• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    鄂尔多斯盆地塔然高勒地区直罗组砂岩源区构造背景与物源分析

    俞礽安 朱强 文思博 涂家润 彭胜龙 司庆红 唐永香

    俞礽安, 朱强, 文思博, 涂家润, 彭胜龙, 司庆红, 唐永香, 2020. 鄂尔多斯盆地塔然高勒地区直罗组砂岩源区构造背景与物源分析. 地球科学, 45(3): 829-843. doi: 10.3799/dqkx.2020.001
    引用本文: 俞礽安, 朱强, 文思博, 涂家润, 彭胜龙, 司庆红, 唐永香, 2020. 鄂尔多斯盆地塔然高勒地区直罗组砂岩源区构造背景与物源分析. 地球科学, 45(3): 829-843. doi: 10.3799/dqkx.2020.001
    Yu Reng'an, Zhu Qiang, Wen Sibo, Tu Jiarun, Peng Shenglong, Si Qinghong, Tang Yongxiang, 2020. Tectonic Setting and Provenance Analysis of Zhiluo Formation Sandstone of Tarangaole Area in the Ordos Basin. Earth Science, 45(3): 829-843. doi: 10.3799/dqkx.2020.001
    Citation: Yu Reng'an, Zhu Qiang, Wen Sibo, Tu Jiarun, Peng Shenglong, Si Qinghong, Tang Yongxiang, 2020. Tectonic Setting and Provenance Analysis of Zhiluo Formation Sandstone of Tarangaole Area in the Ordos Basin. Earth Science, 45(3): 829-843. doi: 10.3799/dqkx.2020.001

    鄂尔多斯盆地塔然高勒地区直罗组砂岩源区构造背景与物源分析

    doi: 10.3799/dqkx.2020.001
    基金项目: 

    中国地质调查局项目 DD20190119

    国家重点研发计划项目 2018YFC0604200

    详细信息
      作者简介:

      俞礽安(1980-), 男, 高级工程师, 主要从事矿产勘查和理论研究

    • 中图分类号: P597

    Tectonic Setting and Provenance Analysis of Zhiluo Formation Sandstone of Tarangaole Area in the Ordos Basin

    • 摘要: 目前关于鄂尔多斯盆地塔然高勒地区直罗组沉积期物源和区域沉积-构造背景等问题尚缺研究,在一定程度上制约了直罗组物源变化的整体评价.对塔然高勒地区含铀层位直罗组下段砂岩进行了岩石地球化学、碎屑锆石U-Pb测年研究.结果显示,研究区直罗组下段源区岩石类型主要为长英质沉积岩和少量中性岩浆岩;源岩构造背景为活动大陆边缘-大陆边缘弧环境.综合微量、稀土元素特征和获得的锆石U-Pb定年数据,认为塔然高勒地区直罗组的物源主要来自大青山-乌拉山等地区的孔兹岩、TTG片麻岩、麻粒岩和镁铁质-超镁铁质层状侵入岩以及阴山地区形成于华力西期-印支期-燕山期的岩浆岩,直罗组下段砂体展布特征清楚地反映了研究区及相邻铀矿床由北向南的物源供给方向;研究区直罗组下段发现的三叠纪碎屑锆石表明三叠纪时期直罗组下段沉积时印支期侵入岩已被抬升至地表提供了物源,直罗组下段上亚段的年轻物源组分比例比下亚段的大.

       

    • 图  1  鄂尔多斯盆地北部区域地质简图

      年龄数据主要据陈印等(2017)雷开宇等(2017)

      Fig.  1.  Simplified map of northern Ordos Basin

      图  2  研究区直罗组岩石学特征

      a.鄂尔多斯盆地东北部神山沟地区宏观地层露头;b.塔然高勒地区钻孔柱状图;c、d.塔然高勒地区直罗组下段中粗粒砂岩岩心、薄片.Qrt.石英;Pl.斜长石;Bit.黑云母

      Fig.  2.  Petrographic characteristics of Zhiluo Formation in study area

      图  3  研究区直罗组下段砂体等厚图

      Fig.  3.  Contour map of sand thickness of the lower part of Zhiluo Formation in study area

      图  4  研究区直罗组砂岩微量元素MORB标准化蛛网图(a)和稀土元素球粒陨石标准化配分模式(b)

      图a、b中标准化数据分别据Pearce(1984)Boynton(1984)

      Fig.  4.  MORB-normalized trace element spider diagram (a) and chondrite-normalized REE pattern (b) of sandstone of Zhiluo Formation in study area

      图  5  研究区直罗组砂岩碎屑锆石CL图(a、c)和LA-ICP MS U-Pb年龄谐和图(b、d)

