• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    自然材料与地球科学

    马岳韬 高平平

    马岳韬, 高平平, 2019. 自然材料与地球科学. 地球科学, 44(7): 2567-2578. doi: 10.3799/dqkx.2019.955
    引用本文: 马岳韬, 高平平, 2019. 自然材料与地球科学. 地球科学, 44(7): 2567-2578. doi: 10.3799/dqkx.2019.955
    Ma Yuetao, Gao Pingping, 2019. Natural Materials and Earth Sciences. Earth Science, 44(7): 2567-2578. doi: 10.3799/dqkx.2019.955
    Citation: Ma Yuetao, Gao Pingping, 2019. Natural Materials and Earth Sciences. Earth Science, 44(7): 2567-2578. doi: 10.3799/dqkx.2019.955

    自然材料与地球科学

    doi: 10.3799/dqkx.2019.955
    详细信息
      作者简介:

      马岳韬(1998-), 男, 本科, 材料科学与工程

      通讯作者:

      高平平

    • 中图分类号: P968

    Natural Materials and Earth Sciences

    • 摘要: 地球是一个由无机材料、有机材料和生物材料组成的巨型系统,也是一个运行了46亿年的材料合成与加工的巨型工厂,蕴含了丰富的材料组成、结构、性能、制备工艺和使役等一体化信息.如何向大自然学习,获得大自然的材料密码,以提高人类对新材料的预测能力和制造能力,是材料科学值得关注的新方向.本文系统综述了地球系统中元素、自然矿物材料、自然生物材料的种类和分布,阐述了自然界普遍存在而稳定的核壳复合结构以及超浸润性的表面结构,总结了分选与压实、熔铸与烧结、冷凝与烘烤等自然材料的加工工艺,初步搭建自然材料学的研究构架,为自然材料信息库的建设提供参考.

       

    • 图  1  主量子数(n)=4、角量子数(l)=3、磁量子数(m)=1状态下的氢原子形状

      吴国玢等(2014)

      Fig.  1.  Electronium density of hydrogen atom in state n=4, l=3 and m=1

      图  2  合成核壳型磁性纳米Fe3O4@MPS⁃SiO2@PNIPAM粒子示意

      Deng et al., (2003)

      Fig.  2.  Schematic illustration of the preparation of magnetic PNIPAM microspheres

      图  3  荷叶表面疏水的乳突微观形貌

      a.随机分布的凸起结构;b.单个微米级凸起结构;c.表面纳米级蜡丝;据Koch et al.(2008)

      Fig.  3.  Images of a superhydrophobic lotus leaves with self-cleaning properties at different magnifications

      图  4  月季花瓣与竹材表面亲水的形态

      宋剑刚等(2017);a.花瓣上的水滴;b.花瓣背面上的水滴;c.竹材上的稀盐酸、水、氢氧化钠液滴;d.竖直竹块上的水滴;e.翻转竹材上的EVA乳液

      Fig.  4.  Shape of droplets on hydrophilic surface of Chinese rose and bamboo specimen

      图  5  超浸润体系中的64种润湿状态

      Liu et al.(2017)

      Fig.  5.  Overview of the different wetting states (combined and individual) those are possible in superwettability systems

      图  6  碎屑物风化-剥蚀-搬运-沉积-成岩过程及影响因素

      胡修棉(2017)

      Fig.  6.  Main steps in sediment evolution and principal processes that modify the composition of clastic sediments along the pathway from source area to sedimentary basin

      图  7  松辽盆地北部沙河子组砂砾岩储层成岩作用与孔隙定量演化关系模式

      郝杰等(2018)

      Fig.  7.  Relationship between diagenesis and pore evolution of sandy conglomerate reservoirs in Shahezi Formation, northern Songliao basin

      图  8  泥岩压实作用及孔隙度演化示意

      Bjørlykke(1998)李超和罗晓容(2017)σv为静岩压力;P为孔隙压力;σe为有效应力;σe=σvP

      Fig.  8.  Schematic representation of mudstone compaction and porosity evolution

      图  9  地球内部的结构和主要物质成分

      周春银和金振民(2014)

