"Expansion-Fusion" Extraction of Surface Gully Area Based on DEM and High-Resolution Remote Sensing Images
-
摘要: 地表沟壑的精细化提取是地形地貌特征的重要内容.针对现有沟壑提取结果中存在断裂区域和伪沟壑区域的情况,提出一种基于DEM和高分辨率遥感影像的地表沟壑“膨胀-融合”式提取方法.该方法综合了D8算法、坡向变率算法和面向对象分类方法的提取结果,首先引入距离制图算法对初始沟壑进行方向性膨胀,然后通过栅格重分类和代数运算进行沟壑融合,剔除伪沟壑区域,最终实现研究区域内沟壑的精细化提取.以GDEM v2数据和高分二号影像数据为数据源,精细化提取了湖北省神农架林区举黑沟至麻湾村一带的地表沟壑.采用随机点验证法对实验区域内的沟壑提取结果进行了精度评价,结果表明该方法的总体精度为92%,能有效弥合数据中的断裂区域,同时剔除伪沟壑区域,达到提高沟壑提取精度的目的.Abstract: Refined extraction of surface gullies is an important part of topography research. Aiming at the existence of fracture zones and a pseudo-gully zones in the existing gully extraction results,in this paper,it proposes an "expansion-fusion" extraction method based on DEM and high-resolution remote sensing image. The method combines the D8 algorithm,the SOA (slope of aspect) algorithm and the object-oriented classification method to extract the results. Firstly,the distance mapping algorithm is introduced to directional expansion of the initial gully,and then the raster re-classification and algebraic operation are used to merge the gully and eliminate the pseudo-gully. In this study,this method is adopted to extract gully area with GDEM v2 data and GF-2 data covering the area of Juheigou to Mawancun in Shennongjia Forest of Hubei Province. The random point verification method is used to evaluate the accuracy of the gully extraction in the experimental area. The results show that the overall accuracy of the method is 92%,which can effectively bridge the fracture area in the combined data,and eliminate the pseudo-gully area to improve the extraction accuracy of the gully.
-
表 1 分类规则
Table 1. The rules of classification
目标特征 长/宽 主方向纹理特征 坡度 归一化植被指数 灰度共生矩阵 Forest < 30° > 0.2 124~129 Road > 2 70°~110° 114~123 Gully 80°~130° > 20° 122~128 Farm < 30° 0.21~0.30 90~110 表 2 精度评价矩阵
Table 2. The accuracy evaluation matrix
指标 沟壑提取精度 非沟壑提取精度 总体精度 水文分析法 61.1% 89.6% 84.5% 坡向变率法 55.6% 81.1% 76.5% 面向对象的分类法 75% 91.5% 88.5% 融合提取方法 83.3% 93.9% 92% -
[1] Band, L.E., 1986.Topographic Partition of Watershed with Digital Elevation Models.Water Resources Research, 22(1):15-24. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/WR022i001p00015 [2] Cao, B., Qin, Q.M., Ma, H.J., et al., 2006.Application of Object-Oriented Approach to SPOT5 Image Classification:A Case Study in Haidian District, Beijing City.Geography and Geo-Information Science, 22(2):46-49(in Chinese with English abstract). [3] Chen, T., Zhou, R.L., Zhu, D.Y., et al., 2011.Comparative Study on Two Line Algorithm Methods of Terrain Feature Extraction Based on DEM.Forest Inventory and Planning, 36(6):1-4(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lydcgh201106001 [4] Hou, Q.Q., Wang, F., Yan, L., 2013.Extraction of Color Image Texture Feature Based on Gray-Level Co-Occurrence Matrix.Remote Sensing for Land & Resources, 25(4):26-32(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/gtzyyg201304005 [5] Huang, X.J., Wu, Z.H., Huang, X.L., et al., 2018.Tectonic Geomorphology Constrains on Quaternary Activity and Segmentation along Chenghai-Binchuan Fault Zone in Northwest Yunnan, China.Earth Science, 43(12):4651-4670 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201812027 [6] Jin, F., 2013.Research on Residents Extraction of RS Images Based on Texture Features (Dissertation).PLA Information Engineering University, Zhengzhou(in Chinese with English abstract). [7] Li, B.B., Huang, L., 2013.Study on Recognition of the Gully in Loess Hilly-Gully Region Based on Object-Oriented Technology.Research of Soil and Water Conservation, 20(3):115-119(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/stbcyj201303022 [8] Liu, X., Lü, X.B., Wu, C.M., et al., 2020.Topographic Correction Method for High Spatial Resolution Remote Sensing Data in Mountainous Area.Earth Science, 45(2):645-662 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx202002022 [9] Liu, X.J., Wang, Y.J., Ren, Z., et al., 2008.Algorithm for Extracting Drainage Network Based on Triangulated Irregular Network.Journal of Hydraulic