Short-Wavelength Infrared Characteristics and Indications of Exploration of the Demingding Copper-Molybdenum Deposit in Tibet
-
摘要: 德明顶矿区因交通不便、高寒缺氧、物理风化强烈、倒石堆覆盖严重等原因,找矿效果不理想.为进一步指导野外矿产勘查,在详细的野外观察的基础上,系统开展了短波红外光谱分析测试工作.结果显示,绢云母短波红外光谱标量在空间上呈现规律性变化,由浓集中心向外Al-OH吸收峰波长逐渐变长、Al-OH吸收峰深度逐渐降低、SWIR-IC值逐渐变小,且三者套合较好,表明该区域流体温度、压力高于外围,为热液蚀变矿化中心.结合蚀变规律、成矿岩体中锆石U-Pb年龄与辉钼矿Re-Os同位素年龄结果,在矿区内圈定了1处重点勘查靶区,为晚期铜矿化与早期(铜)钼矿化叠加的区域.该技术可以有效地指导野外矿产评价、降低勘查成本,是中国西部特殊景观区找矿勘查评价的重要方法之一.Abstract: The ore exploration of Demingding mining area of the Gangdese metallogenic belt has been challenging due to inconvenient transportation,high altitude and lack of oxygen,strong physical weathering and cover of the crushed stone. In order to further guide the field mineral exploration,we carried out systematic short-wave infrared spectroscopy analysis based on detailed field observation and cataloging. The scalars of sericite minerals in the short-wave infrared spectrum show a regular change in space. From the concentration center to periphery,the absorption peak wavelength of the Al-OH (Pos2200) gradually becomes longer,the depth of the Al-OH absorption peak (Dep2200) gradually decreases,and the SWIR-IC value gradually becomes smaller. And the three zones are well fitted,which indicates that the temperature of the altered sericite minerals formation is higher and the pressure is higher in the region. Combined with the zircon U-Pb age and the molybdenite Re-Os isotopic age in the ore-forming rocks,we estimate an exploration target area in the mining area where the late copper mineralization overlaps with the early (copper) molybdenum mineralization. Short-wave infrared spectroscopy can quickly and effectively guide mineral exploration and reduce exploration costs. Therefore,it can be used as one of the important methods for prospecting and evaluation of western special landscape areas.
-
Key words:
- short-wavelength infrared (SWIR) /
- hydrothermal mineralization center /
- Demingding /
- Tibet /
- ore deposit
-
图 1 青藏高原构造格架(a)和冈底斯成矿带斑岩型Cu-Mo(Au)矿床分布及研究区位置(b)
图a据Zhu et al.(2012);图b据Zheng et al.(2014)和Wu et al.(2014, 2016)
Fig. 1. Tectonic framework of the Tibetan Plateau (a) and the distribution of main porphyry Cu-Mo (Au) deposits in the Gangdese metallogenic belt and location of the study area (b)
图 6 德明顶铜钼矿区蚀变特征
a.斑状二长花岗岩,发生强绢云母化蚀变(绿色);b.斑状二长花岗岩中斜长石斑晶发生绢云母化,仅保留斜长石晶型,绢云母颗粒细小;c.斑状二长花岗岩,与石英脉共生的绢云母化晕(白色);d.斑状二长花岗岩中绢云母沿斑晶边缘、解理、裂隙分布,重结晶形成叶片状白云母;e.斑状二长花岗岩,绿泥石蚀变;f.斑状二长花岗岩中黑云母全部蚀变为绿泥石、绢云母;g.斑状二长花岗岩,团块状绿泥石化;h.斑状二长花岗岩中出现不规则放射状绿泥石;i.辉绿玢岩,绿泥石化、绿帘石化;j.辉绿玢岩中角闪石、阳起石等矿物蚀变成绿泥石、绿帘石,正交偏光下绿泥石干涉色为灰蓝色;k.辉绿玢岩,绿泥石化、绿帘石化;l.辉绿玢岩中出现绿帘石、方解石等青磐岩化蚀变特征矿物;m.英安质晶屑凝灰岩,绿帘石化;n.英安质晶屑凝灰岩中斜长石晶屑发生次生变化,形成绢云母和绿帘石颗粒;o.花岗斑岩,高岭石化及绿帘石化;p.花岗斑岩中钾长石斑晶次生变化形成高岭石、绿帘石,表面呈尘土状.矿物缩写:Ser.绢云母;Pl.斜长石;Ms.白云母;Chl.绿泥石;Epi.绿帘石;Cal.方解石;Kfs.钾长石;Kln.高岭石;Q.石英
Fig. 6. Photographs showing characteristics of the alteration at the Demingding deposit
表 1 德明顶矿区钻孔信息
Table 1. Information from drill holes in Demingding deposit
