• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于DEM和高分辨率遥感影像的“膨胀-融合”式地表沟壑提取

    李文凯 张唯 秦家豪 王红平

    李文凯, 张唯, 秦家豪, 王红平, 2020. 基于DEM和高分辨率遥感影像的“膨胀-融合”式地表沟壑提取. 地球科学, 45(6): 1948-1955. doi: 10.3799/dqkx.2020.004
    引用本文: 李文凯, 张唯, 秦家豪, 王红平, 2020. 基于DEM和高分辨率遥感影像的“膨胀-融合”式地表沟壑提取. 地球科学, 45(6): 1948-1955. doi: 10.3799/dqkx.2020.004
    Li Wenkai, Zhang Wei, Qin Jiahao, Wang Hongping, 2020. 'Expansion-Fusion' Extraction of Surface Gully Area Based on DEM and High-Resolution Remote Sensing Images. Earth Science, 45(6): 1948-1955. doi: 10.3799/dqkx.2020.004
    Citation: Li Wenkai, Zhang Wei, Qin Jiahao, Wang Hongping, 2020. "Expansion-Fusion" Extraction of Surface Gully Area Based on DEM and High-Resolution Remote Sensing Images. Earth Science, 45(6): 1948-1955. doi: 10.3799/dqkx.2020.004

    基于DEM和高分辨率遥感影像的“膨胀-融合”式地表沟壑提取

    doi: 10.3799/dqkx.2020.004
    基金项目: 

    国家自然科学基金项目 41501584

    国家自然科学基金项目 41871304

    详细信息
      作者简介:

      李文凯(1997-), 男, 硕士研究生, 主要从事数字地形分析研究

      通讯作者:

      王红平

    • 中图分类号: P208

    "Expansion-Fusion" Extraction of Surface Gully Area Based on DEM and High-Resolution Remote Sensing Images

    • 摘要: 地表沟壑的精细化提取是地形地貌特征的重要内容.针对现有沟壑提取结果中存在断裂区域和伪沟壑区域的情况,提出一种基于DEM和高分辨率遥感影像的地表沟壑“膨胀-融合”式提取方法.该方法综合了D8算法、坡向变率算法和面向对象分类方法的提取结果,首先引入距离制图算法对初始沟壑进行方向性膨胀,然后通过栅格重分类和代数运算进行沟壑融合,剔除伪沟壑区域,最终实现研究区域内沟壑的精细化提取.以GDEM v2数据和高分二号影像数据为数据源,精细化提取了湖北省神农架林区举黑沟至麻湾村一带的地表沟壑.采用随机点验证法对实验区域内的沟壑提取结果进行了精度评价,结果表明该方法的总体精度为92%,能有效弥合数据中的断裂区域,同时剔除伪沟壑区域,达到提高沟壑提取精度的目的.

       

    • 图  1  基于DEM和高分辨率遥感影像的“膨胀-融合”地表沟壑提取方法总体流程

      Fig.  1.  The flow chart of surface gully "expansion-fusion" extraction method based on DEM and high-resolution remote sensing image

      图  2  多源沟壑数据的膨胀与融合方法流程图

      Fig.  2.  The flow chart of expansion and fusion method of multi-source gully data

      图  3  基于DEM提取沟谷线

      Fig.  3.  Extracting gully lines based on DEM

      图  4  面向对象分类结果

      a.原始影像;b.面向对象分类结果

      Fig.  4.  The result of object-oriented classification

      图  5  膨胀后的沟谷线

      Fig.  5.  The expanded gully lines

      图  6  沟壑提取结果

      0~3表示灰度值

      Fig.  6.  The results of gully extraction

      表  1  分类规则

      Table  1.   The rules of classification

      目标特征 长/宽 主方向纹理特征 坡度 归一化植被指数 灰度共生矩阵
      Forest < 30° > 0.2 124~129
      Road > 2 70°~110° 114~123
      Gully 80°~130° > 20° 122~128
      Farm < 30° 0.21~0.30 90~110
      下载: 导出CSV