      图a、b为UZK45钻孔样品,图c、d为UZK50钻孔样品;图a、c中年龄单位为Ma

      Fig.  5.  CL images(a, c)and LA-ICP MS U-Pb concordia diagrams(b, d)of zircons from Zhiluo Formation sandstone in study area

      图  6  研究区直罗组砂岩碎屑锆石年龄与Th/U关系

      Fig.  6.  The relation between age and Th/U of detrital zircons from Zhiluo Formation sandstone in study area

      图  7  研究区直罗组砂岩碎屑锆石年龄谱

      Fig.  7.  Distribution histograms of detrital zircon ages from Zhiluo Formation sandstone in study area

      图  8  研究区直罗组砂岩F1-F2(a)和Hf-La/Th(b)源区环境判别图

      Fig.  8.  F1-F2 (a) and Hf-La/Th (b) discrimination diagrams of Zhiluo Formation sandstone in study area

      图  9  砂岩源区大地构造背景主量元素判别

      Fig.  9.  Major elements composition of sandstones for tectonic setting discrimination

      图  10  直罗组砂岩的Th-Sc-Zr/10和La-Th-Sc源区构造背景判别图

      A.大洋岛弧;B.大陆岛弧;C.活动大陆边缘;D.被动大陆边缘

      Fig.  10.  Th-Sc-Zr/10 and La-Th-Sc diagrams of Zhiluo Formation sandstone for tectonic setting discrimination

      图  11  鄂尔多斯盆地直罗组砂岩锆石U-Pb年龄谱与邻区锆石年龄谱对比

      图a据张龙等(2016);图c据王盟等(2013);图d~h据雷开宇等(2017).图中n为统计年龄数

      Fig.  11.  Comparison of detrital zircon ages from Zhiluo Formation sandstone in the Ordos Basin with zircon ages of neighboring areas

      表  1  研究区直罗组砂岩主量元素分析结果(%)

      Table  1.   Major elements (%) analytical data of Zhiluo Formation sandstone from Ordos Basin

      地区 编号 SiO2 Al2O3 FeO TFe2O3 CaO CaO* MgO K2O Na2O TiO2 P2O5 MnO LOI CIA*
      塔然高勒 UZK4-1 66.72 14.29 1.38 6.13 0.75 0.75 1.77 3.38 1.95 0.67 0.13 0.09 4.12 70.15
      塔然高勒 UZK4-2 71.45 12.42 2.38 3.09 1.81 1.81 1.45 3.32 1.58 0.58 0.10 0.07 4.04 64.92
      塔然高勒 UZK4-3 66.58 13.81 1.21 5.78 0.94 0.94 1.59 3.48 1.92 0.56 0.11 0.10 5.14 68.54
      塔然高勒 UZK4-8 61.25 12.55 0.93 6.13 5.62 1.97 1.74 2.85 1.78 0.45 0.09 0.21 7.32 67.62
      塔然高勒 UZK4-10 53.09 9.02 0.27 1.78 16.60 1.97 0.78 2.30 1.73 0.34 0.09 0.34 13.92 62.51
      塔然高勒 UZK16-2 74.65 12.23 1.40 2.65 1.11 1.11 1.12 3.38 1.97 0.40 0.08 0.04 2.39 65.44
      塔然高勒 UZK16-3 73.42 12.98 1.29 2.94 0.92 0.92 1.09 3.53 2.15 0.56 0.09 0.04 2.27 66.29
      塔然高勒 UZK16-4 63.86 11.31 1.66 8.50 1.38 1.38 0.92 2.98 1.85 1.00 0.13 0.08 8.00 64.55
      塔然高勒 UZK27-1 69.10 14.22 2.22 4.15 0.64 0.64 2.29 3.31 2.08 0.82 0.15 0.05 3.17 70.22
      塔然高勒 UZK27-2 69.68 13.51 1.51 3.67 1.03 1.03 1.31 3.16 3.54 0.63 0.13 0.06 3.29 63.61
      塔然高勒 UZK27-4 74.42 12.07 1.02 2.11 1.50 1.50 1.00 3.65 2.12 0.31 0.08 0.05 2.70 62.41
      塔然高勒 UZK4-6 72.30 11.93 0.68 1.60 3.08 3.08 0.97 3.32 1.78 0.34 0.08 0.07 4.56 59.32
      OIA 58.83 17.11 5.52 1.95 5.83 3.65 1.60 4.10 1.06 0.26 0.15
      CIA 70.69 14.04 3.05 4.82 2.68 1.97 1.89 3.21 0.64 0.16 0.10
      ACM 73.86 12.89 1.58 3.06 2.48 1.23 2.90 2.77 0.46 0.09 0.10
      PCM 81.95 8.41 1.76 3.28 1.89 1.39 1.71 1.07 0.49 0.12 0.05
      UCC 66.60 15.4 5.04 3.59 2.48 2.80 3.27 0.64 0.15 0.10
      注:为消除碳酸钙胶结物的影响,同时考虑到华北地区大部分TTG岩系及各类中酸性岩浆岩的CaO < 5%,取含量 < 5%的样品的平均值(1.97)作为含量 > 5%的样品的CaO含量,记作CaO*. OIA.洋岛,CIA.大陆岛弧,ACM.活动大陆边缘,PCM.被动大陆边缘;上述数据源自Bhatia(1983).UCC.大陆上地壳,数据源自Rudnik et al.(2003).LOI为烧失量;CIA*表示沉积岩物源区化学分异指数;CIA*=[Al2O3/(Al2O3+CaO*+Na2O+K2O)]×100,式中各氧化物含量均为摩尔质量.
      下载: 导出CSV

