Methane Flux Characteristics and Its Relationship with Soil Microbial Community Composition of Dajiuhu Peatland in Shennongjia
-
摘要: 虽然神农架大九湖泥炭湿地的甲烷排放特征、土壤微生物群落组成已有一些研究,但是关于微生物群落与甲烷排放量的关系及影响的研究不多.采用涡度相关法和高通量测序技术,探讨2016年3月~2017年2月微生物对大九湖泥炭湿地CH4通量排放的影响.结果表明,大九湖泥炭湿地研究期间表现为CH4的源,年总排放量5 566.27 mg·m-2,日平均排放速率10.96 nmol·m-2·s-1;春、夏、秋、冬四季的平均通量分别为12.06、22.47、3.02、2.92 nmol·m-2·s-1;研究区优势菌为泉古菌(54.6%)、广古菌(18.9%)、酸杆菌(12.6%)等.对不同季节样品Shannon指数进行单因素分析,p值为0.000 127,分析结果表明:CH4月通量变化均呈明显的倒“U”型;夏季CH4通量最高,冬季最低;不同季节的微生物群落物种多样性存在显著差异;夏季、冬季微生物群落组成与CH4通量分别呈显著正相关、显著负相关;未鉴别出的菌群和俭菌总门与CH4通量呈极显著正相关关系,泉古菌门与CH4通量呈极显著负相关关系.Abstract: Although the methane flux characteristics and the composition of soil microbial community in the Dajiuhu peatland in Shennongjia have been studied to some extent, there are few studies on the relationship and impact of microbial community and methane flux. Using eddy covariance method and high throughput sequencing technology, methane flux and structure of microorganism were investigated at the Dajiuhu peatland from March 2016 to February 2017. The results show that the Dajiuhu peatland was the source of CH4 during the study period, with an annual total discharge of 5 566.27 mg·m-2 and a daily average emission rate of 10.96 nmol·m-2·s-1. The average fluxes of the four seasons were 12.06, 22.47, 3.02, 2.92 nmol·m-2·s-1, respectively. The dominant bacterium in the study area were Crenarchaecta (54.6%), Euryarchaeota (18.9%), and Acidobacteria (12.6%). Univariate analysis was performed on the Shannon index for different season samples with a p value of 0.000 127. The results showed that the change of the monthly methane emission flux during this year had clearly inverted " U" type curve, and CH4 emission rate in summer was the highest which was the lowest in winter. There were significant differences in soil microbial composition between different seasons. There was a strong positive correlation between the microbial community composition and the methane emission flux during summer and a strong negative correlation during winter. Abundance of Parcubacteria showed a significant positive correlation with CH4 flux, while abundance of Crenarchaecta showed a significant negative correlation with CH4 flux.
-
Key words:
- peatland /
- eddy covariance /
- methane flux /
- microbial community composition /
- Dajiuhu /
- ecology
-
表 1 大九湖泥炭湿地2016年全年不同时间尺度CH4排放量动态变化
Table 1. CH4 emission in different time scales during 2016 of Dajiuhu petland
季节 日期 日平均排放速率
(nmol·m-2·s-1)累计排放量
(mg·m-2)占全年排放总量比例
(%)月 季节 月 季节 月 季节 春 2016-03 3.18 12.06 136.46 1 533.34 2.45 27.55 2016-04 11.24 466.06 8.37 2016-05 21.72 930.82 16.72 夏 2016-06 29.50 22.47 1 223.49 2 858.98 21.98 51.36 2016-07 24.43 1047.15 18.81 2016-08 13.73 588.34 10.57 秋 2016-09 12.10 3.02 501.91 380.21 9.02 6.83 2016-10 4.90 210.10 3.77 2016-11 -8.00 -331.81 -5.96 冬 2016-12 12.60 2.92 539.88 793.73 9.70 14.26 2017-01 3.82 163.66 2.94 2017-02 2.33 90.19 1.62 均值 10.96 10.96 463.96 1 391.57 - - 合计 5 566.27 5 566.27 100 100 表 2 各土壤样品微生物群落多样性指数
Table 2. Microbial community diversity index of soil samples