      表  2  精度评价矩阵

      Table  2.   The accuracy evaluation matrix

      指标 沟壑提取精度 非沟壑提取精度 总体精度
      水文分析法 61.1% 89.6% 84.5%
      坡向变率法 55.6% 81.1% 76.5%
      面向对象的分类法 75% 91.5% 88.5%
      融合提取方法 83.3% 93.9% 92%
      下载: 导出CSV
    • [1] Band, L.E., 1986.Topographic Partition of Watershed with Digital Elevation Models.Water Resources Research, 22(1):15-24. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/WR022i001p00015
      [2] Cao, B., Qin, Q.M., Ma, H.J., et al., 2006.Application of Object-Oriented Approach to SPOT5 Image Classification:A Case Study in Haidian District, Beijing City.Geography and Geo-Information Science, 22(2):46-49(in Chinese with English abstract).
      [3] Chen, T., Zhou, R.L., Zhu, D.Y., et al., 2011.Comparative Study on Two Line Algorithm Methods of Terrain Feature Extraction Based on DEM.Forest Inventory and Planning, 36(6):1-4(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lydcgh201106001
      [4] Hou, Q.Q., Wang, F., Yan, L., 2013.Extraction of Color Image Texture Feature Based on Gray-Level Co-Occurrence Matrix.Remote Sensing for Land & Resources, 25(4):26-32(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/gtzyyg201304005
      [5] Huang, X.J., Wu, Z.H., Huang, X.L., et al., 2018.Tectonic Geomorphology Constrains on Quaternary Activity and Segmentation along Chenghai-Binchuan Fault Zone in Northwest Yunnan, China.Earth Science, 43(12):4651-4670 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201812027
      [6] Jin, F., 2013.Research on Residents Extraction of RS Images Based on Texture Features (Dissertation).PLA Information Engineering University, Zhengzhou(in Chinese with English abstract).
      [7] Li, B.B., Huang, L., 2013.Study on Recognition of the Gully in Loess Hilly-Gully Region Based on Object-Oriented Technology.Research of Soil and Water Conservation, 20(3):115-119(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/stbcyj201303022
      [8] Liu, X., Lü, X.B., Wu, C.M., et al., 2020.Topographic Correction Method for High Spatial Resolution Remote Sensing Data in Mountainous Area.Earth Science, 45(2):645-662 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx202002022
      [9] Liu, X.J., Wang, Y.J., Ren, Z., et al., 2008.Algorithm for Extracting Drainage Network Based on Triangulated Irregular Network.Journal of Hydraulic Engineering.39(1):27-34(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=slxb200801005
      [10] Knight, J., Spencer, J., Brooks, A., et al., 2007.Large-Area, High-Resolution Remote Sensing Based Mapping of Alluvial Gully Erosion in Australia's Tropical Rivers.Proceedings of the 5th Australia Stream Management Conference.Charles Sturt University, 199-204.
      [11] Martz, W., de Jong, E., 1988.Catch:A Fortran Program for Measuring Catchment Area from Digital Elevation Model.Computers & Geosciences, 14(5):627-640. https://doi.org/10.1016/0098-3004(88)90018-0
      [12] O'Callaghan, J.F., Mark, D.M., 1984.The Extraction of Drainage Networks from Digital Elevation Data.Computer Vision, Graphics, and Image Processing, 28(3):323-344. doi: 10.1021-ja202159e/
      [13] Prosser, I.P., Slade, C.J., 1994.Gully Formation and the Role of Valley-Floor Vegetation, Southeastern Australia.Geology, 22(12):1127.
      [14] Rajesh, B.V.S., Norman, K., Victor, J., 2011.Object-Based Gully Feature Extraction Using High Spatial Resolution Imagery.Geomorphology, 134(3-4):260-268. https://doi.org/10.1016/j.geomorph.2011.07.003