      表  2  研究区直罗组砂岩微量元素和稀土元素(10-6)分析结果

      Table  2.   Trace elements (10-6) and rare earth elements (10-6) analytical data of Zhiluo Formation sandstone in study area

      样品编号 塔然高勒 上地壳
      UZK 4-1 UZK 4-2 UZK 4-3 UZK 4-8 UZK 4-10 UZK 16-2 UZK 16-3 UZK 16-4 UZK 27-1 UZK 27-2 UZK 27-4 UZK 4-6
      Cu 16.40 7.95 14.40 12.40 6.63 8.49 9.42 16.00 13.10 11.80 4.77 6.63
      Pb 13.3 15.7 13.9 14.9 11.0 59.4 19.0 20.9 43.0 10.9 11.6 13.4
      Zn 60.5 32.1 39.8 37.5 25.3 21.1 40.0 43.5 52.2 33.7 14.3 37.5
      Cr 69.7 58.0 68.7 54.4 28.8 29.7 41.9 56.0 78.4 49.1 22.2 29.3 35
      Ni 17.8 11.5 17.0 17.1 10.2 9.4 11.6 23.7 20.2 16.9 8.4 9.6 20
      Co 9.01 5.88 8.78 8.22 7.40 5.21 6.90 11.70 11.30 9.70 5.16 4.58 10
      Li 27.3 17.9 26.2 21.6 9.2 11.0 14.0 11.9 35.4 15.9 10.3 10.6
      Rb 98.1 89.1 99.3 79.2 58.1 86.3 97.1 82.3 102.0 94.9 90.1 85.6 110
      Cs 2.78 2.11 2.55 2.16 1.40 1.18 1.44 1.56 1.76 1.37 1.23 1.48
      Sr 242 295 241 227 277 336 317 318 219 213 292 302 350
      Ba 941 1 040 922 742 801 533 775 686 357 659 832 978 700
      V 74.3 145.0 82.4 64.1 36.1 71.3 48.7 95.0 189.0 64.4 31.4 34.6 60
      Sc 9.91 6.20 8.92 10.00 7.46 6.68 6.33 5.89 6.04 8.33 6.07 7.40
      Nb 12.80 10.70 11.60 8.29 5.82 7.35 9.86 19.10 14.20 11.10 6.29 6.54 25
      Ta 0.88 0.69 0.76 0.54 0.38 0.43 0.60 1.05 0.84 0.68 0.39 0.45
      Zr 275 187 222 197 106 123 183 495 340 323 103 104 240
      Hf 7.75 5.38 6.08 5.48 2.97 3.58 5.24 13.30 9.30 9.24 3.02 3.12 5.8
      Be 2.05 1.34 1.94 1.59 1.16 1.20 1.38 1.48 1.60 1.34 1.14 1.06
      Ga 17.2 13.4 16.5 16.8 10.6 11.5 13.1 12.5 17.1 13.9 11.4 12.5
      U 14.40 1.97 29.00 8.51 3.98 0.79 24.80 24.40 4.66 1.29 18.70 14.60 2.5
      Th 6.66 6.24 6.08 6.49 3.45 2.25 2.83 7.63 3.24 3.52 1.78 3.63 10.5
      La 34.40 35.10 29.60 42.20 30.30 8.51 7.83 24 14.8 11.1 6.61 21 30
      Ce 48.9 57.0 37.8 55.6 47.0 16.6 15.1 67.1 41.2 25.6 14.1 32.8 64
      Pr 8.04 7.34 6.38 8.55 6.02 2.31 2.16 5.83 3.13 3.34 1.83 4.76 7.1
      Nd 29.00 25.90 21.80 30.40 21.90 8.97 8.25 22.10 11.40 13.40 7.39 17.30 26
      Sm 4.63 4.12 3.15 4.94 3.62 1.66 1.52 3.81 1.81 2.55 1.48 2.82 4.5
      Eu 1.01 1.11 0.79 1.29 1.09 0.81 0.73 0.99 0.46 0.77 0.79 0.88 0.88
      Gd 3.45 3.37 2.63 3.99 3.27 1.42 1.34 3.55 1.80 2.09 1.24 2.28 3.8
      Tb 0.49 0.49 0.36 0.56 0.46 0.20 0.19 0.52 0.23 0.31 0.20 0.32 2.2
      Dy 2.49 2.60 1.86 2.88 2.41 1.14 1.13 2.88 1.14 1.55 1.13 1.60 3.5
      Ho 0.48 0.50 0.38 0.56 0.48 0.22 0.23 0.57 0.22 0.30 0.22 0.31 0.8
      Er 1.40 1.44 1.10 1.63 1.30 0.63 0.64 1.66 0.72 0.91 0.62 0.86 2.3
      Tm 0.22 0.22 0.18 0.25 0.18 0.10 0.10 0.28 0.12 0.15 0.10 0.13 0.33
      Yb 1.52 1.52 1.18 1.61 1.14 0.72 0.75 1.90 0.90 1.03 0.68 0.87 2.2
      Lu 0.25 0.24 0.18 0.25 0.19 0.12 0.12 0.30 0.14 0.17 0.10 0.14 0.32
      Y 11.60 12.40 9.45 14.00 14.40 5.11 5.33 14.60 5.60 6.98 5.53 7.77 22
      (La/Yb)N 15.26 15.57 16.91 17.67 17.92 7.97 7.04 8.52 11.09 7.27 6.55 16.27
      Eu/Eu* 0.77 0.91 0.84 0.89 0.97 1.61 1.56 0.82 0.78 1.02 1.78 1.06
      (Sm/Nd)N 0.49 0.49 0.44 0.50 0.51 0.57 0.57 0.53 0.49 0.59 0.62 0.50
      (Gd/Yb)N 1.83 1.79 1.80 2.00 2.31 1.59 1.44 1.51 1.61 1.64 1.47 2.11
      下载: 导出CSV