样品编号 多样性指数 丰富度指数 Simpson Shannon chao1 ACE DJH.E 0.86 4.42 334 419.71 DJH.S 0.89 4.38 323 404.19 DJH.W 0.91 4.64 347 488.85 DJH.N 0.93 4.72 335 449.88 DJH.E2 0.99 8.38 1 703 2 225.46 DJH.S2 0.99 8.55 1 985.33 2 996.64 DJH.W2 0.99 8.80 2 141.50 3 224.72 DJH.N2 0.94 5.55 518 725.58 DJH.E3 0.93 5.11 341 417.31 DJH.S3 0.93 5.09 429 542.13 DJH.W3 0.94 5.17 320 365.04 DJH.N3 0.93 5.02 348 437.06 DJH.E4 0.93 4.82 329 441.74 DJH.S4 0.87 4.13 236 282.35 DJH.W4 0.87 3.87 209 255.15 DJH.N4 0.79 3.63 239 318.59 表 3 门水平丰度前10的微生物群落与CH4通量的相关性
Table 3. Correlation between top 10 microbial Phyla and CH4 flux
微生物菌群(门) p值 Pearson相关系数 泉古菌 0.000 024*** -0.855 832 2 广古菌 0.465 400 -0.196 657 4 酸杆菌 0.491 600 0.185 482 2 No blast hit 0.000 185*** 0.802 241 6 俭菌总门 0.000 397*** 0.777 119 3 放线菌 0.490 300 -0.186 032 4 厚壁菌 0.384 700 -0.233 210 1 迷踪菌 0.973 700 -0.008 965 835 BRC1 0.765 300 0.081 082 91 NC10 0.438 600 -0.208 387 6 注:***表示p < 0.001,为极显著. 表 4 大九湖泥炭湿地CH4排放强度与其他湿地的比较
Table 4. Comparison of CH4 emission intensity between Dajiuhu peatland and other wetlands
研究区域 湿地类型 CH4平均排放速率(nmol·m-2·s-1) 参考文献 瑞典北部 湖泊 20.01 Podgrajsek et al., 2016 辽河口 蓬碱湿地 0.48 王慧等, 2012 鄱阳湖 湖泊 4.34 王佳佳等, 2015 扎龙湖 芦苇湿地 133.20 黄璞祎, 2010 胶州湾大沽河口 芦苇-盐地蓬碱盐沼 142.36 杜慧娜等, 2016 芦苇盐沼 449.83 闽江河口 芦苇湿地 43.41(2008年) 廖稷, 2010 40.76(2009年) 若尔盖高原 泥炭湿地洼地 41.32 周文昌等, 2016 三江平原 毛果苔草沼泽 300.17 王德宣等, 2002 神农架大九湖 泥炭沼泽 10.96 本文 -
[1] Bridgham S. D., Megonigal J. P., Keller J. K., et al. 2006. The Carbon Balance of North American Wetlands. Wetlands, 26(4): 889-916. https://doi.org/10.1672/0277-5212(2006)26[889:tcbona]2.0.co;2 [2] Carney K. M., Matson P. A.. 2005. Plant Communities, Soil Microorganisms, and Soil Carbon Cycling: Does Altering the World Belowground Matter to Ecosystem Functioning? Ecosystems, 8(8): 928-940. https://doi.org/10.1007/s10021-005-0047-0 [3] Chanton J. P., Martens C. S., Kelley C. A., et al. 1992. Methane Transport Mechanisms and Isotopic Fractionation in Emergent Macrophytes of an Alaskan Tundra Lake. Journal of Geophysical Research Atmospheres, 97(D15): 16681-16688. https://doi.org/10.1029/90jd01542 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/90JD01542 [4] Chasar L.S., Chanton J.P., Glaser P.H., et al.2000.Radiocarbon and Stable Carbon Isotopic Evidence for Transport and Transformation of Dissolved Organic Carbon, Dissolved Inorganic Carbon, and CH4 in a Northern Minnesota Peatland. Global Biogeochemical Cycles, 14(4):1095-1108. https://doi.org/10.1029/1999gb001221 doi: 10.1029-1999GB001221/ [5] Chavaillaz Y., Joussaume S., Dehecq A., et al. 2016. Investigating the Pace of Temperature Change and Its Implications over the Twenty-First Century. Climatic Change, 137(1-2): 187-200. https://doi.org/10.1007/s10584-016-1659-4 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f2444ae7e2ec2b54a7eb62922efbf18a [6] Chen W., Ji X.L., Sun C., et al. 2015. Preliminary Study on Diversity of Bacteria Community in Napahai Plateau Wetland. Chinese Journal of Microecology, 27(10): 1117-1120 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgwstxzz201510001 [7] Christensen T. R., Johansson T.R., Akerman H.J., et al.2004. Thawing Sub-Arctic Permafrost: Effects on Vegetation and Methane Emissions. Geophysical Research Letters, 31(4): L04501. https://doi.org/10.1029/2003gl018680 [8] Cong J.. 2013. The Research of Soil Microbial Diversity in the Shennongjia Natural Reserve (Dissertation).Central South University, Changsha (in Chinese with English abstract). [9] Ding X.H.. 2011. Soil Microbial