      [15] Tang, G.A., Li, F.Y., Liu, X.J., 2010.Digital Elevation Model Tutorial.Science Press, Beijing, 145-149, 157-158 (in Chinese).
      [16] Wang, W.C., Zou, W.B., 2013.Methods of Extraction in High Resolution Remote Sensing Image Information.Beijing Surveying and Mapping, (4):1-5(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/jsjgcyyy201813001
      [17] Wood, J.D., 1996.The Geomorphological Characterization of Digital Elevation Model (Dissertation).University of Leicester, UK.
      [18] Wu, L.C., 2005.A Research on Gully Characteristics and Their Spatial Variance Based on DEM in the Loess Plateau (Dissertation).Northwest University, Xi'an(in Chinese with English abstract).
      [19] Xie, Y.Q., Tang, G.A., Jiang, L., 2013.Characteristics and Correcting Methods of Errors in Extraction of SOA Based on DEMs.Geography and Geo-Information Science, 29(2):49-53(in Chinese with English abstract).
      [20] Zhang, W., Wu, X., Lu, C.J., et al., 2016.Determination of Flow Accumulation Threshold Based on Multiple Regression Model in Raster River Networks Extraction.Transactions of the Chinese Society for Agricultural Machinery, 47(10):131-138 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/nyjxxb201610018
      [21] Zhu, C.M., Luo, J.C., Shen, Z.F., et al., 2013.River Liner Water Adaptive Auto-Extraction on Remote Sensing Image Aided by DEM.Acta Geodaetica et Cartographica Sinica, 42(2):277-283(in Chinese with English abstract).
      [22] 曹宝, 秦其明, 马海建, 等, 2006.面向对象方法在SPOT5遥感图像分类中的应用:以北京市海淀区为例.地理与地理信息科学, 22(2):46-49. http://d.old.wanfangdata.com.cn/Periodical/dlxygtyj200602012
      [23] 陈婷, 周汝良, 朱大运, 等, 2011.基于DEM的2种提取地形特征线算法对比研究.林业调查规划, 36(6):1-4. http://d.old.wanfangdata.com.cn/Periodical/lydcgh201106001
      [24] 侯群群, 王飞, 严丽, 2013.基于灰度共生矩阵的彩色遥感图像纹理特征提取.国土资源遥感, 25(4):26-32. http://d.old.wanfangdata.com.cn/Periodical/gtzyyg201304005
      [25] 黄小巾, 吴中海, 黄小龙, 等, 2018.滇西北程海-宾川断裂带第四纪分段活动性的构造地貌表现与限定.地球科学, 43(12):4651-4670. doi: 10.3799/dqkx.2017.548
      [26] 金飞, 2013.基于纹理特征的遥感影像居民地提取技术研究(博士学位论文).郑州: 解放军信息工程大学.
      [27] 李斌兵, 黄磊, 2013.基于面向对象技术的黄土丘陵沟壑区切沟遥感提取方法研究.水土保持研究, 20(3):115-119. http://d.old.wanfangdata.com.cn/Periodical/stbcyj201303022
      [28] 柳潇, 吕新彪, 吴春明, 等, 2020.面向高空间分辨率遥感影像的山区地形校正方法.地球科学, 45(2):645-662. doi: 10.3799/dqkx.2019.012
      [29] 刘学军, 王永君, 任政, 等, 2008.基于不规则三角网的河网提取算法.水利学报, 39(1):27-34. http://d.old.wanfangdata.com.cn/Periodical/slxb200801005
      [30] 汤国安, 李发源, 刘学军, 2010.数字高程模型教程.北京:科学出版社, 145-149, 157-158.
      [31] 王伟超, 邹维宝, 2013.高分辨率遥感影像信息提取方法综述.北京测绘, (4):1-5. http://d.old.wanfangdata.com.cn/Periodical/bjch201304001
      [32] 吴良超, 2005.基于DEM的黄土高原沟壑特征及其空间分异规律研究(硕士学位论文).西安: 西北大学.
      [33] 谢轶群, 汤国安, 江岭, 2013.DEM提取坡向变率中的误差特征与消除方法.地理与地理信息科学, 29(2):49-53. http://d.old.wanfangdata.com.cn/Periodical/dlxygtyj201302011
      [34] 张唯, 伍霞, 卢灿炯, 等, 2016.基于多元回归的栅格水系阈值计算模型.农业机械学报, 47(10):131-138. http://d.old.wanfangdata.com.cn/Periodical/nyjxxb201610018
      [35] 朱长明, 骆剑承, 沈占锋, 等, 2013.DEM辅助下的河道细小线性水体自适应迭代提取.测绘学报, 42(2):277-283. http://d.old.wanfangdata.com.cn/Periodical/chxb201302017
    • 加载中
    图(6) / 表(2)
    计量
    • 文章访问数:  942
    • HTML全文浏览量:  105
    • PDF下载量:  45
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-09-30
    • 刊出日期:  2020-06-15

    目录

      /

      返回文章
      返回