钻孔号 测量光谱数(条) 主要蚀变矿物分布特征(自上而下)(短波红外光谱识别) ZK001 321 绢云母→绢云母+石膏→绢云母+石膏+高岭石 ZK002 164 绿泥石+绿帘石→绢云母→绢云母+绿泥石→绢云母+绿泥石+石膏→绢云母+石膏→绢云母+绿泥石 ZK003 528 绢云母+绿泥石→绢云母+石膏+绿泥石→高岭石+绢云母+石膏→绿泥石+石膏+绢云母 ZK004 327 绢云母+蒙脱石+高岭石→绢云母+石膏+绿泥石→高岭石+绢云母→绢云母+绿泥石→绢云母+高岭石+石膏→绢云母+石膏+绿泥石 -
[1] Alva Jimenez, T. R., 2011. Variation in Hydrothermal Muscovite and Chlorite Composition in the Highland Valley Porphyry Cu-Mo District, British Columbia, Canada (Dissertation). The University of British Columbia, Vancouver. [2] Chang, Z. S., Hedenquist, J. W., White, N. C., et al., 2011. Exploration Tools for Linked Porphyry and Epithermal Deposits: Example from the Mankayan Intrusion- Centered Cu-Au District, Luzon, Philippines. Economic Geology, 106(8): 1365-1398. https://doi.org/10.2113/econgeo.106.8.1365 [3] Chen, S.B., Huang, B.Q., Li, C., et al., 2018. Alteration and Mineralization of the Yuhai Cu Deposit in Eastern Tianshan, Xinjiang and Applications of Short Wavelength Infra-Red (SWIR) in Exploration. Earth Science, 43(9): 2911-2928 (in Chinese with English abstract). [4] Duke, E. F., 1994. Near Infrared Spectra of Muscovite, Tschermak Substitution, and Metamorphic Reaction Progress: Implications for Remote Sensing. Geology, 22(7): 621-624. https://doi.org/10.1130/0091-7613(1994)0220621:nisomt > 2.3.co; 2 doi: 10.1130/0091-7613(1994)0220621:nisomt>2.3.co;2 [5] Feng, Y. Z., Xiao, B., Li, R. C., et al., 2019. Alteration Mapping with Short Wavelength Infrared (SWIR) Spectroscopy on Xiaokelehe Porphyry Cu-Mo Deposit in the Great Xing'an Range, NE China: Metallogenic and Exploration Implications. Ore Geology Reviews, 112: 103062. https://doi.org/10.1016/j.oregeorev.2019.103062 [6] Gan, F.P., Wang, R.S., Yang, S.M., 2002. Studying on the Alteration Minerals Identification Using Hyperion Data. Remote Sensing for Land & Resources, 14(4): 44-50 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gtzyyg200204010 [7] Graham, G. E., Kokaly, R. F., Kelley, K. D., et al., 2018. Application of Imaging Spectroscopy for Mineral Exploration in Alaska: A Study over Porphyry Cu Deposits in the Eastern Alaska Range. Economic Geology, 113(2): 489-510. https://doi.org/10.5382/econgeo.2018.4559 [8] Guo, N., Thomas, C., Tang, J. X., et al., 2017. Mapping White Mica Alteration Associated with the Jiama Porphyry-Skarn Cu Deposit, Central Tibet Using Field SWIR Spectrometry. Ore Geology Reviews, 108: 147-157. https://doi.org/10.1016/j.oregeorev.2017.07.027 [9] Han, J. S., Chu, G. B., Chen, H. Y., et al., 2018. Hydrothermal Alteration and Short Wavelength Infrared (SWIR) Characteristics of the Tongshankou Porphyry-Skarn Cu-Mo Deposit, Yangtze Craton, Eastern China. Ore Geology Reviews, 101: 143-164. https://doi.org/10.1016/j.oregeorev.2018.07.018 [10] Harraden, C. L., McNulty, B. A., Gregory, M. J., et al., 2013. Shortwave Infrared Spectral Analysis of Hydrothermal Alteration Associated with the Pebble Porphyry Copper-Gold-Molybdenum Deposit, Iliamna, Alaska. Economic