• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    多离子计数器动态多接收方式锆石Pb同位素比值高精度测定方法

    王伟 储著银 李潮峰 刘文贵 许俊杰 郭敬辉

    王伟, 储著银, 李潮峰, 刘文贵, 许俊杰, 郭敬辉, 2020. 多离子计数器动态多接收方式锆石Pb同位素比值高精度测定方法. 地球科学, 45(6): 1977-1985. doi: 10.3799/dqkx.2019.285
    引用本文: 王伟, 储著银, 李潮峰, 刘文贵, 许俊杰, 郭敬辉, 2020. 多离子计数器动态多接收方式锆石Pb同位素比值高精度测定方法. 地球科学, 45(6): 1977-1985. doi: 10.3799/dqkx.2019.285
    Wang Wei, Chu Zhuyin, Li Chaofeng, Liu Wengui, Xu Junjie, Guo Jinghui, 2020. High-Precision Pb Isotope Ratio Determination of Zircon By Multi-Ion Counter TIMS with Multi-Dynamic Collection Method. Earth Science, 45(6): 1977-1985. doi: 10.3799/dqkx.2019.285
    Citation: Wang Wei, Chu Zhuyin, Li Chaofeng, Liu Wengui, Xu Junjie, Guo Jinghui, 2020. High-Precision Pb Isotope Ratio Determination of Zircon By Multi-Ion Counter TIMS with Multi-Dynamic Collection Method. Earth Science, 45(6): 1977-1985. doi: 10.3799/dqkx.2019.285

    多离子计数器动态多接收方式锆石Pb同位素比值高精度测定方法

    doi: 10.3799/dqkx.2019.285
    基金项目: 

    国家自然科学基金项目 41673061

    中国科学院仪器设备功能开发项目 IGG201803

    详细信息
      作者简介:

      王伟(1993-), 男, 硕士研究生, 主要从事CA-ID-TIMS U-Pb年代学工作

      通讯作者:

      储著银

    • 中图分类号: P597+.3

    High-Precision Pb Isotope Ratio Determination of Zircon By Multi-Ion Counter TIMS with Multi-Dynamic Collection Method

    • 摘要: 采用装配多离子计数器系统的TRITON Plus热电离质谱仪(thermal ionization mass spectrometer,TIMS),建立了多离子计数器动态多接收锆石Pb同位素(以205Pb为稀释剂)测定方法.相对多离子计数器静态多接收方法,该方法完全消除了不同离子计数器间增益差异对锆石Pb同位素测定的影响.相对传统的单个二次电子倍增器(secondary electron multiplier,SEM)五次跳峰的锆石Pb同位素测定方法,该方法两次跳峰即可测定全部Pb同位素比值,Pb同位素离子流接收效率提高2.5倍,同时,降低了离子流稳定性对Pb同位素分析结果的影响.为验证方法的可靠性,对加入205Pb稀释剂的NIST981 Pb标准和标准锆石清湖(Qinghu)进行了测定.对5×10-11 g 205Pb-NIST981 Pb混标,207Pb/206Pb测定精度达到0.079%(2RSD,n=20);对清湖标准锆石,获得的年龄结果为159.51±0.11 Ma(2SE,n=7;MSWD=1.1),与文献报道值在误差范围内一致.

       

    • 图  1  TRITON PLUS热电离质谱仪多离子计数器系统配置示意

      Fig.  1.  Schematic diagram of multi-ion counter array for TRITON PLUS TIMS

      图  2  TRITON PLUS离子计数器系统不同测定方式NIST981 207Pb/206Pb测定结果对比

      *图中实线代表平均值, 虚线代表平均值±2SD的范围

      Fig.  2.  Comparison of analytical results for 207Pb/206Pb of NIST981 with different measurement methods using TRITON PLUS TIMS MIC system

      图  3  清湖锆石U⁃Pb年龄测定结果

      Fig.  3.  Analytical results of U⁃Pb date for Qinghu zircon

      表  1  TRITON PLUS热电离质谱仪多离子计数器Pb同位素分析接收器配置

      Table  1.   TRITON PLUS TIMS MIC configuration for Pb isotopic measurement

      Center Mass IC3 A (SEM) IC2 L5 (SEM) RPQ/IC1 B
      (SEM)
      IC5
      (CDD)
      Integration Time(s) Idle Time(s)
      Main 222.93 205Pb 206Pb 207Pb 208Pb 4 1
      Second 221.86 204Pb 205Pb 206Pb 207Pb 4 1
      下载: 导出CSV

      表  2  多离子计数器Yield测试接收器配置

      Table  2.   MICC on figuration for Yield test of multiple ion counters

      Line IC4⁃L5 IC3 A IC2 L5 RPQ/IC1 B IC5 L4 C Integration Time(s) Idle Time(s)
      1 208Pb 4 3
      2 207Pb 208Pb 224.00 4 3
      3 208Pb 225.08 4 3
      4 208Pb 226.13 4 3
      5 208Pb 227.20 4 3
      6 204Pb 205Pb 206Pb 207Pb 208Pb 222.93 4 3
      下载: 导出CSV

