Energetic Criterion of Entering Acceleration in Progressive Failure Process of Bedding Rockslide: A Case Study for Shanshucao Landslide
-
摘要: 顺层岩质滑坡是最常见的斜坡灾害,研究其渐进破坏过程、建立预报判据对于防灾减灾具有重要意义.以秭归杉树槽滑坡为例,在野外调查和室内岩石试验的基础上,利用JRC-JCS模型及GSI法估算得出滑坡基本力学参数;通过FLAC3D模拟滑坡渐进破坏过程,分析顺层岩质滑坡变形破坏的发展规律;基于能量守恒和虚功原理,提出了顺层岩质滑坡迈入加速变形的能量学判据.研究表明:杉树槽滑坡由后缘向前渐进破坏,后缘变形累积的总位移值不断增大,前缘切层段的锁固作用使变形迅速降低,当临近破坏时,前缘位移由前向后发展,滑面快速贯通;滑体沿滑动方向应变曲线可近似表示为"S"型曲线,随渐进破坏该曲线向坡下发展;以滑体动能增量大于0作为滑坡迈入加速变形的能量学判据,其结果符合滑坡地质演化观点,与FLAC3D模拟结果吻合.Abstract: Bedding rockslide is the most common slope disaster. It is of great significance to study its progressive failure process and establish prediction criteria for disaster prevention and mitigation. Taking Shanshucao landslide in Zigui as an example, on the basis of field investigation and indoor rock test, the basic mechanical parameters of landslide were estimated by JRC-JCS model and GSI method. The progressive failure process of landslide was simulated by FLAC3D, and the development law of deformation and failure of bedding rockslide was analyzed. Based on the principle of energy conservation and virtual work, the energetic criterion for accelerated deformation of bedding rockslide is proposed. The results show that the landslide mass of Shanshucao is progressively destroyed from the rear edge to the front, the accumulated total displacement value of the trailing edge deformation increases continuously, the locking effect of the front cutting layer makes the deformation decrease rapidly. When approaching failure, displacement of the leading edge develops from front to back, transfixion of sliding face occurs quickly. The strain curve along the sliding direction of the landslide can be approximated as a "S" curve, which develops downhill with progressive failure. Taking the kinetic energy increment of the landslide mass greater than 0 as the energetic criterion for accelerated deformation of the landslide, the results are consistent with the geological evolution of landslides and are in good agreement with those of FLAC3D simulation.
-
表 1 滑坡模拟力学参数建议
Table 1. Proposed mechanical parameters for landslide simulation
位置 Ρ(kg∙m-3) K(GPa) G(GPa) $ \varphi $(°) c(Mpa) 滑床 2 550 17.14 6.7 38 4.37 滑体 2 550 11.08 4.25 33 4.2 后缘 2 500 1.27 1.27 33 0.11 后缘侧壁 2 500 1.17 1.17 33 0.23 前缘侧壁 2 500 0.87 0.87 30 0.32 顺层滑面 2 500 0.66 0.66 25~19 0.23~0.02 切层滑面 2 500 0.99 0.99 30~21 0.32~0.02 表 2 滑面贯通位置与参数表征值对应表
Table 2. Table of correspondence between location of sliding surface failure and parameter characteristic value
滑面贯通位置λ 0 160 260 300 参数表征值b 90 115 135 160 -
[1] Chai, B., Yin, K.L., 2009. Influence of Intersection Angle between Trend of Slope and Strata on Stability of Bedding Slope. Chinese Journal of Rock Mechanics and Engineering, 28(3): 628-634 (in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/yslxygcxb200903024 [2] Guo, Z.Z., Yin, K. L., Liu, Q, L., et al., 2020. Rainfall Warning of Creeping Landslide in Yunyang County of Three Gorges Reservoir Region Based on Displacement Ratio Model. Earth Science, 45(2): 672-684 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2019.005 [3] Huang, F.M., Yin, K.L., Yang, B.B., et al., 2018. Step-Like Displacement Prediction of Landslide Based on Time Series Decomposition and Multivariate Chaotic Model. Earth Science, 43(3): 887-898 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201803020.htm [4] Luo, W.Q., Li, F.A., Liu, X, S., et al., 2016. Evolution Stage Division of Landslide Based on Analysis of Multivariate Time Series. Earth Science, 41(4): 711-717 (in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=DQKX201604017&dbcode=CJFD&year=2016&dflag=pdfdown [5] Margielewski, W., 2006. Structural Control and Types of Movements of Rock Mass in Anisotropic Rocks: Case Studies in the Polish Flysch Carpathians. Geomorphology, 77: 47-68. https://doi.org/10.1016/j.geomorph.2006.01.003 [6] Miu, H.B., Yin, K.L., Zhang, X.W., 2016. Prediction of Ground Displacement of Reservoir Ancient Landslide with Intermittent Reactivation. Geological Science and Technology Information, 35(5): 208-213 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DZKQ201605029.htm [7] Müller, L., Buck, H., Müller, K., 1970. Structural Geology of Rocks-Rock Mechanics in Construction. Wilhelm Ernst & Sohn Verlag, Berlin (in German). [8] Regenauer-Lieb, K., Yuen, D. A., Fusseis, F., 2009. Landslides, Ice Quakes, Earthquakes: A Thermodynamic Approach to Surface Instabilities. Pure and Applied Geophysics, 166(10-11): 1885-1908. https://doi.org/10.1007/s00024-009-0520-3 [9] Saito, M., 1965. Forecasting the Time of Occurrence of a Slope Failure. Proc. 6th Int. Conf. Soil Mech. Found. Engineering, 2: 537-541. [10] Tang, H.M., Zou, Z.X., Xiong, C.R., et al., 2015. An Evolution Model of Large Consequent Bedding Rockslides, with Particular Reference to the Jiweishan Rockslide in Southwest China. Engineering Geology, 186: 17-27. https://doi.org/10.1016/j.enggeo.2014.08.021 [11] Xiao, S.R., Liu, D.F., Zhang, G.D., 2015. Study on Landslide of Extra-Large Bedding Rocky Reservoir. China Water Power Press, Beijing (in Chinese). [12] Xie, J.M., Liu, L.L., Yin, K.L., et al., 2003. Study on the Threshold Valves of Rainfall of Landslide Hazards for Early-Warning and Prediction in Zhejiang Province. Geological Science and Technology Information, (4): 101-105 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ200304019.htm [13] Xu, G. L., Li, W. N., Yu, Z., et al., 2015. The 2 September 2014 Shanshucao Landslide, Three Gorges Reservoir, China. Landslides, 12(6): 1169-1178. https://doi.org/10.1007/s10346-015-0652-8 [14] Xu, Q., 2012. Theoretical Studies on Prediction of Landslides Using Slopes Deformation Process Data. Journal of Engineering Geology, 20(2): 145-151 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCDZ201202001.htm [15] Xu, Q., Tang, M.G., Xu, K.X., et al., 2008. Research on Space-Time Evolution Laws and Early Warning-Prediction of Landslides. Chinese Journal of Rock Mechanics and Engineering, 27(6): 1104-1112 (in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/yslxygcxb200806003 [16] Xue, L., Qin, S.Q., Pan, X.H., et al., 2018. Mechanism and Physcial Prediction Model of Instability