Geology, 108(3): 483-494. https://doi.org/10.2113/econgeo.108.3.483 [11] Herrmann, W., Blake, M., Doyle, M., et al., 2001. Short Wavelength Infrared (SWIR) Spectral Analysis of Hydrothermal Alteration Zones Associated with Base Metal Sulfide Deposits at Rosebery and Western Tharsis, Tasmania, and Highway-Reward, Queensland. Economic Geology, 96(5): 939-955. https://doi.org/10.2113/96.5.939 [12] Hou, Z. Q., Yang, Z. M., Lu, Y. J., et al., 2015. A Genetic Linkage between Subduction- and Collision-Related Porphyry Cu Deposits in Continental Collision Zones. Geology, 43(3): 247-250. https://doi.org/10.1130/g36362.1 [13] Huang, Y.R., Guo, N., Zheng, L., et al., 2017. 3D Geological Alteration Mapping Based on Remote Sensing and Shortwave Infrared Technology: A Case Study of the Sinongduo Low-Sulfidation Epithermal Deposit. Acta Geoscientica Sinica, 38(5): 779-789 (in Chinese with English abstract). [14] Jones, S., Herrnumn, W., Gemmell, J.B., 2005. Short Wavelength Infrared Spectral Characteristics of the HW Horizon: Implications for Exploration in the Myra Falls Volcanic-Hosted Massive Sulfide Camp, Vancouver Island, British Columbia, Canada. Economic Geology, 100(2): 273-294. https://doi.org/10.2113/100.2.273 [15] Laakso, K., Peter, J. M., Rivard, B., et al., 2016. Short-Wave Infrared Spectral and Geochemical Characteristics of Hydrothermal Alteration at the Archean Izok Lake Zn-Cu-Pb-Ag Volcanogenic Massive Sulfide Deposit, Nunavut, Canada: Application in Exploration Target Vectoring. Economic Geology, 111(5): 1223-1239. https://doi.org/10.2113/econgeo.111.5.1223 [16] Lang, X.H., Tang, J.X., Chen, Y.C., et al., 2012. Neo-Tethys Mineralization on the Southern Margin of the Gangdise Metallogenic Belt, Tibet, China: Evidence from Re-Os Ages of Xiongcun Orebody No.Ⅰ. Earth Science, 37(3): 515-525 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201203012 [17] Liang, S.N., Gan, F.P., Yan, B.K., et al., 2012. Relationship between Composition and Spectral Feature of Muscovite. Remote Sensing for Land & Resources, 24(3): 111-115 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/gtzyyg201203020 [18] Liu, H., Ma, Y., Ren, H., et al., 2015. Short-Wave Infrared Spectroscopy Study on Wallrock Alteration of the Tiemaoshan Porphyry Molybdenum Deposit, Fujian Province, China. Acta Mineralogica Sinica, 35(2): 221-228 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/kwxb201502017 [19] Neal, L. C., Wilkinson, J. J., Mason, P. J., et al., 2018. Spectral Characteristics of Propylitic Alteration Minerals as a Vectoring Tool for Porphyry Copper Deposits. Journal of Geochemical Exploration, 184: 179-198. https://doi.org/10.1016/j.gexplo.2017.10.019 [20] Pan, G.T., Mo, X.X., Hou, Z.Q., et al., 2006. Spatial-temporal Framework of the Gangdese Orogenic Belt and Its Evolution. Acta Petrologica Sinica, 22(3): 521-533 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200603001 [21] Pontual, S., Merry, N., Gamson, P., 