Segmentation of Region of Interest and Identification of Rock Discontinuities in Digital Borehole Images
-
摘要: 针对现有数字钻孔图像分析技术的不足,提出新分析方案以实现数字钻孔摄像技术(BCT)所采集钻孔内壁图像的自动化、定量化结构面检测、识别与分析.首先,对数字钻孔图像进行预处理,设计特征信号DH,检测并获取兴趣区域;然后,使用低精度Hough变换快速检测结构面兴趣区域内的结构面分布特征,利用聚类算法分离出单一结构面后,针对单一结构面进行亚像素级Hough变换,以获取结构面的正弦参数;最后,根据结构面正弦参数,计算出结构面的倾向、倾角等信息.通过对如美水电站左坝肩数字钻孔图像实例进行分析,利用本算法完成图像中结构面的自动分割与特征识别,成功获取其几何信息,并与传统人工辅助方案结果进行对比,验证了该算法的可靠性.Abstract: Aiming at the limitations of previous Digital Borehole Image Analysis Technology, a new analysis scheme to realize automatic quantitative analysis of borehole inner wall images collected by Borehole Camera Technology (BCT) was developed. First, feature signal DH was designed to detect the pre-treated image and obtain Region of Interest (ROI) automatically. Second, low accuracy Hough transform was used to detect the distribution of discontinuities in the ROI rapidly. After separating discontinuities with clustering algorithm, the sub-pixel Hough transform was carried out for single discontinuity to obtain its sine parameters. Finally, the dip direction and dip of each single discontinuity were calculated using its sine parameters. In the case study, the automatic segmentation and feature recognition of the discontinuities in the digital images from the left bank of Rumei hydropower station were completed using proposed method, and the geometric data of discontinuities matched with the results of traditional artificial assistance method, verifying the reliability of proposed method.
-
表 1 产状计算结果对比
Table 1. Comparison of calculation results of attitude
编号 深度(m) 产状(°) 误差(°) 自动识别 人工识别 倾向 倾角 最大误差 倾向 倾角 倾向 倾角 D1-1 66.92 9.8 16.1 9.3 16.4 0.5 0.3 0.5 D1-2 67.09 35.3 16.2 31.2 14.4 4.1 1.8 4.1 D2-1 97.14 355.5 9.6 359.4 8.0 3.9 1.6 3.9 D2-2 97.75 344.0 15.8 347.3 16.9 3.3 1.1 3.3 D2-3 97.85 358.3 20.2 3.1 18.7 4.8 1.5 4.8 D3-1 105.86 229.7 1.6 233.1 6.3 3.4 4.7 4.7 D3-2 106.16 317.6 27.3 313.7 29.1 3.9 1.8 3.9 D3-3 106.38 40.4 15.8 36.5 19.7 3.9 3.9 3.9 D3-4 106.51 312.5 21.6 316.4 20.5 3.9 1.1 3.9 D3-5 106.69 298.7 8.0 302.9 11.9 4.2 3.9 4.2 D4-1 98.11 137.7 9.6 134.8 8.9 2.9 0.7 2.9 D4-2 98.30 209.4 27.3 213.2 35.4 3.8 8.1 8.1 D4-3 98.61 203.6 19.4 201.2 21.3 2.4 1.9 2.4 D4-4 98.68 163.5 20.2 165.8 17.4 2.3 2.8 2.8 D4-5 98.80 186.4 6.4 189.5 8.9 3.1 2.5 3.1 D4-6 98.84 192.2 19.4 193.8 20.6 1.6 1.2 1.6 D4-7 98.87 192.2 24.3 191.5 24.9 0.7 0.6 0.7 D4-8 99.20 134.3 5.6 138.1 3.9 3.8 1.7 3.8 -
[1] Al-Sit, W., Al-Nuaimy, W., Marelli, M., et al., 2015. Visual Texture for Automated Characterisation of Geological Features in Borehole Televiewer Imagery. Journal of Applied Geophysics, 119:139-146. https://doi.org/10.1016/j.jappgeo.2015.05.015 [2] Assous, S., Elkington, P., Clark, S., et al., 2014. Automated Detection of Planar Geologic Features in Borehole Images. Geophysics, 79(1):D11-D19. https://doi.org/10.1190/geo2013-0189.1 [3] Ballard, D. H., 1987. Generalizing the Hough Transform to Detect Arbitrary Shapes. Pattern Recognition, 13(2):714-725. https://doi.org/10.1016/0031-3203(81)90009-1 [4] Cao, Y.B., Yan, E.C., Hu, D.X., et al., 2014. Calculation Methods of Rock Mass Discontinuity Orientation Measured by Borehole Camera Technology and Technology Reliability. Earth Science, 39(4):473-480 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2014.045 [5] Chen, Z.Y., 2003. Soil Slope Stability Analysis. China Water Power Press, Beijing (in Chinese). [6] Cunningham, K. J., 2004. Application of Ground-Penetrating Radar, Digital Optical Borehole Images, and Cores for Characterization of Porosity Hydraulic Conductivity and Paleokarst in the Biscayne Aquifer, Southeastern Florida, USA. Journal of Applied Geophysics, 55(1/2):61-76. https://doi.org/10.1016/j.jappgeo.2003.06.005 [7] Ester, M., Kriegel, H.P., Sander, J., et al., 1996. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. Kdd, 96(34):226-231. [8] Fan, L.M., Li, N., 2005. Study on Rock Mass Joint Measurement Based on Digital Photogrammetry. Chinese Journal of Rock Mechanics and Engineering, 24(5):792-797 (in Chinese). http://www.researchgate.net/publication/292562349_Study_on_rock_mass_joint_measurement_based_on_digital_photogrammetry [9] Ge, Y.F., Tang, H.M., Huang, L., et al., 2012. A New Representation Method for Three-Dimensional Joint Roughness Coefficient of Rock Mass Discontinuities. Chinese Journal of Rock Mechanics and Engineering, 31(12):2508-2517 (in Chinese). http://d.wanfangdata.com.cn/Periodical/yslxygcxb201212015 [10] Ge, Y.F., Xia, D., Tang, H.M., et al., 2017. Intelligent Identification and Extraction of Geometric Properties of Rock Discontinuities Based on Terrestrial Laser Scanning. Chinese Journal of Rock Mechanics and Engineering, 36(12):3050-3061 (in Chinese with English abstract). http://www.researchgate.net/publication/325944277_Intelligent_identification_and_extraction_of_geometric_properties_of_rock_discontinuities_based_on_terrestrial_laser_scanning [11] Glossop, K., Lisboa, P. J. G., Russell, P. C., et al., 1999. An Implementation of the Hough Transformation for the Identification and Labelling of Fixed Period Sinusoidal Curves. Computer Vision and Image Understanding, 74(1):96-100. https://doi.org/10.1006/cviu.1999.0747 [12] Huang, D., Zhong, Z., 2015. A Universal Mathematical Method for Determining Occurrence of Underground Rock Discontinuity Based on TV Picture of Wall of a Single Borehole. Earth Science, 40(6):1101-1106 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2015.092 [13] Huang, F.M., Yin, K.L., Yang, B.B., et al., 2018. Step-Like Displacement Prediction of Landslide Based on Time Series Decomposition and Multivariate Chaotic Model. Earth Science, 43(3):887-898 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201803020.htm [14] Huang, L., 2014. Correction of Geometric Deviation of Rock Mass Structural Plane Caused by Line Sampling (Dissertation). China University of Geosciences, Wuhan (in Chinese). [15] Malone, T., Hubbard, B., Mertonlyn, D., et al., 2013. Borehole and Ice Feature Annotation Tool (BIFAT):A Program for the Automatic and Manual Annotation of Glacier Borehole Images. Computers & Geosciences, 51:381-389. https://doi.org/10.1016/j.cageo.2012.09.002 [16] Mohan, A., Poobal, S., 2017. Crack Detection Using Image Processing:A Critical Review and Analysis. Alexandria Engineering Journal, 57(2):787-798. https://doi.org/10.1016/j.aej.2017.01.020 [17] Sun, G.Z., 1993. On the Theory of Structure-Controlled Rockmass. Journal of Engineering Geology, 1(1):14-18 (in Chinese). http://www.researchgate.net/publication/285163319_On_the_theory_of_structure-controlled_rockmass [18] Tang, H. M., Wasowski, J., Juang, C. H., 2019. Geohazards in the Three Gorges Reservoir Area, China-Lessons Learned from Decades of Research. Engineering Geology, 261:105267. https://doi.org/10.1016/j.enggeo.2019.105267 [19] Wang, C.Y., Ge, X.R., Bai, S.W., 2001a. Axial View Panoramic Borehole TV and Its Application. Chinese Journal of Rock Mechanics and Engineering, 20(z1):1687-1691 (in Chinese with English abstract). http://www.researchgate.net/publication/286361531_Axial_view_panoramic_borehole_TV_and_its_application [20] Wang, C.Y., Ge, X.R., Bai, S.W., 2001b. The Digital Panoramic Borehole Camera System and Its Application. Rock and Soil Mechanics, 22(4):522-525 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTLX200104040.htm [21] Wang, C.Y., Tim, L.K., 2005. Review of Borehole