• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    青藏高原北缘玉门红柳峡硅化木成因及其揭示的早白垩世构造及环境

    王军 任文秀 李通国 黄万堂 彭措 冯备战 王玉玺 杨国林 胡振波

    王军, 任文秀, 李通国, 黄万堂, 彭措, 冯备战, 王玉玺, 杨国林, 胡振波, 2020. 青藏高原北缘玉门红柳峡硅化木成因及其揭示的早白垩世构造及环境. 地球科学, 45(11): 4143-4152. doi: 10.3799/dqkx.2020.002
    引用本文: 王军, 任文秀, 李通国, 黄万堂, 彭措, 冯备战, 王玉玺, 杨国林, 胡振波, 2020. 青藏高原北缘玉门红柳峡硅化木成因及其揭示的早白垩世构造及环境. 地球科学, 45(11): 4143-4152. doi: 10.3799/dqkx.2020.002
    Wang Jun, Ren Wenxiu, Li Tongguo, Huang Wantang, Peng Cuo, Feng Beizhan, Wang Yuxi, Yang Guolin, Hu Zhenbo, 2020. Environment and Tectonic Evolution during Early Cretaceous in Yumen Basin: Evidence from Silicified Woods in Northern Margin of Tibetan Plateau. Earth Science, 45(11): 4143-4152. doi: 10.3799/dqkx.2020.002
    Citation: Wang Jun, Ren Wenxiu, Li Tongguo, Huang Wantang, Peng Cuo, Feng Beizhan, Wang Yuxi, Yang Guolin, Hu Zhenbo, 2020. Environment and Tectonic Evolution during Early Cretaceous in Yumen Basin: Evidence from Silicified Woods in Northern Margin of Tibetan Plateau. Earth Science, 45(11): 4143-4152. doi: 10.3799/dqkx.2020.002

    青藏高原北缘玉门红柳峡硅化木成因及其揭示的早白垩世构造及环境

    doi: 10.3799/dqkx.2020.002
    基金项目: 

    国家自然科学基金项目 41730637

    国家自然科学基金项目 41571003

    国家自然科学基金项目 41871001

    详细信息
      作者简介:

      王军(1986-), 男, 博士研究生, 高级工程师, 从事古生物化石与区域地质相关研究工作.ORCID:0000-0002-0659-647X.E-mail:wangjunlzu@Foxmail.com

      通讯作者:

      任文秀, E-mail:ldwxren@163.com

    • 中图分类号: P52

    Environment and Tectonic Evolution during Early Cretaceous in Yumen Basin: Evidence from Silicified Woods in Northern Margin of Tibetan Plateau

    • 摘要: 位于青藏高原北缘玉门盆地红柳峡一带的硅化木化石带是高原北缘地区唯一一处集中连片分布的白垩纪硅化木化石森林带,这种古生物的集群死亡和埋藏常常伴随地球演化灾变性构造事件.首次对该区域产出的硅化木特征及其赋存层位进行了报导,并进一步探讨了该区白垩纪原型盆地的早期演化以及硅化木的成因过程.结果表明:青藏高原北缘玉门盆地早白垩世经历了湖盆的发育、扩展和收缩3个阶段.在早白垩世早期,玉门盆地开始发育并逐渐扩展,该时期气候高温潮湿,在盆地滨湖区域生长了巨大的松柏类乔木森林带;在约102~120 Ma的早白垩世期间,随着阿尔金断裂再次复活,玉门盆地发生大规模的火山喷发,导致盆地植被大面积焚烧死亡和埋藏,最终碳化硅化形成现今集中连片分布的硅化木化石带.早白垩世以来,随着阿尔金断裂持续的左行走滑和向北东方向的扩展,玉门盆地被不断抬升并发生构造旋转,使得下沟组硅化木得以重见天日.