      表  3  不同构造背景下砂岩的REE参数

      Table  3.   The REE geochemical parameters of sandstone in different tectonic settings

      构造背景 物源区类型 La(10-6 Ce(10-6 ΣREE(10-6 La/ Yb (La/Yb)N ΣLREE/ΣHREE Eu/ Eu*
      大洋岛弧 未切割的岩浆弧 8±1.7 19±3.7 58±10 4.2±1.3 2.8+0.9 3.8±0.9 1.04±0.11
      大陆岛弧 切割的岩浆弧 27±4.5 59±8.2 146±20 11±3.6 7.5±2.5 7.7±1.7 0.79±0.13
      活动大陆边缘 基底隆起 37 78 186 12.5 8.5 9.1 0.60
      被动大陆边缘 克拉通内构造高地 39 85 210 15.9 10.8 8.5 0.56
      塔然高勒(n=12) 25.38 46.22 95.13 19.37 12.34 11.15 1.07
      下载: 导出CSV
    • [1] Bhatia, M. R., 1983. Plate Tectonics and Geochemical Composition of Sandstones. The Journal of Geology, 91(6):611-628. https://doi.org/10.1086/628815
      [2] Bhatia, M. R., Crook, K. A. W., 1986. Trace Element Characteristics of Graywackes and Tectonic Setting Discrimination of Sedimentary Basins. Contributions to Mineralogy and Petrology, 92(2): 181-193. https://doi.org/10.1007/bf00375292
      [3] Boynton, W. V., 1984. Geochemistry of the Rare Earth Elements: Meteorite Studies. In: Henderson, P., ed., Rare Earth Element Geochemistry. Elsevier, Amsterdam.
      [4] Cai, J., Liu, F.L., Liu, P.H., et al., 2015. Geochronology of the Paleoproterozoic Khondalite Rocks from the Wulashan-Daqingshan Area, the Khondalite Belt. Acta Petrologica Sinica, 31(10): 3081-3106 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201510012
      [5] Chen, Y., Feng, X.X., Chen, L.L., et al., 2017. An Analysis of U-Pb Dating of Detrital Zircons and Modes of Occurrence of Uranium Minerals in the Zhiluo Formation of Northeastern Ordos Basin and Their Indication to Uranium Sources. Geology in China, 44(6): 1190-1206 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201706013
      [6] Floyd, P. A., Winchester, J. A., Park, R. G., 1989. Geochemistry and Tectonic Setting of Lewisian Clastic Metasediments from the Early Proterozoic Loch Maree Group of Gairloch, NW Scotland. Precambrian Research, 45(1-3): 203-214. https://doi.org/10.1016/0301-9268(89)90040-5
      [7] Feng, X.X., Teng, X.M., He, Y.Y., 2019. Preliminary Discussions on the Metallogenesis of the Dongsheng Uranium Orefields in the Ordos Basin. Geological Survey and Research, 42(2): 96-103 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/qhwjyjjz201902003
      [8] Hou, W.R., Nie, F.J., Hu, J.M., et al., 2011. Geochronology and Geochemistry of Shadegai Granites in Wulashan Area, Inner Mongolia and Its Geological Significance. Journal of Jilin University (Earth Science Edition), 41(6): 1914-1927 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cckjdxxb201106021
      [9] Jiao, Y.Q., Chen, A.P., Wang, M.F., et al., 2005. Genetic Analysis of the Bottom Sandstone of Zhiluo Formation, Northeastern Ordos Basin: Predictive Base of Spatial Orientation of Sandstone-Type Uranium Deposit. Acta Sedimentologica Sinica, 23(3): 371-379 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB200503000.htm
      [10] Jin, R.S., Miao, P.S., Sima, X.Z., et al., 2014. Discussion on the Classification about Uranium Deposits. Geological Survey and Research, 37(1): 1-5 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qhwjyjjz201401001
