意义. 岩石学报, 28(11): 3705-3714. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201211022.htm [71] 李怀坤, 耿建珍, 郝爽, 等, 2009. 用激光烧蚀多接收器等离子体质谱仪(LA-MC-ICPMS)测定锆石U-Pb同位素年龄的研究. 矿物学报, 29(增刊1): 600-601. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2009S1311.htm [72] 连琛芹, 李钢柱, 于洋, 等, 2021. 内蒙古索伦山地区三叠纪侵入岩锆石U-Pb年龄、岩石地球化学特征及地质意义. 地球科学, 46(1): 87-100. https://doi.org/10.3799/dqkx.2019.014 doi: 10.3799/dqkx.2019.014 [73] 柳长峰, 2010. 内蒙古四子王旗地区古生代-早中生代岩浆岩带及其构造意义(博士学位论文). 北京: 中国地质大学. [74] 柳长峰, 杨帅师, 武将伟, 等, 2010. 内蒙古中部四子王旗地区晚二叠-早三叠世过铝花岗岩定年及成因. 地质学报, 84(7): 1002-1016. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201007007.htm [75] 刘平华, 邹雷, 田忠华, 等, 2019. 内蒙古西部狼山地区晚古生代变质事件的厘定及其地质意义: 来自乌拉山岩群LA-ICP-MS锆石U-Pb定年的新证据. 地质通报, 38(10): 1691-1710. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201910010.htm [76] 刘玉龙, 陈江峰, 李惠民, 等, 2006. 白云鄂博矿田碳酸岩墙年代学再研究. 地质论评, 52(3): 415-422. doi: 10.3321/j.issn:0371-5736.2006.03.024 [77] 马鸿文, 1992. 花岗岩成因类型的判别分析. 岩石学报, 8(4): 341-350. doi: 10.3321/j.issn:1000-0569.1992.04.005 [78] 牛绍武, 张鹏远, 孙淑芬, 等, 2016. 多门类化石在内蒙古白云鄂博群中的发现与宽沟群的建立. 地质通报, 35(11): 1753-1770. doi: 10.3969/j.issn.1671-2552.2016.11.001 [79] 邵济安, 唐克东, 何国琦, 2014. 内蒙古早二叠世构造古地理的再造. 岩石学报, 30(7): 1858-1866. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201407002.htm [80] 孙跃武, 丁海生, 刘欢, 等, 2016. 华北板块北缘中二叠统于家北沟组植物化石及其大地构造意义. 吉林大学学报(地球科学版), 46(5): 1268-1283. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201605001.htm [81] 滕超, 李树才, 曹军, 等, 2019. 内蒙古锡林浩特跃进公社地区温都尔庙群年代学、地球化学特征及构造环境. 地质通报, 38(7): 1146-1157. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201907008.htm [82] 王师捷, 徐仲元, 董晓杰, 等, 2018. 华北板块北缘中段花岗闪长岩-苏长辉长岩的锆石U-Pb年代学、地球化学特征及其形成机制. 地球科学, 43(9): 3267-3284. doi: 10.3799/dqkx.2017.585 [83] 王挽琼, 2014. 华北板块北缘中段晚古生代构造演化: 温都尔庙-集宁火成岩年代学、地球化学的制约(博士学位论文). 长春: 吉林大学. [84] 王挽琼, 徐仲元, 刘正宏, 等, 2013. 华北板块北缘中段早中二叠世的构造属性: 来自花岗岩类锆石U-Pb年代学及地球化学的制约. 岩石学报, 29(9): 2987-3003. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201309003.htm [85] 吴福元, 李献华, 杨进辉, 等, 2007. 花岗岩成因研究的若干问题. 岩石学报, 23(6): 1217-1238. doi: 10.3969/j.issn.1000-0569.2007.06.001 [86] 吴荣泽, 张树栋, 来林, 2015. 内蒙古乌兰五台地区三叠纪铝质A型花岗岩年代学及地球化学特征. 地球科学与环境学报, 37(6): 47-58. doi: 10.3969/j.issn.1672-6561.2015.06.005 [87] 肖文交, 舒良树, 高俊, 等, 2008. 中亚造山带大陆动力学过程与成矿作用. 新疆地质, 26(1): 4-8. doi: 10.3969/j.issn.1000-8845.2008.01.002 [88] 徐备, 徐严, 栗进, 等, 2016. 内蒙古西部温都尔庙群的时代及其在中亚造山带中的位置. 地学前缘, 23(6): 120-127 https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201606016.htm [89] 徐备, 赵盼, 鲍庆中, 等, 2014. 兴蒙造山带前中生代构造单元划分初探. 岩石学报, 30(7): 1841-1857. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201407001.htm [90] 许文良, 孙晨阳, 唐杰, 等, 2019. 兴蒙造山带的基底属性与构造演化过程. 地球科学, 44(5): 1620-1646. doi: 10.3799/dqkx.2019.036 [91] 张晋瑞, 魏春景, 初航, 2018. 兴蒙造山带构造演化的新模式: 来自内蒙古中部四期不同类型变质作用的证据. 岩石学报, 34(10): 2857-2872. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201810004.htm [92] 张旗, 2012. 花岗质岩浆能够结晶分离和演化吗? 岩石矿物学杂志, 31(2): 252-260. doi: 10.3969/j.issn.1000-6524.2012.02.013 [93] 张旗, 王元龙, 金惟俊, 等, 2008. 造山前、造山和造山后花岗岩的识别. 地质通报, 27(1): 1-18. doi: 10.3969/j.issn.1671-2552.2008.01.001 [94] 张拴宏, 赵越, 刘建民, 等, 2010. 华北地块北缘晚古生代-早中生代岩浆活动期次、特征及构造背景. 岩石矿物学杂志, 29(6): 824-842. doi: 10.3969/j.issn.1000-6524.2010.06.017 [95] 张维, 简平, 刘敦一, 等, 2010. 内蒙古中部达茂旗地区三叠纪花岗岩和钾玄岩的地球化学、年代学和Hf同位素特征. 地质通报, 29(6): 821-832. doi: 10.3969/j.issn.1671-2552.2010.06.004 [96] 张晓晖, 张宏福, 汤艳杰, 等, 2006. 内蒙古中部锡林浩特-西乌旗早三叠世A型酸性火山岩的地球化学特征及其地质意义. 岩石学报, 22(11): 2769-2780. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200611014.htm [97] 张星, 吕洪波, 董晓朋, 等, 2013. 白云鄂博群哈拉霍疙特组滑塌堆积的发现及其地质意义. 地质论评, 59(6): 1199-1206. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201306022.htm [98] 章雨旭, 吕洪波, 王俊, 等, 2012. 白云鄂博矿床成矿构造环境分析. 地质学报, 86(5): 767-774. doi: 10.3969/j.issn.0001-5717.2012.05.009 [99] 周志广, 王果胜, 张达, 等, 2016. 内蒙古四子王旗地区侵入白云鄂博群辉长岩的年龄及其对白云鄂博群时代的约束. 岩石学报, 32(6): 1809-1822. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201606016.htm [100] 邹雷, 刘平华, 田忠华, 等, 2019. 东阿拉善地块前寒武纪变质基底中晚古生代变质杂岩: 来自波罗斯坦庙杂岩LA-ICP-MS锆石U-Pb定年的新证据. 地球科学, 44(4): 1406-1423. doi: 10.3799/dqkx.2018.386