      Fig.  9.  The main components and structure of Earth interior

      图  10  谢氏超晶石晶体结构示意

      陈鸣等(2012)

      Fig.  10.  Schematic diagram of the crystal structure of Xieite

      图  11  内含钙硅酸盐钙钛矿(黄色)的金刚石的阴极发光图和δ13C值(红色)

      Nestola et al.(2018)

      Fig.  11.  Cathodoluminescence image and carbon isotopic composition (red circles) of the diamond containing the Ca-Pv inclusion (yellow)

      图  12  后钙钛矿结构的MgSiO3

      张苑和舒良树(2010);图中为Mg原子和SiO6八面体,实验压力120 GPa

      Fig.  12.  Schematic diagram of the crystal structure for the Past-peroveskite phase of MgSiO3

      表  1  矿物种数目统计结果

      Table  1.   Mineral species in mineral database of CAGS

      矿物种名称 矿物种数目
      元素(包括合金) 171
      硫化物(包括硫盐) 850
      卤化物 165
      氧化物(包括SO3, SeO3, AsO3, TeO3, IO3 596
      碳酸盐(包括硝酸盐) 228
      硼酸盐 136
      硫酸盐(包括铬酸盐) 338
      钨酸盐(包括钼酸盐) 28
      硅酸盐(包括锗酸盐) 1 140
      磷酸盐(包括砷酸盐,钒酸盐) 712
      有机物 35
      注:数据来源于中国地质科学院全球矿物基础数据库(http://210.73.59.163/mineral/).
      下载: 导出CSV

      表  2  自然生物材料总览

      Table  2.   Biomaterials in nature

      天然纤维 植物纤维(纤维素) 种子纤维:棉、木棉等
      叶纤维:剑麻、蕉麻等
      茎纤维:苎麻、亚麻、大麻、黄麻等
      木质纤维(纤维素、半纤维素和木质素) 乔木类,灌木类,藤木类,匍匐类
      矿物纤维(无机金属硅酸盐类) 石棉
      甲壳素纤维(甲壳素) 节肢动物(虾、蟹等壳;昆虫纲,如蝗、蝶、蚊、蚕等蛹壳);软体动物(石鳖,鲍,蜗牛,乌贼、鹦鹉);环节动物(沙蚕,蚯蚓和蛭纲如蚂蟥等);原生动物(锥体虫,变形虫,草履虫等);肛肠动物(水螅、筒螅,珊瑚虫纲等);海藻;真菌;动物的关节、蹄、足的坚硬部分
      生物矿物 磷酸钙类、碳酸钙类、硅石类 贝壳、骨骼、牙齿等
      生物体组织 表皮组织(氨基酸、角蛋白等) 植物表皮、动物皮肤等
      结构蛋白 蛋白质 毛发类:绵羊毛、山羊毛、骆驼毛、兔毛、牦牛毛等
      腺分泌物:桑蚕丝、柞蚕丝等
      鸟类羽毛、鱼类鳞片、昆虫翅膀等
      注:据贾贤(2007).
      下载: 导出CSV

      表  3  各大陆剥蚀速率、降雨量、面积和平均高度

      Table  3.   Erosion rate, precipitation, area and average elevation of different continents