       

    • 图  1  研究区所处的大地构造位置(a)及地质简图(b)

      Fig.  1.  Tectonic location of the study area (a) and geological sketch map (b)

      图  2  玉门魔山国家地质公园主要地质遗迹

      a.泥岩差异性分化形成的波浪谷;b.丹霞地貌;c.硅化木;d.火山口

      Fig.  2.  Major geological heritages in the Yumen Magic Mountain National Geopark

      图  3  玉门红柳峡硅化木平面分布图

      Fig.  3.  Distribution map of the silicified woods in Yumen Hongliuxia basin

      图  4  玉门红柳峡硅化木产出特征

      硅化木照片对应于图 3的位置分别是: a.G01; b.G02; c.G05; d.G10; e.G09; f.G23; g.G29; h.G30; i.G55; j.G51; k.G58; l.G91; m.G77; h.G106; o.G109

      Fig.  4.  Attitude of the silicified woods in Yumen Hongliuxia basin

      图  5  红柳峡下沟组实测剖面(a)及其基本层序(b, c, d)

      Fig.  5.  Geological section of the Xiagou Formation (a) and the basic sequence (b, c, d)

      上覆地层:中沟组紫红色厚-块状砾岩 > 228.43 m
      ----------------整合----------------
      6 灰绿色薄-中层粉砂质泥岩与紫红色厚-块状砾岩韵律互层,由下往上逐渐变粗 37.15 m
      5 灰绿-黄绿色厚层-块状含砾粗粒岩屑长石砂岩夹紫红色含砾岩屑长石杂砂岩及深灰色含炭粉砂质泥岩 11.69 m
      4 紫红色粉砂质泥岩夹同色薄层砾岩、灰绿色粗粒岩屑长石砂岩及含砾粗砂岩透镜,砂岩透镜中发育槽状及双向交错层理 123.66 m
      3 灰绿色粗粒岩屑长石砂岩夹两层紫红色含砾粗砂岩透镜 35.22 m
      2 灰绿色、黄灰色、砖红色、紫红色薄层状粉砂质泥岩、火山泥灰岩、泥质粉砂岩互层,产大量硅化木 13.68 m
      1 灰白色砾岩、泥岩、灰绿色粗粒岩屑长石砂岩,粒级由下往上逐渐变细,夹砂岩透镜体 > 7.03 m
      (未见底)
      下载: 导出CSV
    • [1] Aitchison, J. C., Ali, J. R., Davis, A. M., 2007. When and Where did India and Asia Collide?. Journal of Geophysical Research Atmospheres, 112(B5):B05423. https://doi.org/10.1029/2006jb004706
      [2] Aitchison, J. C., Davis, A. M., Badengzhu, et al., 2003. The Gangdese Thrust:A Phantom Structure That did not Raise Tibet. Terra Nova, 15(3):155-162. https://doi.org/10.1046/j.1365-3121.2003.00480.x
      [3] Deng, S. H., Lu, Y. Z., 2008. Fossil Plants from Lower Cretaceous of the Jiuquan Basin, Gansu, Northwest China and Their Palaeoclimatic Implications. Acta Geologica Sinica, 82(1):104-114 (in Chinese with English abstract).
      [4] Feng, Z., Schneider, J. W., Labandeira, C. C., et al., 2015. A Specialized Feeding Habit of Early Permian Oribatid Mites. Palaeogeography, Palaeoclimatology, Palaeoecology, 417:121-125. https://doi.org/10.1016/j.palaeo.2014.10.035
      [5] Hu, Y.X., 2004. Early Cretaceous Ostracods from the Xiagou Formation of Hongliuxia in the Yumen Area, Gansu of NW China. Acta Micropalaeontologica Sinica, 21(4):439-451 (in Chinese with English abstract). http://europepmc.org/abstract/cba/466245
      [6] Li, B. S., Yan, M. D., Zhang, W. L., et al., 2018. Paleomagnetic Rotation Constraints on the Deformation of the Northern Qaidam Marginal Thrust Belt and Implications for Strike-Slip Faulting along the Altyn Tagh Fault. Journal of Geophysical Research:Solid Earth, 123(9):7207-7224. https://doi.org/10.1029/2018jb015753
      [7] Li, B.S., Yan, M.D., Zhang, W.L., et al., 2019. The Mechanisms of Arcuate Structures on the South Side of the Altyn Tagh Fault and Their Tectonic Implications. Seismology and Geology, 41(2):300-319 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZDZ201902004.htm
      [8] Li, F.Q., Wang, C.S., Wang, C.X., 2006. Tectonic Characteristics and Origin of Jiuquan Basin Group. Acta Geologica Sinica, 80(2):181-191 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_acta-geologica-sinica_thesis/0201252709930.html