      [11] Jin, R. S., Yu, R. A., Yang, J., et al., 2019. Paleo-environmental Constraints on Uranium Mineralization in the Ordos Basin: Evidence from the Color Zoning of U-Bearing Rock Series. Ore Geology Reviews, 104: 175-189. https://doi.org/10.1016/j.oregeorev.2018.10.016
      [12] Lei, K.Y., Liu, C.Y., Zhang, L., et al., 2017. Detrital Zircon U-Pb Dating of Middle-Late Mesozoic Strata in the Northern Ordos Basin: Implications for Tracing Sediment Sources. Acta Geologica Sinica, 91(7): 1522-1541 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DZXE201707009.htm
      [13] Li, Z.Y., Jiao, Y.Q., Chen, A.P., et al., 2010. A Special Kind of Sandstone-Type Uranium Deposit Related to Jurassic Palaeochannel Systems in the Northeastern Ordos Basin, China. World Nuclear Geoscience, 27(1): 62 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sjhdzkx201001012
      [14] Liu, C.Y., Zhao, H.G., Gui, X.J., et al., 2006. Space-Time Coordinate of the Evolution and Reformation and Mineralization Response in Ordos Basin. Acta Geologica Sinica, 80(5): 617-638 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200605001
      [15] Liu, X.X., Tang, C., Sima, X.Z., et al., 2016. Major Elements Geochemical Characteristics of Sandstone-Type Uranium Deposit in North-East Ordos Basin and Its Geological Implications. Geological Survey and Research, 39(3): 169-176 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-QHWJ201603002.htm
      [16] Liu, Y.F., Nie, F.J., Jiang, S.H., et al., 2012. Ore-Forming Granites from Chaganhua Molybdenum Deposit, Central Inner Mongolia, China: Geochemistry, Geochronology and Petrogenesis. Acta Petrologica Sinica, 28(2): 409-420 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201202006
      [17] Ludwig, K. R., 2009. Isoplot 3.71: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, Berkeley.
      [18] Nie, F.J., Zhang, C.Y., Jiang, M.Z., et al., 2018. Relationship of Depositional Facies and Microfacies to Uranium Mineralization in Sandstone along the Southern Margin of Turpan-Hami Basin. Earth Science, 43(10): 3584-3602 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201810019
      [19] Niu, X.L., Yang, J.S., Li, F., et al., 2016. Origin of Baotoudong Syenites in North China Craton: Petrological, Mineralogical and Geochemical Evidence. Scientia Sinica Terrae, 46(3): 374-391 (in Chinese). doi: 10.1360/N072014-00571
      [20] Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956-983. https://doi.org/10.1093/petrology/25.4.956
      [21] Peng, R.M., Zhai, Y.S., Wang, J.P., et al., 2010. Discovery of Neoproterozoic Acid Volcanic Rock in the South-Western Section of Langshan, Inner Mongolia. Chinese Science Bulletin, 55(26): 2611-2620 (in Chinese). doi: 10.1360/972010-266
      [22] Roser, B. P., Korsch, R. J., 1986. Determination of Tectonic Setting of Sandstone-Mudstone Suites Using SiO2 Content and K2O/Na2O Ratio. The Journal of Geology, 94(5): 635-650. https://doi.org/10.1086/629071
      [23] Rudnick, R.L., Gao, S., 2003. Composition of the Continental Crust. In: Holland, H.D., Turekian, K.K., eds., The Crust: Treatise on Geochemistry. Pergamon, Oxford.