Characteristics in Wet Meadows of Zhalong Wetlands (Dissertation).Northeast Forestry University, Harbin (in Chinese with English abstract). [10] Du H.N., Xie W.X., Zhao Q.S., et al. 2016. Characteristics of Methane Emission Fluxes in Wetlands of Dagu River Estuary in Jiaozhou Bay. Wetland Science, 14(1): 44-49 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=shidkx201601007 [11] Du Y., Cai S.M., Wang X.L., et al. 2008. Environmental Background and Ecological Restoration of the Dajiuhu Subalpine Wetland in Mt.Shennongjia. Resources and Environment in the Yangtze Basin, 17(6): 915-919 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S1470160X14001460 [12] Huang P.Y.. 2010. Studies on CO2 and CH4 Fluxes from Zhalong Wetlands (Dissertation). Northeast Forestry University, Harbin (in Chinese with English abstract). [13] Kutzbach L., Wagner D., Pfeiffer E. M.. 2004. Effect of Microrelief and Vegetation on Methane Emission from Wet Polygonal Tundra, Lena Delta, Northern Siberia. Biogeochemistry, 69(3): 341-362. https://doi.org/10.1023/b:biog.0000031053.81520.db doi: 10.1023-B-BIOG.0000031053.81520.db/ [14] Larmola T., Tuittila E. S., Tiirola M., et al. 2010. The Role of Sphagnummosses in the Methane Cycling of a Boreal Mire. Ecology, 91(8): 2356-2365. https://doi.org/10.1890/09-1343.1 [15] Li D.M., Cheng Y.H., Liu M.Q., et al. 2013. Relationship between Methane Emission and the Community Structure and Abundance of Methanogens under Double Rice Cropping System. Journal of Agro- Environment Science, 32(4): 866-873 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nyhjbh201304030 [16] Li Y.Y., Ge J.W., Peng F.J., et al. 2017. Characteristics of Methane Flux and Their Effect Factors on Dajiuhu Peatland of Shennongjia. Earth Science, 42(5): 832-842 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201705019 [17] Liao J.. 2010. Study on CH4 and CO2 Emissions of Phragmites Australis Marsh in Minjiang Estuary Area (Dissertation). Fujian Normal University, Fuzhou (in Chinese with English abstract). [18] Lysák M., Bugge-Henriksen C.. 2016. Current Status of Climate Change Adaptation Plans across the United States. Mitigation and Adaptation Strategies for Global Change, 21(3): 323-342. https://doi.org/10.1007/s11027-014-9601-4 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e47bfb6c3486241e6562974fd4a5342d [19] McKnight D. M., Boyer E. W., Westerhoff P. K., et al. 2001. Spectrofluorometric Characterization of Dissolved Organic Matter for Indication of Precursor Organic Material and Aromaticity. Limnology and Oceanography, 46(1): 38-48. https://doi.org/10.4319/lo.2001.46.1.0038 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.4319/lo.2001.46.1.0038 [20] Ortiz-Llorente M. J., Alvarez-Cobelas M.. 2012. Comparison of Biogenic Methane Emissions from Unmanaged Estuaries, Lakes, Oceans, Rivers and Wetlands. Atmospheric Environment, 59: 328-337. https://doi.org/10.1016/j.atmosenv.2012.05.031 http://cn.bing.com/academic/profile?id=ca2ff9d12a0de796e32677a39da55720&encoded=0&v=paper_preview&mkt=zh-cn [21] Pei X.C., Xu Y.L., Wei W.. 2009. A Review on Soil Microorganisms in Wetland Ecosystem. Wetland Science, 7(2): 181-186 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=d59dc8f270b19060ae6a45ab861ffc3b&encoded=0&v=paper_preview&mkt=zh-cn [22] Podgrajsek E., Sahlée E., Bastviken D., et al. 2016. Methane Fluxes from a Small Boreal Lake Measured with the Eddy Covariance Method. Limnology and Oceanography, 61(S1): S41-S50. https://doi.org/10.1002/lno.10245 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/lno.10245 [23] Qin Y.M., Gong J., Gu Y.S., et al. 2018. Ecological Monitoring and Environmental Significance of Testate Amoebae in Subalpine Peatlands in West Hubei Province, China. Earth Science, 43(11): 4036-4045 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201811020 [24] Thoms C., Gleixner G.. 2013. Seasonal Differences in Tree Species' Influence on Soil Microbial Communities. Soil Biology and Biochemistry, 66: 239-248. https://doi.org/10.1016/j.soilbio.2013.05.018 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=41d4ce434e2a09e1d0291cd0de1a30e7 [25] Tian W., Wang H. M., Xiang X., et al. 2019. Structural Variations of Bacterial Community Driven by Sphagnum Microhabitat Differentiation in a Subalpine Peatland. Frontiers in Microbiology, 10: 1661. https://doi.org/10.3389/fmicb.2019.01661 [26] Valenzuela E. I., Prieto-Davó A., López-Lozano N. E., et al. 2017. Anaerobic Methane Oxidation Driven by Microbial Reduction of Natural Organic Matter in a Tropical Wetland. Applied and Environmental Microbiology, 83(11): e00645-17. https://doi.org/10.1128/aem.00645-17 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1715174d32569f17be104e5abf98cc21 [27] Wang D.X., Lu X.G., Ding W.X., et al. 2002. Comparison of Methane Emission from Marsh and Paddy Field in Sanjiang Plain. Scientia Geographica Sinica, 22(4): 500-503 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlkx200204022 [28] Wang H., Zhao H.D., Zhang S.Y., et al. 2012. Research on Methane Fluxes and Effect Factors in the Wetland of Sunada Glauca. Marine Environmental Science, 31(2): 173-175 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hyhjkx201202005 [29] Wang J.J., Gong X.F., Li Z.L., et al. 2015. Selenium Deposition Regularity with Different Forms of Selenium in Rat Tissues. Journal of Nanchang University (Natural Science), 39(3): 286-291 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=35ec4ef9f0eec57c0686dce8185c1443&encoded=0&v=paper_preview&mkt=zh-cn [30] Whalen S.C., Reeburgh W.S., Barber V.A.. 1992. Oxidation of Methane in Boreal Forest Soils: A Comparison of Seven Measures. Biogeochemistry, 16(3): 181-211. https://doi.org/10.1007/bf00002818 doi: 10.1007-BF00002818/ [31] Xiang X., Wang H. M., Gong L. F., et al. 2014. Vertical Variations and Associated Ecological Function of Bacterial Communities from Sphagnum to Underlying Sediments in Dajiuhu Peatland. Scientia Sinica Terrae, 44(6): 1244-1252 (in Chinese). http://cn.bing.com/academic/profile?id=9e4754c5a45201f70142ccd4a838e648&encoded=0&v=paper_preview&mkt=zh-cn [32] Xiang X., Wang R.C., Wang H.M., et al.2017.Distribution of Bathyarchaeota Communities across Different Terrestrial Settings and Their Potential Ecological Functions. Scientific Reports, 7:45028. https://doi.org/10.1038/srep45028 [33] Xu H.F., Liu X.T., Bai J.H.. 2004. Dynamic Change and Environmental Effects of Soil Microorganism in Marsh Soils from Carex Meyeriana Wetlands in Changbai Mountain. Journal of Soil Water Conservation, 18(3): 115-117 