1997. Spectral Interpretation Field Manual. AusSpec International Pty Ltd., Brisbane. [22] Sillitoe, R. H., 2010. Porphyry Copper Systems. Economic Geology, 105(1): 3-41. https://doi.org/10.2113/gsecongeo.105.1.3 [23] Sun, S.Q., Chen, H.Y., Jin, S.G., et al., 2019. Geochemical Study and Exploration Application of Altered Minerals in Southeast Hubei Mining Area. Science Press, Beijing (in Chinese). [24] Tappert, M., Rivard, B., Giles, D., et al., 2011. Automated Drill Core Logging Using Visible and Near-Infrared Reflectance Spectroscopy: A Case Study from the Olympic Dam IOCG Deposit, South Australia. Economic Geology, 106(2): 289-296. https://doi.org/10.2113/econgeo.106.2.289 [25] Thompson, A.J.B., Phoebe, L.H., Audrey, J.R., 1999. Alteration Mapping in Exploration: Application of Short-Wave Infrared (SWIR) Spectroscopy. Society of Economic Geologists' Newsletter, 39: 1-27. [26] Tian, F., Leng, C.B., Zhang, X.C., et al., 2019. Application of Short-Wave Infrared Spectroscopy in Gangjiang Porphyry Cu-Mo Deposit in Nimu Ore Field, Tibet. Earth Science, 44(6): 2143-2154 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201906027 [27] Tian, J., Zhang, Y., Cheng, J. M., et al., 2019. Short Wavelength Infra-Red (SWIR) Characteristics of Hydrothermal Alteration Minerals in Skarn Deposits: Example from the Jiguanzui Cu-Au Deposit, Eastern China. Ore Geology Reviews, 106: 134-149. https://doi.org/10.1016/j.oregeorev.2019.01.025 [28] Wang, J.R., Lü, X.B., Huang, Z.Q., et al., 2017. A Study of Near-Infrared Spectroscopy on Altered Minerals in the Nuri Copper-Polymetallic Deposit, Tibet. Geology and Exploration, 53(1): 141-150 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzykt201701014 [29] Wu, S., Zheng, Y. Y., Sun, X., 2016. Subduction Metasomatism and Collision-Related Metamorphic Dehydration Controls on the Fertility of Porphyry Copper Ore-Forming High Sr/Y Magma in Tibet. Ore Geology Reviews, 73: 83-103. https://doi.org/10.1016/j.oregeorev.2015.10.023 [30] Wu, S., Zheng, Y. Y., Sun, X., et al., 2014. Origin of the Miocene Porphyries and Their Mafic Microgranular Enclaves from Dabu Porphyry Cu-Mo Deposit, Southern Tibet: Implications for Magma Mixing/Mingling and Mineralization. International Geology Review, 56(5): 571-595. https://doi.org/10.1080/00206814.2014.880074 [31] Xia, L.Q., Ma, Z.P., Li, X.M., et al., 2009. Paleocene-Early Eocene (65-40 Ma) Volcanic Rocks in Tibetan Plateau: The Products of Syn-Collisional Volcanism. Northwestern Geology, 42(3): 1-25 (in Chinese with English abstract). [32] Xu, C., Chen, H. Y., White, N., et al., 2017. Alteration and Mineralization of Xi'nan Cu-Mo Ore Deposit in Zijinshan Orefield, Fujian Province, and Application of Short Wavelength Infra-Red Technology (SWIR) to Exploration. Mineral Deposits, 36(5): 1013-1038 (in Chinese with English abstract). [33] Yang, K., Huntington, J. F., Gemmell, J. B., et al., 2011. Variations in Composition and