      [9] Li, H. B., Yang, J. S., 2004. Evidence for Cretaceous Uplift of the Northern Qinghai-Tibetan Plateau. Earth Science Frontiers, 11(4):345-359 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200404002.htm
      [10] Li, H. B., Yang, J. S., Xu, Z. Q., et al., 2006. The Constraint of the Altyn Tagh Fault System to the Growth and Rise of the Northern Tibetan Plateau. Earth Science Frontiers, 13 (4):59-79 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DXQY200604005.htm
      [11] Li, X. B., Chen, Q. L., Wei W., et al., 2006. Distribution of Cretaceous Proto-Basin and Basin-Mountain Frame Work in Inner Mongolia-Gansu-Qinghai Area. Journal of Earth Sciences and Environment, 28 (3):24-30 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-XAGX200603005.htm
      [12] Liu, Z. S., 2000. Early Cretaceous Sporopollen Assemblage from the Hanxia of Yumen in Gansu, NW China. Acta Micropalaentologica Sinica, 17 (1):73-84 (in Chinese with English abstract). http://europepmc.org/abstract/cba/334720
      [13] Rowley, D. B., 1998. Minimum Age of Initiation of Collision between India and Asia North of Everest Based on the Subsidence History of the Zhepure Mountain Section. The Journal of Geology, 106(2):220-235. https://doi.org/10.1086/516018
      [14] Su, J. P., Wu, B. X., Lei, H. Y., et al., 2002. Sedimentary Formation and Analyses for Dynamic Evolution of Jiuxi Cretaceous Basin, Gansu Province. Acta Sedimentologica Sinica, 20 (4):568-573(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-CJXB200204005.htm
      [15] Tang, W. H., Zhang, Z. C., Li, J. F., et al., 2012. Geochemical Characteristics and Tectonic Significance of the Cretaceous Volcanic Rocks in the Eastern Terminal of the Altyn Tagh Fault Zones. Earth Science Frontiers, 19 (4):51-62 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201204006.htm
      [16] Tian, N., Wang, Y., Philippe, M., et al., 2016. New Record of Fossil Wood Xenoxylon from the Late Triassic in the Sichuan Basin, Southern China and Its Paleoclimatic Implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 464:65-75. https://doi.org/10.1016/j.palaeo.2016.02.006
      [17] Tian, Q. J., Ding, G. Y., 1998. The Tectonic Feature of a Quasi-Trijunction in the Northeastern Corner of Qinghai-Xizang Plateau. Earthquake Research in China, 14(4):27-35 (in Chinese with English abstract). http://www.cqvip.com/QK/84216X/199903/3000836655.html
      [18] Wang, G. C., Cao, K., Zhang, K. X., et al., 2011. Spatial and Temporal Pattern of Cenozoic Tectonic Uplift in the Qinghai-Tibet Plateau. Science in China (Series D:Earth Sciences), 41 (3):332-349 (in Chinese).
      [19] Wang, X. F., Zhang, Z. C., Guo, Z. J., et al., 2004. Geochemical Characteristics and Tectonic Significance of the Early Cretaceous Volcanic Rocks in the Southern Margin of Jiuxi Basin. Geological Journal of China Universities, 10(4):569-577 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-gxdx200404010.htm
      [20] Wang, X. L., Zhou, H. R., Wang, Z. T., et al., 2018. Late Early Cretaceous Magmatic Event in Hongliuxia in Eastern Sector of the Altyn Tagh Fault, and Its Regional Tectonic Implications. Geoscience, 32 (1):1-15 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-XDDZ201801001.htm