of the Locked-Segment Type Slopes. Journal of Engineering Geology, 26(1): 179-192 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCDZ201801020.htm [17] Yi, Q.L., Zhao, N.H., Liu, Y.L., 2017. Model of Landslide Stability Calculation Based on Energy Conservation. Rock and Soil Mechanics, 38(S1): 1-10 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTLX2017S1001.htm [18] Yu, M. L., Mei, H.B., Li, J.H., et al., 2016. Landslide Displacement Prediction Based on Varying Coefficient Regression Model in Three Gorges Reservoir Area. Earth Science, 41(9): 1593-1602 (in Chinese with English abstract). http://www.researchgate.net/publication/309261799_Landslide_displacement_prediction_based_on_varying_coefficient_regression_model_in_Three_Gorges_reservoir_area [19] Yu, Z., 2018. Study on Strength Attenuation Characteristics of Slip Soil and Failure Mechanism of Shanshucao Landslide (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). [20] Zhang, X.N., Sheng, Z.P., Sun, G.Z., 1993. Study on the Bedding Bank Slope of the Three Gorges Reservoir Area of the Yangtze River. Seismological Press, Beijing (in Chinese). [21] Zou, Z.X., Tang, H.M., Xiong, C.R., et al., 2012. Geomechanical Model of Progressive Failure for Large Consequent Bedding Rockslide and Its Stability Analysis. Chinese Journal of Rock Mechanics and Engineering, 31(11): 2222-2231 (in Chinese with English abstract). http://www.cqvip.com/QK/96026X/201211/43896935.html [22] 柴波, 殷坤龙, 2009. 顺向坡岩层倾向与坡向夹角对斜坡稳定性的影响. 岩石力学与工程学报, 28(3): 628-634. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200903028.htm [23] 郭子正, 殷坤龙, 刘庆丽, 等, 2020. 基于位移比模型的三峡库区云阳县域内蠕变型滑坡降雨预警. 地球科学, 45(2): 672-684. doi: 10.3799/dqkx.2019.005 [24] 黄发明, 殷坤龙, 杨背背, 等, 2018. 基于时间序列分解和多变量混沌模型的滑坡阶跃式位移预测. 地球科学, 43(3): 887-898. doi: 10.3799/dqkx.2018.909 [25] 罗文强, 李飞翱, 刘小珊, 等, 2016. 多元时间序列分析的滑坡演化阶段划分. 地球科学, 41(4): 711-717. doi: 10.3799/dqkx.2016.060 [26] 缪海波, 殷坤龙, 张修旺, 2016. 间歇复活型库岸老滑坡地表位移预测. 地质科技情报, 35(5): 208-213. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201605029.htm [27] 肖诗荣, 刘德富, 张国栋, 2015. 特大顺层岩质水库滑坡研究. 北京: 中国水利水电出版社. [28] 谢剑明, 刘礼领, 殷坤龙, 等, 2003. 浙江省滑坡灾害预警预报的降雨阀值研究. 地质科技情报, (4): 101-105. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200304019.htm [29] 许强, 2012. 滑坡的变形破坏行为与内在机理. 工程地质学报, 20(2): 145-151. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201202001.htm [30] 许强, 汤明高, 徐开祥, 等, 2008. 滑坡时空演化规律及预警预报研究. 岩石力学与工程学报, 27(6): 1104-1112. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200806005.htm [31] 薛雷, 秦四清, 泮晓华, 等, 2018. 锁固型斜坡失稳机理及其物理预测模型. 工程地质学报, 26(1): 179-192. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201801020.htm [32] 易庆林, 赵能浩, 刘艺梁, 2017. 基于能量守恒的滑坡稳定性计算模型. 岩土力学, 38(S1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S1001.htm [33] 喻孟良, 梅红波, 李冀骅, 等, 2016. 基于变系数回归模型的三峡库区滑坡位移预测. 地球科学, 41(9): 1593-1602. doi: 10.3799/dqkx.2016.118 [34] 喻章, 2018. 杉树槽滑坡滑带土强度衰减特性及失稳机理研究(博士学位论文). 武汉: 中国地质大学. [35] 张年学, 盛祝平, 孙广忠, 1993. 长江三峡工程库区顺层岸坡研究. 北京: 地震出版社. [36] 邹宗兴, 唐辉明, 熊承仁, 等, 2012. 大型顺层岩质滑坡渐进破坏地质力学模型与稳定性分析. 岩石力学与工程学报, (11): 2222-2231. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201211009.htm