      大陆 面积(M km2) 剥蚀速率 降雨量(mm/a) 平均高度(m)
      (t/(m2·Ma))
      机械 化学
      亚洲 51.7 310.0 36.7 410 741
      非洲 30.2 17.5 26.8 290 623
      北美洲 26.7 88.0 32.9 220 499
      南美洲 20.1 57.0 30.7 420 523
      欧洲 12.8 27.0 44.2 270 202
      澳洲 11.1 26.5 2.7 60 243
      总平 64.2 31.6 317 565
      注:据杨坤光和马昌前(1996)
      下载: 导出CSV
    • [1] Ahn, Y., Jeong, Y., Lee, D., et al., 2015. Copper Nanowire-Graphene Core-Shell Nanostructure for Highly Stable Transparent Conducting Electrodes. ACS Nano, 9(3): 3125-3133. https://doi.org/10.1021/acsnano.5b00053
      [2] Bjørlykke, K., 1998. Clay Mineral Diagenesis in Sedimentary Basins — A Key to the Prediction of Rock Properties. Examples from the North Sea Basin. Clay Minerals, 33(1): 15-34. https://doi.org/10.1180/claymin.1998.033.1.03
      [3] Chen, M., 2012. Research Progress on Ultrahigh-Pressure Minerals. Bulletin of Mineralogy, Petrology and Geochemistry, 31(5):428-432 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KYDH201205002.htm
      [4] Chen, T. H., Xie, Q. Q., Liu, H. B., 2018. Nano-Minerals and Nano-Mineral Resource. Earth Science, 43(5):81-91 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.403
      [5] Chinese Academy Sciences, 2013. Chinese Discipline Development Strategy: Materials Science. Science Press, Beijing, 24-29 (in Chinese)
      [6] Darmanin, T., Guittard, F., 2015. Superhydrophobic and Superoleophobic Properties in Nature. Materials Today, 18(5): 273-285. https://doi.org/10.1016/j.mattod.2015.01.001
      [7] Deng, Y. H., Yang, W. L., Wang, C. C., et al., 2003. A Novel Approach for Preparation of Thermoresponsive Polymer Magnetic Microspheres with Core-Shell Structure. Advanced Materials, 15(20): 1729-1732. https://doi.org/10.1002/adma.200305459
      [8] Duan, T., Yang, Y. S., Peng, T. J., et al., 2009. Review of Progress in Core-Shell Structural Nanocomposite Material. Materials Review, 23(3):19-23 (in Chinese with English abstract).
      [9] Feng, L., Zhang, Y. N., Xi, J. M., et al., 2008. Petal Effect: A Superhydrophobic State with High Adhesive Force. Langmuir, 24(8): 4114-4119. https://doi.org/10.1021/la703821h
      [10] Gao, S., 2000. Fine-Grained Sediment Fluxes and Cycling on Continental Shelves. World Sci-Tech R & D, 22(5):73-77 (in Chinese with English abstract).
      [11] Gong, Z. Z., Xie, H. S., Fei, Y. W., 2013. Reviews of Recent Advances of Shock Wave Physics Applied to Earth Science in China. Chinese Journal of High Pressure Physics, 27(2):168-187 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gywlxb201302003
      [12] Hao, J., Zhou, L. F., Hao, Y. D., et al., 2018. Diagenetic Characteristics and Their Control on Porosity of Sandy Conglomerate Reservoirs in Faulted Basins. Petroleum Geology & Experiment, 40(5):632-638, 649 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/sysydz201805005
      [13] Hu, B. Q., Li, J., Li, G. G., et al., 2011. Distinguishing the Changjiang and Huanghe Sediments: A Review. Marine Geology & Quaternary Geology, 31(6):147-156 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ201106023.htm
      [14] Hu, X. M., 2017. A Misunderstanding in Provenance Analysis: Sand Changes of Mineral, Roundness, and Size in Flowing-Water Transportation. Journal of Palaeogeography, 19(1):175-184 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-GDLX201701017.htm
      [15] Jay, H., 2015. The Shark's Paintbrush: Biomimicry and How Nature is Inspiring Innovation. In: Wang, P., Guo, P. J., eds., China CITIC Press, Beijing (in Chinese).