      [24] Shao, L., Liu, Z.W., Zhu, W.L., 2000. Application of Sedimentary Geochemistry of Terrigenous Clastic Rock to Basin Analysis. Earth Science Frontiers, 7(3): 297-304 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200003029
      [25] Tao, J.X., Hu, F.X., Chen, Z.Y., 2003. Characteristics and Tectonic Setting of Indosinian S-Type Granites in the Northern Margin of North China Landmass. Acta Petrologica et Mineralogica, 22(2): 112-118 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz200302002
      [26] Taylor, S.R., McLennan, S.M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publication, Oxford.
      [27] Wang, H.C., Yuan, G.B., Xin, H.T., 2001. U-Pb Single Zircon Ages for Granulites in Cunkongshan Area, Guyang Inner Mongolia and Enlightenment for Its Geological Signification, China. Progress in Precambrian Research, 24(1): 28-34 (in Chinese with English abstract).
      [28] Wang, L., Wang, G.H., Lei, S.B., et al., 2015. Petrogenesis of Dahuabei Pluton from Wulashan, Inner Mongolia: Constraints from Geochemistry, Zircon U-Pb Dating and Sr-Nd-Hf Isotopes. Acta Petrologica Sinica, 31(7): 1977-1994 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201507014
      [29] Wang, M., Luo, J.L., Li, M., et al., 2013. Provenance and Tectonic Setting of Sandstone-Type Uranium Deposit in Dongsheng Area, Ordos Basin: Evidence from U-Pb Age and Hf Isotopes of Detrital Zircons. Acta Petrologica Sinica, 29(8): 2746-2758 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201308011
      [30] Wang, Z. Z., Han, B. F., Feng, L. X., et al., 2016. Tectonic Attribution of the Langshan Area in Western Inner Mongolia and Implications for the Neoarchean-Paleoproterozoic Evolution of the Western North China Craton: Evidence from LA-ICP-MS Zircon U-Pb Dating of the Langshan Basement. Lithos, 261: 278-295. https://doi.org/10.1016/j.lithos.2016.03.005
      [31] Wu, Y.B., Zheng, Y.F., 2004. Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age. Chinese Science Bulletin, 49(16): 1589-1604 (in Chinese). doi: 10.1360/csb2004-49-16-1589
      [32] Xia, X. P., Sun, M., Zhao, G. C., et al., 2006. U-Pb and Hf Isotopic Study of Detrital Zircons from the Wulashan Khondalites: Constraints on the Evolution of the Ordos Terrane, Western Block of the North China Craton. Earth and Planetary Science Letters, 241(3-4): 581-593. https://doi.org/10.1016/j.epsl.2005.11.024
      [33] Yi, C., Han, X.Z., Li, X.D., et al., 2014. Study on Sandstone Petrologic Feature of the Zhiluo Formation and Its Controls on Uranium Mineralization in Northeastern Ordos Basin. Geological Journal of China Universities, 20(2): 185-197 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb201402003
      [34] Yu, R.A., Tang, Y.X., Zhang, F., et al., 2015. Petrogeochemical Feature and Geochronology of the Ore-Forming Porphyry in Wheerclt Molybdenum Deposit in Abag Banner, Inner Mongolia. Journal of Jilin University (Earth Science Edition), 45(4): 1098-1111 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cckjdxxb201504013