Abundance of White Mica in the Hydrothermal Alteration System at Hellyer, Tasmania, as Revealed by Infrared Reflectance Spectroscopy. Journal of Geochemical Exploration, 108(2): 143-156. https://doi.org/10.1016/j.gexplo.2011.01.001 [34] Yang, Z.M., Hou, Z.Q., Yang, Z.S., et al., 2012. Application of Short Wavelength infrared (SWIR) Technique in Exploration of Poorly Eroded Porphyry Cu District: A Case Study of Niancun Ore District, Tibet. Mineral Deposits, 31(4): 699-717 (in Chinese with English abstract). [35] Ye, F.W., Meng, S., Zhang, C., et al., 2018. Minerageny Study of High-Al, Medium-Al- and Low-Al Sericites Identified by Airborne Hyperspectral Remote Sensing Technology. Acta Geologica Sinica, 92(2): 395-412 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201802013 [36] Zhang, G.Y., Zheng, Y.Y., Gong, F.Z., et al., 2008. Geochronologic Constraints on Magmatic Intrusions and Mineralization of the Jiru Porphyry Copper Deposit, Tibet, Associated with Continent-Continent Collisional Process. Acta Petrologica Sinica, 24(3): 473-479 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200803007 [37] Zhang, J.Z., 2013. Geology, Exploration Model and Practice of Zijinshan Ore Concentrated Area. Mineral Deposits, 32(4): 758-767 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201304009 [38] Zhang, S.T., Chen, H.Y., Zhang, X.B., et al., 2017. Application of Short Wavelength Infrared (SWIR) Technique to Exploration of Skarn Deposit: A Case Study of Tonglvshan Cu-Fe-Au Deposit, Edongnan (Southeast Hubei) Ore Concentration Area. Mineral Deposits, 36(6): 1263-1288 (in Chinese with English abstract). [39] Zhao, L.Q., Deng, J., Yuan, H.T., et al., 2008. Short Wavelength Infrared Spectral Analysis of Alteration Zone in the Taishang Gold Deposit. Geology and Prospecting, 44(5): 58-63 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dzykt200805010 [40] Zheng, Y.Y., Gao, S.B., Cheng, L.J., et al., 2004. Finding and Significances of Chongjiang Porphyry Copper (Molybdenum, Aurum) Deposit, Tibet. Earth Science, 29(3): 333-339 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx200403012 [41] Zheng, Y.Y., Gao, S.B., Fan, Z.H., et al., 2005. Major Breakthroughs and Enlightenment of Geochemical Exploration Information and Scientific Prospecting: Examples of Multiple Large and Ultra-Large Porphyry Copper Deposits Discovered in Tibet in Recent Years. The Sixth World Chinese Geological Science Symposium and the 2005 Annual Conference of Geological Society of China, Chifeng (in Chinese). [42] Zheng, Y. Y., Sun, X., Gao, S. B., et al., 2014. Multiple Mineralization Events at the Jiru Porphyry Copper Deposit, Southern Tibet: Implications for Eocene and Miocene Magma Sources and Resource Potential. Journal of Asian Earth Sciences, 79: 842-857. https://doi.org/10.1016/j.jseaes.2013.03.029 [43] Zheng, Y.Y., Xue, Y.X., Cheng, L.J., et al., 2004. Finding, Characteristics and Significances of Qulong Superlarge Porphyry