      [16] Jia, X., 2007. Natural Biological Materials and Bionic Engineering Materials. Chemical Industry Press, Beijing (in Chinese).
      [17] Jung, D. W., Kim, K. H., Lee, J., et al., 2013. In Situ Synthesis and Cell Performance of a Si/C Core-Shell/Ball-Milled Graphite Composite for Lithium Ion Batteries. Journal of Nanoscience and Nanotechnology, 13(12): 7855-7859. https://doi.org/10.1166/jnn.2013.8129
      [18] Koch, K., Bhushan, B., Barthlott, W., 2008. Diversity of Structure, Morphology and Wetting of Plant Surfaces. Soft Matter, 4(10): 1943. https://doi.org/10.1039/b804854a
      [19] Lee, C. T. A., Morton, D. M., Little, M. G., et al., 2008. Regulating Continent Growth and Composition by Chemical Weathering. Proceedings of the National Academy of Sciences, 105(13): 4981-4986. https://doi.org/10.1073/pnas.0711143105
      [20] Li, B. W., 1995. Contemplation on Relationship between Petrology, Mineralogy and Materials Science. Geological Science and Technology Information, 14(3):56-60 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199500061868
      [21] Li, C., Luo, X. R., 2017. Review on Mudstone Compaction. Journal of Earth Science and Environment, 39(6):761-772 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xagcxyxb201706007
      [22] Li, G. L., He, T., Li, X. M., 2011. Preparation and Application of Core-Shell Structure Nanocomposite Materials: the State-of-the-Art. Progress in Chemistry, 23(6):1081-1089 (in Chinese with English abstract).
      [23] Liu, M. J., Wang, S. T., Jiang, L., 2017. Nature-Inspired Superwettability Systems. Nature Reviews Materials, 2(7): 17036. https://doi.org/10.1038/natrevmats.2017.36
      [24] Liu, X. F., Wu, S. Y., 1992. Experimental Analysis of Mechanical Properties of Eggs. Journal of Jiangsu Institute of Technology, 13(1):7-13 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JSLG199201002.htm
      [25] Liu, X. M., Rudnick, R. L., 2011. Constraints on Continental Crustal Mass Loss via Chemical Weathering Using Lithium and Its Isotopes. Proceedings of the National Academy of Sciences, 108(52): 20873-20880. https://doi.org/10.1073/pnas.1115671108
      [26] Lu, X., 1995. Principles of Sedimentary Petrology(1st Volum). Geological Publishing House, Beijing, 214-234 (in Chinese).
      [27] Marmur, A., 2004. The Lotus Effect: Superhydrophobicity and Metastability. Langmuir, 20(9): 3517-3519. https://doi.org/10.1021/la036369u
      [28] Nestola, F., Korolev, N., Kopylova, M., et al., 2018. CaSiO3 Perovskite in Diamond Indicates the Recycling of Oceanic Crust into the Lower Mantle. Nature, 555(7695): 237-241. https://doi.org/10.1038/nature25972
      [29] Qin, S., Liu, J. Q., Chi, Z. Q., 2016. The Development and Prospect of Mineralogy in China. Geological Review, 62(4):970-978 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DZLP201604015.htm
      [30] Qiu, Y. C., Liu, K. S., Jiang, L., 2011. Peanut Leaves with High Adhesive Superhydrophobicity and their Biomimetic Materials. Scienitia Sinica Chemica, 41(2):403-408(in Chinese with English abstract). doi: 10.1360/032011-44
      [31] Ren, Y. L., 2007. Research on Biomechanics of Eggs Based on Shape Characteristics (Dissertation). Huazhong Agricultural University, Wuhan, 69 (in Chinese with English abstract).