      [35] Zhang, L., Wu, B.L., Liu, C.Y., et al., 2016. Provenance Analysis of the Zhiluo Formation in the Sandstone-Hosted Uranium Deposits of the Northern Ordos Basin and Implications for Uranium Mineralization. Acta Geologica Sinica, 90(12): 3441-3453 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201612012
      [36] Zhang, S.H., Zhao, Y., Liu, J.M., et al., 2010. Geochronology, Geochemistry and Tectonic Setting of the Late Paleozoic-Early Mesozoic Magmatism in the Northern Margin of the North China Block: A Preliminary Review. Acta Petrologica et Mineralogica, 29(6): 824-842 (in Chinese with English abstract).
      [37] Zhao, G.C., Sun, M., Wilde, S.A., 2002. Major Tectonic Units of the North China Craton and Their Paleoproterozoic Assembly. Scientia Sinica Terrae, 32(7): 538-549 (in Chinese). http://d.wanfangdata.com.cn/Periodical_zgkx-ed200301003.aspx
      [38] Zhao, G. C., Wilde, S. A., Cawood, P. A., et al., 1999. Tectonothermal History of the Basement Rocks in the Western Zone of the North China Craton and Its Tectonic Implications. Tectonophysics, 310(1-4): 37-53. https://doi.org/10.1016/s0040-1951(99)00152-3
      [39] Zhao, H.G., 2005. The Relationship between Tectonic-Thermal Evolution and Sandstone-Type Uranium Ore-Formation in Ordos Basin. Uranium Geology, 21(5): 275-282 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ykdz200505003
      [40] Zhao, H.G., Ou, G.X., 2006. The Relationship between Depositional System and Ore-Formation of Sandstone-Type Uranium Deposits in Dongsheng Area, Ordos Basin. Uranium Geology, 22(3): 136-142 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ykdz200603002
      [41] Zhao, J.F., Liu, C.Y., Liang, J.W., et al., 2010. Restoration of the Original Sedimentary Boundary of the Middle Jurassic Zhiluo Formation-Anding Formation in the Ordos Basin. Acta Geologica Sinica, 84(4): 553-569 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201004012
      [42] Zhao, Q.Y., Liu, Z.H., Wu, X.W., et al., 2007. Characteristics and Origin of Halaheshao Pluton in Daqingshan Region, Inner Mongolia. Journal of Mineralogy and Petrology, 27(1): 46-51 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwys200701009
      [43] 蔡佳, 刘福来, 刘平华, 等, 2015.内蒙古孔兹岩带乌拉山-大青山地区古元古代孔兹岩系年代学研究.岩石学报, 31(10): 3081-3106. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201510012
      [44] 陈印, 冯晓曦, 陈路路, 等, 2017.鄂尔多斯盆地东北部直罗组内碎屑锆石和铀矿物赋存形式简析及其对铀源的指示.中国地质, 44(6): 1190-1206. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201706013
      [45] 冯晓曦, 滕雪明, 何友宇, 2019.初步探讨鄂尔多斯盆地东胜铀矿田成矿作用研究若干问题.地质调查与研究, 42(2): 96-103. doi: 10.3969/j.issn.1672-4135.2019.02.003
      [46] 侯万荣, 聂凤军, 胡建民, 等, 2011.内蒙古乌拉山地区沙德盖岩体年代学、地球化学特征及成因探讨.吉林大学学报(地球科学版), 41(6): 1914-1927. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb201106021
      [47] 焦养泉, 陈安平, 王敏芳, 等, 2005.鄂尔多斯盆地东北部直罗组底部砂体成因分析:砂岩型铀矿床预测的空间定位基础.沉积学报, 23(3): 371-379. doi: 10.3969/j.issn.1000-0550.2005.03.001
      [48] 金若时, 苗培森, 司马献章, 等, 2014.铀矿床分类初步探讨.地质调查与研究, 37(1): 1-5. doi: 10.3969/j.issn.1672-4135.2014.01.001
      [49] 雷开宇, 刘池洋, 张龙, 等, 2017.鄂尔多斯盆地北部中生代中晚期地层碎屑锆石U-Pb定年与物源示踪.地质学报, 91(7): 1522-1541. doi: 10.3969/j.issn.0001-5717.2017.07.008