      [21] Wei, X. X., Zhang, X. H., Huang, X., et al., 2016. Palaeoclimate Reconstruction of Middle Permian in Tuha Basin:Evidence from the Fossil Wood Growth Rings. Earth Science, 41 (10):1771-1780 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201610012.htm
      [22] Whipple, K. X., Shirzaei, M., Hodges, K. V., et al., 2016. Active Shortening within the Himalayan Orogenic Wedge Implied by the 2015 Gorkha Earthquake. Nature Geoscience, 9(9):711-716. https://doi.org/10.1038/ngeo2797
      [23] Xie, S. C., Yin, H. F., Liu, D., et al., 2018. On Development from Paleontology to Geobiology:Overview of Innovation and Expansion of Application Fields. Earth Science, 43 (11):3823-3836 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201811003.htm
      [24] Xu, X. W., Tapponnier, P., van der Woerd, J., et al., 2003a. Study of the Late Quaternary Left-Lateral Strike-Slip Rate of the Altyn Fault Zone and Its Tectonic Movement Transformation Model. Science in China(Series D:Earth Sciences), 33(10):967-974 (in Chinese).
      [25] Xu, X. W., Wen, X. Z., Zheng, R. Z., et al., 2003b. The Late Tectonic Modification Pattern and Dynamic Sources of the Active Blocks in Sichuan-Yunnan Region. Science in China (Series D:Earth Sciences), 33 (Suppl.1):151-162 (in Chinese).
      [26] Yang, G. L., Feng, B. Z., Zheng, F. J., et al., 2019. New Evidence of Early Cretaceous Petrified Wood in Yumen, North-Western Gansu, China and Its Palaeogeographical Implication. Historical Biology, 6:1-6. https://doi.org/10.1080/08912963.2019.1630831
      [27] Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1):211-280. https://doi.org/10.1146/annurev.earth.28.1.211
      [28] Yin, H. F., Yu, J. X., Luo, G. M., et al., 2018. Biotic Influence on the Formation of Icehouse Climate in Geologic History. Earth Science, 43 (11):3809-3822 (in Chinese with English abstract).
      [29] Yu, J. X., Pang, J. Z., Wang, Y. Z., et al., 2019. Mid-Miocene Uplift of the Northern Qilian Shan as a Result of the Northward Growth of the Northern Tibetan Plateau. Geosphere, 15 (2):423-432. https://doi.org/10.1130/GES01520.1
      [30] Zhang, M. Z., Dai, S., Chen, S. Q., et al., 2013. Early Cretaceous Silicied Woods from the Yingen-Ejinaqi Basin, Inner Mongolia and Their Sedimentary Environment. Acta Geologica Sinica, 87(8):1059-1066(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201610012.htm
      [31] Zhang, S. H., Zhao, Y., 2006. A Review on Tectonic Rotations Related to Large Strike-Slip Faults. Geological Science and Technology Information, 25 (3):29-34 (in Chinese with English abstract). doi: 10.3799/dqkx.2018.169
      [32] Zhang, P. Z., Zheng, D. W., Yin. G. M., et al., 2006. Discussion on Late Cenozoic Growth and Rise of Northeastern Margin of the Tibetan Plateau. Quaternary Sciences, 26(1):5-13 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DSJJ200601001.htm
      [33] Zhou, W. L., 2014. The Identification Characteristics, Causes and Classification Evaluation Research of Silicified Wood. Journal of the Graduates Sun Yat-Sen University (Natural Sciences, Medicine), 35(1):8-13 (in Chinese).