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqsystbcxb200403029 [34] Xu Y., Wang H. M., Xiang X., et al. 2019. Vertical Variation of Nitrogen Fixers and Ammonia Oxidizers along a Sediment Profile in the Dajiuhu Peatland, Central China. Journal of Earth Science, 30(2): 397-406. https://doi.org/10.1007/s12583-018-0982-2 http://d.old.wanfangdata.com.cn/Periodical/dqkx-e201902015 [35] Zhao B. Y., Zhang Y. M., Huang X. Y., et al. 2018. Comparison of n-Alkane Molecular, Carbon and Hydrogen Isotope Compositions of Different Types of Plants in the Dajiuhu Peatland, Central China. Organic Geochemistry, 124: 1-11. https://doi.org/10.1016/j.orggeochem.2018.07.008 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e669877794e299e49cb36d88a242ec7f [36] Zhao X.L., Zhou G.S., Zhou L., et al. 2008. Characteristics of Soil Microbial Community in Bulrush Wetlands of Panjin, Northeast China. Chinese Journal of Soil Science, 39(6): 1376-1379 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/trtb200806031 [37] Zhou W.C., Cui L.J., Wang Y.F., et al. 2016. Characteristics of Methane Emission Fluxes in the Zoigê Plateau Wetland on Microtopography. Chinese Journal of Plant Ecology, 40(9): 902-911 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwstxb201609005 [38] 陈伟, 季秀玲, 孙策, 等. 2015.纳帕海高原湿地土壤细菌群落多样性初步研究.中国微生态学杂志, 27(10): 1117-1120. http://d.old.wanfangdata.com.cn/Periodical/zgwstxzz201510001 [39] 丛静, 2013.神农架自然保护区土壤微生物多样性研究(硕士学位论文).长沙: 中南大学. [40] 丁新华, 2011.扎龙湿地湿草甸土壤微生物特性研究(硕士学位论文).哈尔滨: 东北林业大学. [41] 杜慧娜, 谢文霞, 赵全升, 等. 2016.胶州湾大沽河口湿地CH4排放通量特征.湿地科学, 14(1): 44-49. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=shidkx201601007 [42] 杜耘, 蔡述明, 王学雷, 等. 2008.神农架大九湖亚高山湿地环境背景与生态恢复.长江流域资源与环境, 17(6): 915-919. http://d.old.wanfangdata.com.cn/Periodical/cjlyzyyhj200806016 [43] 黄璞祎. 2010.扎龙湿地CO2和CH4通量研究(博士学位论文).哈尔滨: 东北林业大学. [44] 李大明, 成艳红, 刘满强, 等. 2013.双季稻田甲烷排放与土壤产甲烷菌群落结构和数量关系研究.农业环境科学学报, 32(4): 866-873. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nyhjbh201304030 [45] 李艳元, 葛继稳, 彭凤姣, 等. 2017.神农架大九湖泥炭湿地CH4通量特征及其影响因子.地球科学, 42(5): 832-842. doi: 10.3799/dqkx.2017.071 [46] 廖稷. 2010.闽江河口芦苇湿地甲烷和二氧化碳排放通量分析(硕士学位论文).福州: 福建师范大学. [47] 裴希超, 许艳丽, 魏巍. 2009.湿地生态系统土壤微生物研究进展.湿地科学, 7(2): 181-186. http://d.old.wanfangdata.com.cn/Periodical/shidkx200902014 [48] 秦养民, 巩静, 顾延生, 等. 2018.鄂西亚高山泥炭地有壳变形虫生态监测及对水位的指示意义.地球科学, 43(11): 4036-4045. doi: 10.3799/dqkx.2018.599 [49] 王德宣, 吕宪国, 丁维新, 等. 2002.三江平原沼泽湿地与稻田CH4排放对比研究.地理科学, 22(4): 500-503. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlkx200204022 [50] 王慧, 赵化德, 张世宇, 等. 2012.碱蓬湿地CH4排放通量及影响因素研究.海洋环境科学, 31(2): 173-175. http://d.old.wanfangdata.com.cn/Periodical/hyhjkx201202005 [51] 王佳佳, 弓晓峰, 李志龙, 等. 2015.不同季节鄱阳湖湿地的甲烷排放通量.南昌大学学报(理科版), 39(3): 286-291. http://d.old.wanfangdata.com.cn/Periodical/ncdxxb201503017 [52] 向兴, 王红梅, 龚林锋, 等. 2014.细菌群落在神农架大九湖泥炭藓与表层沉积物的垂向变化及其生态意义.中国科学:地球科学, 44(6): 1244-1252. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201406015 [53] 徐惠风, 刘兴土, 白军红. 2004.长白山沟谷湿地乌拉苔草沼泽湿地土壤微生物动态及环境效应研究.水土保持学报, 18(3): 115-117. http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb200403029 [54] 赵先丽, 周广胜, 周莉, 等. 2008.盘锦芦苇湿地土壤微生物数量研究.土壤通报, 39(6): 1376-1379. http://d.old.wanfangdata.com.cn/Periodical/trtb200806031 [55] 周文昌, 崔丽娟, 王义飞, 等. 2016.若尔盖高原湿地不同微地貌区甲烷排放通量特征.植物生态学报, 40(9): 902-911. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201609005