Camera Technology. Chinese Journal of Rock Mechanics and Engineering, 24(19):3440-3448 (in Chinese with English abstract). http://ci.nii.ac.jp/naid/10030726096 [22] Wang, C.Y., Zhong, S., Sun, W.C., 2009. Study of Connectivity of Discontinuities of Borehole Based on Digital Borehole Images. Chinese Journal of Rock Mechanics and Engineering, 28(12):2405-2410 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/yslxygcxb200912004 [23] Wang, F., Yin, K.L., Gui, L., et al., 2018. Risk Analysis on Individual Reservoir Bank Landslide and Its Generated Wave. Earth Science, 43(3):899-909 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201803021.htm [24] Yang, T.H., Yu, Q.L., Chen, S.K., et al., 2009. Rock Mass Structure Digital Recognition and Hydro-Mechanical Parameters Characterization of Sandstone in Fangezhuang Coal Mine. Chinese Journal of Rock Mechanics and Engineering, 28(12):2482-2489 (in Chinese with English abstract) http://www.researchgate.net/publication/289917514_Rock_mass_structure_digital_recognition_and_hydro-mechanical_parameters_characterization_of_sandstone_in_Fangezhuang_coal_mine [25] Zhou, W., Maerz, N. H., 2002. Implementation of Multivariate Clustering Methods for Characterizing Discontinuities Data from Scanlines and Oriented Boreholes. Computers & Geosciences, 28(7):827-839. https://doi.org/10.1016/S0098-3004(01)00111-X [26] Zohreh, M., Junin, R., Jeffreys, P., 2014. Evaluate the Borehole Condition to Reduce Drilling Risk and Avoid Potential Well Bore Damages by Using Image Logs. Journal of Petroleum Science and Engineering, 122:318-330. https://doi.org/10.1016/j.petrol.2014.07.027 [27] Zou, X.J., Wang, C.Y., Han, Z.Q., et al., 2017. Fully Automatic Identifying the Structural Planes with Panoramic Images of Boreholes. Chinese Journal of Rock Mechanics and Engineering, 36(8):1910-1920 (in Chinese with English abstract). http://www.researchgate.net/publication/320440911_Fully_automatic_identifying_the_structural_planes_with_panoramic_images_of_boreholes [28] 曹洋兵, 晏鄂川, 胡德新, 等, 2014.岩体结构面产状测量的钻孔摄像技术及其可靠性.地球科学, 39(4):473-480. doi: 10.3799/dqkx.2014.045 [29] 陈祖煜, 2003.土质边坡稳定分析:原理·方法·程序.北京:中国水利水电出版社. [30] 范留明, 李宁, 2005.基于数码摄影技术的岩体裂隙测量方法初探.岩石力学与工程学报, 24(5):792-797. http://d.wanfangdata.com.cn/Periodical/yslxygcxb200505010 [31] 葛云峰, 唐辉明, 黄磊, 等, 2012.岩体结构面三维粗糙度系数表征新方法.岩石力学与工程学报, 31(12):2508-2517. http://d.wanfangdata.com.cn/Periodical/yslxygcxb201212015 [32] 葛云峰, 夏丁, 唐辉明, 等, 2017.基于三维激光扫描技术的岩体结构面智能识别与信息提取.岩石力学与工程学报, 36(12):3050-3061. http://www.cqvip.com/QK/96026X/201712/674204582.html [33] 黄达, 钟助, 2015.基于单个钻孔孔壁电视图像确定地下岩体结构面产状的普适数学方法.地球科学, 40(6):1101-1106. doi: 10.3799/dqkx.2015.092 [34] 黄发明, 殷坤龙, 杨背背, 等, 2018.基于时间序列分解和多变量混沌模型的滑坡阶跃式位移预测.地球科学, 43(3):887-898. doi: 10.3799/dqkx.2018.909 [35] 黄磊, 2014.测线取样法引起的岩体结构面几何偏差纠正(博士学位论文).武汉: 中国地质大学. [36] 孙广忠, 1993.论"岩体结构控制论".工程地质学报, 1(1):14-18. [37] 王川婴, 葛修润, 白世伟, 2001a.前视全景钻孔电视及其应用.岩石力学与工程学报, 20(z1):1687-1691. http://d.wanfangdata.com.cn/Periodical/yslxygcxb2001z1015 [38] 王川婴, 葛修润, 白世伟, 2001b.数字式全景钻孔摄像系统及应用.岩土力学, 22(4):522-525. http://d.wanfangdata.com.cn/Periodical/ytlx200104037 [39] 王川婴, Tim, L.K., 2005.钻孔摄像技术的发展与现状.岩石力学与工程学报, 24(19):3440-3448. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb200519006 [40] 王川婴, 钟声, 孙卫春, 2009.基于数字钻孔图像的结构面连通性研究.岩石力学与工程学报, 28(12):2405-2410. http://d.wanfangdata.com.cn/Periodical/yslxygcxb200912004 [41] 王芳, 殷坤龙, 桂蕾, 等, 2018.单体库岸滑坡及其次生涌浪灾害风险分析.地球科学, 43(3):899-909 doi: 10.3799/dqkx.2018.910 [42] 杨天鸿, 于庆磊, 陈仕阔, 等, 2009.范各庄煤矿砂岩岩体结构数字识别及参数表征.岩石力学与工程学报, 28(12):2482-2489. http://www.cqvip.com/Main/Detail.aspx?id=32423310 [43] 邹先坚, 王川婴, 韩增强, 等, 2017.全景钻孔图像中结构面全自动识别方法研究.岩石力学与工程学报, 36(8):1910-1920. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201708009