      [34] Zuza, A. V., Wu, C., Wang, Z., et al., 2019. Underthrusting and Duplexing beneath the Northern Tibetan Plateau and the Evolution of the Himalayan-Tibetan Orogen. Lithosphere, 11(2):209-231. https://doi.org/10.1130/L1042.1
      [35] 邓胜徽, 卢远征, 2008.甘肃酒泉盆地早白垩世植物化石及其古气候意义.地质学报, 82(1):104-114. http://www.cnki.com.cn/Article/CJFDTotal-DZXE200801016.htm
      [36] 胡艳霞, 2004.甘肃玉门红柳峡早白垩世下沟组的介形类.微体古生物学报, 21(4):439-451. http://www.cnki.com.cn/Article/CJFDTOTAL-WSGT200404008.htm
      [37] 栗兵帅, 颜茂都, 张伟林, 等, 2019.阿尔金断裂南侧弧形地貌单元成因及其构造意义.地震地质, 41(2):300-319. http://www.cnki.com.cn/Article/CJFDTotal-DZDZ201902004.htm
      [38] 李奋其, 王成善, 王崇孝, 2006.酒泉早白垩世盆地群构造特征和成因.地质学报, 80(2):181-191. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200602001.htm
      [39] 李海兵, 杨经绥, 2004.青藏高原北部白垩纪隆升的证据.地学前缘, 11(4):345-359. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200404002.htm
      [40] 李海兵, 杨经绥, 许志琴, 等, 2006.阿尔金断裂带对青藏高原北部生长、隆升的制约.地学前缘, 13(4):59-79. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200604005.htm
      [41] 李相博, 陈启林, 魏伟, 等, 2006.蒙甘青地区白垩纪原型盆地分布特征及盆山格局.地球科学与环境学报, 28(3):24-30. http://www.cnki.com.cn/Article/CJFDTOTAL-XAGX200603005.htm
      [42] 刘兆生, 2000.甘肃玉门旱峡早白垩世孢粉组合.微体古生物学报, 17(1):73-84. http://www.cnki.com.cn/Article/CJFDTOTAL-WSGT200001007.htm
      [43] 苏建平, 吴保祥, 雷怀彦, 等, 2002.甘肃酒西白垩纪盆地沉积构成及盆地演化动力学分析.沉积学报, 20(4):568-573. http://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200204005.htm
      [44] 汤文豪, 张志诚, 李建锋, 等, 2012.阿尔金断裂东端白垩纪火山岩地球化学特征及其地质意义.地学前缘, 19(4):51-62. http://d.wanfangdata.com.cn/Periodical/dxqy201204006
      [45] 田勤俭, 丁国瑜, 1998.青藏高原东北隅似三联点构造特征.中国地震, 14(4):27-35. http://www.cqvip.com/Main/Detail.aspx?id=3305185
      [46] 王国灿, 曹凯, 张克信, 等, 2011.青藏高原新生代构造隆升阶段的时空格局.中国科学(D辑:地球科学), 41(3):332-349. http://www.cnki.com.cn/Article/CJFDTotal-JDXK201103006.htm
      [47] 王晓丰, 张志诚, 郭召杰, 等, 2004.酒西盆地南缘旱峡早白垩世火山岩地球化学特征及其构造意义.高校地质学报, 10(4):569-577. http://www.cqvip.com/Main/Detail.aspx?id=11387320
      [48] 王训练, 周洪瑞, 王振涛, 等, 2018.阿尔金断裂东段红柳峡早白垩世晚期岩浆事件及其区域构造意义.现代地质, 32(1):1-15. http://www.cnki.com.cn/Article/CJFDTotal-XDDZ201801001.htm
      [49] 魏信祥, 张雄华, 黄兴, 等, 2016.吐哈盆地中二叠世古气候重建:来自木化石年轮的证据.地球科学, 41 (10):1771-1780. doi: 10.3799/dqkx.2016.525
      [50] 谢树成, 殷鸿福, 刘邓, 等, 2018.再谈古生物学向地球生物学的发展:服务领域的拓展与创新.地球科学, 43 (11):3823-3836. http://d.wanfangdata.com.cn/periodical/dqkx201811003
      [51] 徐锡伟, Tapponnier, P., van der Woerd, J., 等, 2003a.阿尔金断裂带晚第四纪左旋走滑速率及其构造运动转换模式讨论.中国科学(D辑:地球科学), 33(10):967-974. http://d.wanfangdata.com.cn/Periodical/zgkx-cd200310007
      [52] 徐锡伟, 闻学泽, 郑荣章, 等, 2003b.川滇地区活动块体最新构造变动样式及其动力来源.中国科学(D辑:地球科学), 33(z1):151-162.
      [53] 殷鸿福, 喻建新, 罗根明, 等, 2018.地史时期生物对冰室气候形成的作用.地球科学, 43 (11):3809-3822. doi: 10.3799/dqkx.2018.117
      [54] 张明震, 戴霜, 陈世强, 等, 2013.内蒙古银根-额济纳旗盆地白垩系中硅化木化石及其沉积环境.地质学报, 87(8):1059-1066. http://www.cnki.com.cn/Article/CJFDTotal-DZXE201308003.htm
      [55] 张拴宏, 赵越, 2006.与大型走滑断裂相关的旋转.地质科技情报, 25 (3):29-34.
      [56] 张培震, 郑德文, 尹功明, 等, 2006.有关青藏高原东北缘晚新生代扩展与隆升的讨论.第四纪研究, 26(1):5-13.
      [57] 周维丽, 2014.硅化木的鉴定特征、成因与分类评价研究.中山大学研究生学刊(自然科学与医学版), 35(1):8-13. http://www.cqvip.com/QK/83688X/201401/89748375504849524849484850.html
    • 加载中
    图(5) / 表(1)
    计量
    • 文章访问数:  893
    • HTML全文浏览量:  182
    • PDF下载量:  36
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-01-10
    • 刊出日期:  2020-11-15

    目录

      /

      返回文章
      返回