Copper (Molybdenum) Deposit, Tibet. Earth Science, 29(1): 103-108 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx200401018 [44] Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2012. Cambrian Bimodal Volcanism in the Lhasa Terrane, Southern Tibet: Record of an Early Paleozoic Andean-Type Magmatic Arc in the Australian Proto-Tethyan Margin. Chemical Geology, 328: 290-308. https://doi.org/10.1016/j.chemgeo.2011.12.024 [45] 陈寿波, 黄宝强, 李琛, 等, 2018.新疆东天山玉海铜矿蚀变矿化特征及SWIR勘查应用研究.地球科学, 43(9): 2911-2928. doi: 10.3799/dqkx.2018.156 [46] 甘甫平, 王润生, 杨苏明, 2002.西藏Hyperion数据蚀变矿物识别初步研究.国土资源遥感, 14(4): 44-50. doi: 10.3969/j.issn.1001-070X.2002.04.010 [47] 黄一入, 郭娜, 郑龙, 等, 2017.基于遥感短波红外技术的三维蚀变填图——以低硫化浅成低温热液型矿床斯弄多为例.地球学报, 38(5): 779-789. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb201705017 [48] 郎兴海, 唐菊兴, 陈毓川, 等, 2012.西藏冈底斯成矿带南缘新特提斯洋俯冲期成矿作用:来自雄村矿集区Ⅰ号矿体的Re-Os同位素年龄证据.地球科学, 37(3): 515-525. http://www.earth-science.net/article/id/2255 [49] 梁树能, 甘甫平, 闫柏锟, 等, 2012.白云母矿物成分与光谱特征的关系研究.国土资源遥感, 24(3): 111-115. doi: 10.6046/gtzyyg.2012.03.20 [50] 刘鹤, 马宇, 任宏, 等, 2015.福建铁帽山钼矿床围岩蚀变的短波红外光谱学研究.矿物学报, 35(2): 221-228. http://d.old.wanfangdata.com.cn/Periodical/kwxb201502017 [51] 潘桂棠, 莫宣学, 侯增谦, 等, 2006.冈底斯造山带的时空结构及演化.岩石学报, 22(3): 521-533. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200603001 [52] 孙四权, 陈华勇, 金尚刚, 等, 2019.鄂东南矿集区蚀变矿物地球化学研究及其勘查应用.北京:科学出版社. [53] 田丰, 冷成彪, 张兴春, 等, 2019.短波红外光谱技术在西藏尼木地区岗讲斑岩铜-钼矿床中的应用.地球科学, 44(6): 2143-2154. doi: 10.3799/dqkx.2018.373 [54] 王锦荣, 吕新彪, 黄照强, 等, 2017.西藏努日铜多金属矿床蚀变矿物的近红外光谱学研究.地质与勘探, 53(1): 141-150. http://d.old.wanfangdata.com.cn/Periodical/dzykt201701014 [55] 夏林圻, 马中平, 李向民, 等, 2009.青藏高原古新世-始新世早期(65~40 Ma)火山岩:同碰撞火山作用的产物.西北地质, 42(3): 1-25. doi: 10.3969/j.issn.1009-6248.2009.03.001 [56] 许超, 陈华勇, White, N., 等, 2017.福建紫金山矿田西南铜钼矿段蚀变矿化特征及SWIR勘查应用研究.矿床地质, 36(5): 1013-1038. http://d.old.wanfangdata.com.cn/Periodical/kcdz201705001 [57] 杨志明, 侯增谦, 杨竹森, 等, 2012.短波红外光谱技术在浅剥蚀斑岩铜矿区勘查中的应用:以西藏念村矿区为例.矿床地质, 31(4): 699-717. doi: 10.3969/j.issn.0258-7106.2012.04.004 [58] 叶发旺, 孟树, 张川, 等, 2018.航空高光谱识别的高、中、低铝绢云母矿物成因学研究.地质学报, 92(2): 395-412. doi: 10.3969/j.issn.0001-5717.2018.02.013 [59] 张刚阳, 郑有业, 龚福志, 等, 2008.西藏吉如斑岩铜矿:与陆陆碰撞过程相关的斑岩成岩成矿时代约束.岩石学报, 24(3): 473-479. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200803007 [60] 张锦章, 2013.紫金山矿集区地质特征、矿床模型与勘查实践.矿床地质, 32(4): 758-767. http://d.old.wanfangdata.com.cn/Periodical/kcdz201304009 [61] 张世涛, 陈华勇, 张小波, 等, 2017.短波红外光谱技术在矽卡岩型矿床中的应用:以鄂东南铜绿山铜铁金矿床为例.矿床地质, 36(6): 1263-1288. http://d.old.wanfangdata.com.cn/Periodical/kcdz201706002 [62] 赵利青, 邓军, 原海涛, 等, 2008.台上金矿床蚀变带短波红外光谱研究.地质与勘探, 44(5): 58-63. doi: 10.3969/j.issn.1001-1986.2008.05.015 [63] 郑有业, 高顺宝, 程力军, 等, 2004.西藏冲江大型斑岩铜(钼金)矿床的发现及意义.地球科学, 29(3): 333-339. doi: 10.3321/j.issn:1000-2383.2004.03.012 [64] 郑有业, 高顺宝, 樊子珲, 等, 2005.化探信息与科学找矿的重大突破和启示——以西藏近年发现的多个大-超大型斑岩铜矿为例.赤峰: 第六届世界华人地质科学研讨会和中国地质学会二零零五年学术年会. [65] 郑有业, 薛迎喜, 程力军, 等, 2004.西藏驱龙超大型斑岩铜(钼)矿床:发现、特征及意义.地球科学, 29(1): 103-108. doi: 10.3321/j.issn:1000-2383.2004.01.018