Engineering.39(1):27-34(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=slxb200801005 [10] Knight, J., Spencer, J., Brooks, A., et al., 2007.Large-Area, High-Resolution Remote Sensing Based Mapping of Alluvial Gully Erosion in Australia's Tropical Rivers.Proceedings of the 5th Australia Stream Management Conference.Charles Sturt University, 199-204. [11] Martz, W., de Jong, E., 1988.Catch:A Fortran Program for Measuring Catchment Area from Digital Elevation Model.Computers & Geosciences, 14(5):627-640. https://doi.org/10.1016/0098-3004(88)90018-0 [12] O'Callaghan, J.F., Mark, D.M., 1984.The Extraction of Drainage Networks from Digital Elevation Data.Computer Vision, Graphics, and Image Processing, 28(3):323-344. doi: 10.1021-ja202159e/ [13] Prosser, I.P., Slade, C.J., 1994.Gully Formation and the Role of Valley-Floor Vegetation, Southeastern Australia.Geology, 22(12):1127. [14] Rajesh, B.V.S., Norman, K., Victor, J., 2011.Object-Based Gully Feature Extraction Using High Spatial Resolution Imagery.Geomorphology, 134(3-4):260-268. https://doi.org/10.1016/j.geomorph.2011.07.003 [15] Tang, G.A., Li, F.Y., Liu, X.J., 2010.Digital Elevation Model Tutorial.Science Press, Beijing, 145-149, 157-158 (in Chinese). [16] Wang, W.C., Zou, W.B., 2013.Methods of Extraction in High Resolution Remote Sensing Image Information.Beijing Surveying and Mapping, (4):1-5(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/jsjgcyyy201813001 [17] Wood, J.D., 1996.The Geomorphological Characterization of Digital Elevation Model (Dissertation).University of Leicester, UK. [18] Wu, L.C., 2005.A Research on Gully Characteristics and Their Spatial Variance Based on DEM in the Loess Plateau (Dissertation).Northwest University, Xi'an(in Chinese with English abstract). [19] Xie, Y.Q., Tang, G.A., Jiang, L., 2013.Characteristics and Correcting Methods of Errors in Extraction of SOA Based on DEMs.Geography and Geo-Information Science, 29(2):49-53(in Chinese with English abstract). [20] Zhang, W., Wu, X., Lu, C.J., et al., 2016.Determination of Flow Accumulation Threshold Based on Multiple Regression Model in Raster River Networks Extraction.Transactions of the Chinese Society for Agricultural Machinery, 47(10):131-138 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/nyjxxb201610018 [21] Zhu, C.M., Luo, J.C., Shen, Z.F., et al., 2013.River Liner Water Adaptive Auto-Extraction on Remote Sensing Image Aided by DEM.Acta Geodaetica et Cartographica Sinica, 42(2):277-283(in Chinese with English abstract). [22] 曹宝, 秦其明, 马海建, 等, 2006.面向对象方法在SPOT5遥感图像分类中的应用:以北京市海淀区为例.地理与地理信息科学, 22(2):46-49. http://d.old.wanfangdata.com.cn/Periodical/dlxygtyj200602012 [23] 陈婷, 周汝良, 朱大运, 等, 2011.基于DEM的2种提取地形特征线算法对比研究.林业调查规划, 36(6):1-4. http://d.old.wanfangdata.com.cn/Periodical/lydcgh201106001 [24] 侯群群, 王飞, 严丽, 2013.基于灰度共生矩阵的彩色遥感图像纹理特征提取.国土资源遥感, 25(4):26-32. http://d.old.wanfangdata.com.cn/Periodical/gtzyyg201304005 [25] 黄小巾, 吴中海, 黄小龙, 等, 2018.滇西北程海-宾川断裂带第四纪分段活动性的构造地貌表现与限定.地球科学, 43(12):4651-4670. doi: 10.3799/dqkx.2017.548 [26] 金飞, 2013.基于纹理特征的遥感影像居民地提取技术研究(博士学位论文).郑州: 解放军信息工程大学. [27] 李斌兵, 黄磊, 2013.基于面向对象技术的黄土丘陵沟壑区切沟遥感提取方法研究.水土保持研究, 20(3):115-119. http://d.old.wanfangdata.com.cn/Periodical/stbcyj201303022 [28] 柳潇, 吕新彪, 吴春明, 等, 2020.面向高空间分辨率遥感影像的山区地形校正方法.地球科学, 45(2):645-662. doi: 10.3799/dqkx.2019.012 [29] 刘学军, 王永君, 任政, 等, 2008.基于不规则三角网的河网提取算法.水利学报, 39(1):27-34. http://d.old.wanfangdata.com.cn/Periodical/slxb200801005 [30] 汤国安, 李发源, 刘学军, 2010.数字高程模型教程.北京:科学出版社, 145-149, 157-158. [31] 王伟超, 邹维宝, 2013.高分辨率遥感影像信息提取方法综述.北京测绘, (4):1-5. http://d.old.wanfangdata.com.cn/Periodical/bjch201304001 [32] 吴良超, 2005.基于DEM的黄土高原沟壑特征及其空间分异规律研究(硕士学位论文).西安: 西北大学. [33] 谢轶群, 汤国安, 江岭, 2013.DEM提取坡向变率中的误差特征与消除方法.地理与地理信息科学, 29(2):49-53. http://d.old.wanfangdata.com.cn/Periodical/dlxygtyj201302011 [34] 张唯, 伍霞, 卢灿炯, 等, 2016.基于多元回归的栅格水系阈值计算模型.农业机械学报, 47(10):131-138. http://d.old.wanfangdata.com.cn/Periodical/nyjxxb201610018 [35] 朱长明, 骆剑承, 沈占锋, 等, 2013.DEM辅助下的河道细小线性水体自适应迭代提取.测绘学报, 42(2):277-283. http://d.old.wanfangdata.com.cn/Periodical/chxb201302017