      [50] 李子颖, 焦养泉, 陈安平, 等, 2010.鄂尔多斯盆地东北部侏罗系古河道中一种特殊的砂岩型铀矿床.世界核地质科学, 27(1): 62. http://d.old.wanfangdata.com.cn/Periodical/sjhdzkx201001012
      [51] 刘池洋, 赵红格, 桂小军, 等, 2006.鄂尔多斯盆地演化-改造的时空坐标及其成藏(矿)响应.地质学报, 80(5): 617-638. doi: 10.3321/j.issn:0001-5717.2006.05.001
      [52] 刘晓雪, 汤超, 司马献章, 等, 2016.鄂尔多斯盆地东北部砂岩型铀矿常量元素地球化学特征及地质意义.地质调查与研究, 39(3): 169-176. doi: 10.3969/j.issn.1672-4135.2016.03.002
      [53] 刘翼飞, 聂风军, 江思宏, 等, 2012.内蒙古查干花钼矿区成矿花岗岩地球化学、年代学及成岩作用.岩石学报, 28(2): 409-420. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201202006
      [54] 聂逢君, 张成勇, 姜美珠, 等, 2018.吐哈盆地西南缘地区砂岩型铀矿含矿目的层沉积相与铀矿化.地球科学, 43(10): 3584-3602. doi: 10.3799/dqkx.2018.233
      [55] 牛晓露, 杨经绥, 刘飞, 等, 2016.华北克拉通北缘包头东正长岩的成因:来自岩石矿物学和地球化学的证据.中国科学:地球科学, 46(3): 374-391. http://www.cnki.com.cn/Article/CJFDTotal-JDXK201603008.htm
      [56] 彭润民, 翟裕生, 王建平, 等, 2010.内蒙狼山新元古代酸性火山岩的发现及其地质意义.科学通报, 55(26): 2611-2620. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201026008
      [57] 邵磊, 刘志伟, 朱伟林, 2000.陆源碎屑岩地球化学在盆地分析中的应用.地学前缘, 7(3): 297-304. doi: 10.3321/j.issn:1005-2321.2000.03.029
      [58] 陶继雄, 胡凤翔, 陈志勇, 2003.华北陆块北缘印支期S型花岗岩带特征及其构造环境.岩石矿物学杂志, 22(2): 112-118. doi: 10.3969/j.issn.1000-6524.2003.02.002
      [59] 王惠初, 袁桂邦, 辛后田, 2001.内蒙古固阳村空山地区麻粒岩的锆石U-Pb年龄及其对年龄解释的启示.前寒武纪研究进展, 24(1): 28-34. doi: 10.3969/j.issn.1672-4135.2001.01.005
      [60] 王梁, 王根厚, 雷时斌, 等, 2015.内蒙古乌拉山大桦背岩体成因:地球化学、锆石U-Pb年代学及Sr-Nd-Hf同位素制约.岩石学报, 31(7): 1977-1994. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201507014
      [61] 王盟, 罗静兰, 李杪, 等, 2013.鄂尔多斯盆地东胜地区砂岩型铀矿源区及其构造背景分析:来自碎屑锆石U-Pb年龄及Hf同位素的证据.岩石学报, 29(8): 2746-2758.
      [62] 吴元保, 郑永飞, 2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报, 49(16): 1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002
      [63] 易超, 韩效忠, 李西得, 等, 2014.鄂尔多斯盆地东北部直罗组砂岩岩石学特征与铀矿化关系研究.高校地质学报, 20(2): 185-197. doi: 10.3969/j.issn.1006-7493.2014.02.003
      [64] 俞礽安, 唐永香, 张峰, 等, 2015.内蒙古阿巴嘎旗乌和尔楚鲁图钼矿区成矿斑岩的岩石地球化学特征与年代学.吉林大学学报(地球科学版), 45(4): 1098-1111. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb201504013
      [65] 张龙, 吴柏林, 刘池洋, 等, 2016.鄂尔多斯盆地北部砂岩型铀矿直罗组物源分析及其铀成矿意义.地质学报, 90(12): 3441-3453. doi: 10.3969/j.issn.0001-5717.2016.12.012
      [66] 张拴宏, 赵越, 刘建民, 等, 2010.华北地块北缘晚古生代:早中生代岩浆活动期次、特征及构造背景.岩石矿物学杂志, 29(6): 824-842. doi: 10.3969/j.issn.1000-6524.2010.06.017
      [67] 赵国春, 孙敏, Wilde, S.A., 2002.华北克拉通基底构造单元特征及早元古代拼合.中国科学:地球科学, 32(7): 538-549. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200207002
      [68] 赵宏刚, 2005.鄂尔多斯盆地构造热演化与砂岩型铀成矿.铀矿地质, 21(5): 275-282. doi: 10.3969/j.issn.1000-0658.2005.05.003
      [69] 赵宏刚, 欧光习, 2006.鄂尔多斯盆地东胜地区沉积体系与砂岩型铀成矿.铀矿地质, 22(3): 136-142. doi: 10.3969/j.issn.1000-0658.2006.03.002
      [70] 赵俊峰, 刘池洋, 梁积伟, 等, 2010.鄂尔多斯盆地直罗组-安定组沉积期原始边界恢复.地质学报, 84(4): 553-569. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201004012
      [71] 赵庆英, 刘正宏, 吴新伟, 等, 2007.内蒙古大青山地区哈拉合少岩体特征及成因.矿物岩石, 27(1): 46-51. doi: 10.3969/j.issn.1001-6872.2007.01.009
    • 俞礽安附表.docx
    • 加载中
    图(11) / 表(3)
    计量
    • 文章访问数:  3082
    • HTML全文浏览量:  1837
    • PDF下载量:  61
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-09-09
    • 刊出日期:  2020-03-15

    目录

      /

      返回文章
      返回