      [32] Song, J. G., Wang, F. P., Gu, D., 2017. Bionic Building of a Super-Hydrophobic Structure of Chinese Rose on a Bamboo Surface. Journal of Zhejiang A & F University, 34(5):921-925 (in Chinese with English abstract).
      [33] Tang, L. M., Huang, Y. J., Song, H., et al., 2016. Research Progress of Core-Shell Nanocomposites Materials. Materials Review, 30(S1):40-42 (in Chinese with English abstract).
      [34] Wang, C. Y., 2011. Introduction of Microbial Starter. Technical Advisor for Animal Husbandry, (10):73 (in Chinese).
      [35] Wang, N., Zhao, Y., Jiang, L., 2011. Bioinspired Hieriachial Micro/Nanostructure Materials.Chemical Journal of Chinese Universities, 32(3):421-428 (in Chinese with English abstract).
      [36] Wang, Q. X., Wu, H., 2018. Chemical Elements: Earth's Genes. Cultural and Science Popularization of Land and Resources, (3):4-11 (in Chinese). http://d.old.wanfangdata.com.cn/Periodical/wjg200645007
      [37] Wu, G. F., Herrmann, F., Zhang, Z. Z., 2014. A Novel Model of Atom and Its Computer Visualization. Journal of Shanghai University of Science and Technology, 36(1):34-38 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=shlgdxxb201401008
      [38] Xie, H. S., Hou, W., Zhou, W. G., et al., 2001. Deep Earth Exploration and High-Pressure Research. Physics, 30(3):145-148 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/wl200103004
      [39] Yang, D. M., Liao, J. K., Huang, M. Z., 1999. The Exploration and Application of Natural Materials—Chitin and Chitosan. Chemical Industry and Engineering, 16(6):335-340 (in Chinese with English abstract).
      [40] Yang, J. L., Xu, Q. M., Hu, Y. Z., et al., 2018. The Sedimentary Evolution Process, Weathering Intensity and Provenance Reconstruction Insight from Borehole Records of Bohai Bay. Earth Science, 43(S1):291-304 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.137
      [41] Yang, K. G., Ma, C. Q., 1996. Some Advances in The Rates of Continental Erosion and Mountain Uplift. Geological Science and Technology Information, 15(4):89-96 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600064387
      [42] Zeng, Y. F., Xia, W. J., 1986. Sedimentary Petrology. Geological Publishing House, Beijing, 44-46 (in Chinese).
      [43] Zhang, Y., Shu, L. S., 2010. On Research Achievements in Earth's D"Layer in Core-Mantle Boundary: An Important Breakthrough in 21st Experimental Petrology. Journal of Geology, 34(2):113-116 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-JSDZ201002004.htm
      [44] Zhou, C. Y., Jin, Z. M., 2014. The "Bright Lamp" into the Deep Earth: Experiments at High Pressure and High Temperature. Chinese Journal of Nature, 36(2):79-88 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZRZZ201402002.htm
      [45] Zhu, Y. X., Chang, H., 2018. A Comprehensive Interpretation of the Mineralogical Study of Super-High Pressure Metamorphism. Yunnan Geology, 37(2):138-144(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/yndz201802003
      [46] 陈鸣, 2012.超高压矿物研究进展.矿物岩石地球化学通报, 31(5):428-432. doi: 10.3969/j.issn.1007-2802.2012.05.002
      [47] 陈天虎, 谢巧勤, 刘海波, 等, 2018.纳米矿物与纳米矿物资源.地球科学, 43(5):81-91. http://earth-science.net/WebPage/Article.aspx?id=3804
      [48] 中国科学院, 2013.中国学科发展战略:材料科学.北京:科学出版社, 24-29.
      [49] 段涛, 杨玉山, 彭同江, 等, 2009.核壳型纳米复合材料的研究进展.材料导报, 23(3):19-23. doi: 10.3321/j.issn:1005-023X.2009.03.005
      [50] 高抒, 2000.浅海细颗粒沉积物通量与循环过程.世界科技研究与发展, 22(5):73-77. doi: 10.3969/j.issn.1006-6055.2000.05.016
      [51] 龚自正, 谢鸿森, Fei, Y. W., 2013.我国动高压物理应用于地球科学的研究进展.高压物理学报, 27(2):168-187. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gywlxb201302003
      [52] 郝杰, 周立发, 袁义东, 等, 2018.断陷湖盆致密砂砾岩储层成岩作用及其对孔隙演化的影响.石油实验地质, 40(5):632-638, 649. http://d.old.wanfangdata.com.cn/Periodical/sysydz201805005
      [53] 胡邦琦, 李军, 李国刚, 等. 2011.长江和黄河入海沉积物的物源识别研究进展.海洋地质与第四纪地质, 31(6):147-156. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201106017
      [54] 胡修棉, 2017.物源分析的一个误区:砂粒在河流搬运过程中的变化.古地理学报, 19(1):175-184. http://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201701017.htm
      [55] Jay, H., 2015.创新启示: 大自然激发的灵感与创意.王佩, 郭燕杰, 译.北京: 中兴出版社.
      [56] 贾贤, 2007.天然生物材料及其仿生工程材料.北京:化学工业出版社.
      [57] 李博文, 1995.对岩石学、矿物学与材料科学关系的思考.地质科技情报, 14(3):56-60. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199500061868
      [58] 李超, 罗晓容, 2017.泥岩化学压实作用研究进展.地球科学与环境学报, 39(6):761-772. doi: 10.3969/j.issn.1672-6561.2017.06.007
      [59] 李广录, 何涛, 李雪梅, 2011.核壳结构纳米复合材料的制备及应用.化学进展, 23(6):1081-1089. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hxjz201106005
      [60] 刘信芳, 吴守一, 1992.鸡蛋力学特性实验分析.江苏工学院学报, 13(1):7-13. http://www.cnki.com.cn/Article/CJFDTOTAL-JSLG199201002.htm
      [61] 鲁欣, 1955.沉积岩石学原理:上册.北京:地质出版社, 214-234.
      [62] 秦善, 刘金秋, 迟振卿, 2016.矿物学发展现状及我国矿物学前景展望.地质论评, 62(4):970-978. http://d.old.wanfangdata.com.cn/Periodical/dzlp201604014
      [63] 邱宇辰, 刘克松, 江雷, 2011.花生叶表面的高黏附超疏水特性研究及其仿生制备.中国科学:化学, 41(2):403-408. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cb201102024
      [64] 任奕林, 2007.基于外形特征的鸡蛋生物力学特性研究(博士学位论文).武汉: 华中农业大学, 69. http://cdmd.cnki.com.cn/Article/CDMD-10504-2007209991.htm
      [65] 宋剑刚, 王发鹏, 顾笛, 2017.竹材表面仿生构筑类月季花超疏水结构的研究.浙江农林大学学报, 34(5):921-925. http://d.old.wanfangdata.com.cn/Periodical/zjlxyxb201705020
      [66] 唐丽梅, 黄云镜, 宋浩, 等, 2016.核壳结构纳米复合材料的研究进展.材料导报, 30(S1):40-42. http://d.old.wanfangdata.com.cn/Periodical/cldb2006z2061
      [67] 王春雨, 2011.微生物发酵剂简介.养殖技术顾问, (10):73. doi: 10.3969/j.issn.1673-1921.2011.10.070
      [68] 王女, 赵勇, 江雷, 2011.受生物启发的多尺度微/纳米结构材料.高等学校化学学报, 32(3):421-428. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdxxhxxb201103001
      [69] 王学求, 吴慧, 2018.化学元素:地球的基因.国土资源科普与文化, (3):4-11. http://d.old.wanfangdata.com.cn/Periodical/kjdk201232102
      [70] 吴国玢, Herrmann, F., 章琢之, 2014.一种新的原子结构模型及其计算机演示.上海理工大学学报, 36(1):34-38. doi: 10.3969/j.issn.1007-6735.2014.01.008
      [71] 谢鸿森, 侯渭, 周文戈, 等. 2001.地球深部探索与高压研究.物理, 30(3):145-148. http://d.old.wanfangdata.com.cn/Periodical/wl200103004
      [72] 杨冬梅, 缪进康, 黄明智, 1999.天然生物材料——甲壳素和壳聚糖的开发及应用.化学工业与工程, 16(6):335-340. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199900309360
      [73] 杨吉龙, 胥勤勉, 胡云壮, 等, 2018.渤海湾西岸钻孔记录的沉积演化过程和沉积物风化强度、物源重建.地球科学, 43(S1):291-304. http://earth-science.net/WebPage/Article.aspx?id=3957
      [74] 杨坤光, 马昌前, 1996.大陆剥蚀速率与造山隆升速率研究的某些进展.地质科技情报, 15(4):89-96. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600064387
      [75] 曾允孚, 夏文杰, 1986.沉积岩石学.北京:地质出版社, 44-46.
      [76] 张苑, 舒良树, 2010. 21世纪实验岩石学的重大突破——核幔边界D″层研究.地质学刊, 34(2):113-116. doi: 10.3969/j.issn.1674-3636.2010.02.113
      [77] 周春银, 金振民, 2014.照亮地球深部的"明灯"——高温高压实验.自然杂志, 36(2):79-88. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zrzz201402001
      [78] 朱毅翔, 常鸿, 2018.超高压变质矿物学的研究成果综述.云南地质, 37(2):138-144. doi: 10.3969/j.issn.1004-1885.2018.02.003
    • 加载中
    图(12) / 表(3)
    计量
    • 文章访问数:  4124
    • HTML全文浏览量:  1401
    • PDF下载量:  53
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-01-30
    • 刊出日期:  2019-07-15

    目录

      /

      返回文章
      返回