      表  3  MIC动态多接收205Pb⁃NSIT981混合溶液Pb同位素比值测定结果

      Table  3.   Analytical results for Pb isotope ratio of 205Pb⁃NSIT981 mixed solution using MIC multi⁃dynamic method

      跳峰接收方式
      Sample
      MIC两次跳峰动态接收
      207Pb/206Pb 2RSE(%) 208Pb/206Pb 2RSE(%) 204Pb/206Pb 2RSE(%)
      1 0.913 54 0.046 2.162 4 0.048 0.059 14 0.075
      2 0.913 60 0.031 2.160 8 0.034 0.058 85 0.053
      3 0.913 93 0.052 2.161 6 0.052 0.059 15 0.093
      4 0.913 35 0.036 2.162 6 0.039 0.058 90 0.063
      5 0.912 97 0.031 2.160 9 0.032 0.058 94 0.045
      6 0.913 07 0.028 2.150 7 0.030 0.059 11 0.051
      7 0.913 94 0.048 2.155 8 0.050 0.059 11 0.070
      8 0.913 50 0.036 2.154 9 0.037 0.059 16 0.058
      9 0.913 32 0.038 2.155 1 0.041 0.059 15 0.073
      10 0.913 72 0.039 2.156 0 0.042 0.059 18 0.065
      11 0.913 99 0.043 2.156 1 0.044 0.059 13 0.070
      12 0.914 04 0.042 2.159 1 0.045 0.059 13 0.062
      13 0.913 19 0.059 2.157 7 0.061 0.059 17 0.079
      14 0.913 30 0.061 2.152 0 0.063 0.059 24 0.094
      15 0.912 86 0.026 2.157 3 0.027 0.058 99 0.044
      16 0.912 98 0.025 2.160 0 0.027 0.059 00 0.039
      17 0.913 31 0.049 2.152 8 0.051 0.059 14 0.074
      18 0.913 81 0.042 2.156 8 0.043 0.059 06 0.076
      19 0.913 50 0.045 2.156 4 0.046 0.059 09 0.068
      20 0.913 66 0.045 2.150 9 0.046 0.059 09 0.070
      Mean 0.913 48 ± 0.000 72(2SD) 2.157 0± 0.007 3(2SD) 0.059 09 ± 0.000 20(2SD)
      注:RSE:相对标准误差;SD:标准偏差,下同;(RSE:relative standard error; SD:standard deviation,the same below).
      下载: 导出CSV

      表  4  清湖锆石年龄测定结果

      Table  4.   Analytical results for Qinghu standard zircon

      分析点 Pbc
      (pg)
      Pb*/
      Pbc
      Th/
      U
      206Pb/
      204Pb
      208Pb/
      206Pb
      同位素比值 年龄
      206Pb/
      238U

      (%)
      207Pb/
      235U

      (%)
      207Pb/
      206Pb

      (%)
      206Pb/
      238U
      (Ma)

      (%)
      207Pb/
      235U
      (Ma)

      (%)
      207Pb/
      206Pb
      (Ma)
      相关误差
      QH⁃1 5.5 13.1 0.40 812 0.170 4 0.025 03 0.16 0.170 5 1.0 0.049 43 0.23 159.37 0.16 159.86 0.92 168 0.08
      QH⁃2 6.6 5.7 0.38 364 0.216 9 0.025 05 0.24 0.169 8 2.2 0.049 19 0.22 159.48 0.24 159.3 2.0 157 0.05
      QH⁃3 5.2 19.5 0.48 1 173 0.183 3 0.025 04 0.17 0.170 94 0.69 0.049 52 0.12 159.46 0.17 160.23 0.64 173 0.15
      QH⁃4 3.3 41.9 0.42 2 551 0.146 3 0.025 05 0.16 0.171 22 0.38 0.049 59 0.13 159.51 0.16 160.47 0.35 176 0.23
      QH⁃5 5.0 4.7 0.44 300 0.256 1 0.025 07 0.28 0.171 0 2.7 0.049 48 0.36 159.61 0.28 160.3 2.5 171 0.05
      QH⁃6 4.3 10.6 0.41 660 0.184 2 0.025 09 0.20 0.170 4 1.2 0.049 26 0.21 159.76 0.20 159.7 1.1 160 0.11
      QH⁃7 3.6 5.6 0.35 361 0.210 8 0.025 10 0.24 0.168 9 2.3 0.048 81 0.61 159.81 0.24 158.4 2.1 139 0.04
      注:(1)Pbc代表普通铅, 本文认为其来自实验室本底,*Pb代表放射性成因铅;(2)采用实验室长期Pb本底同位素比值测定结果: 206Pb/204Pb=17.78±0.50 (2σ),207Pb/204Pb =15.31±0.34 (2σ), 进行本底扣除计算;(3)205Pb⁃235U稀释剂采用NIST981 Pb及GBW04205 U3O8配制的标准溶液标定,稀释剂U/Pb比标定误差~0.18%(2RSE).
      下载: 导出CSV
    • [1] Chen, F.K., Li, Q.L., Li, C.F., et al., 2005.Prospect of High Precision Mass Spectrometer in Isotope Geochemistry.Earth Science, 30(6):639-645(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx200506001
      [2] Chu, Z.Y., He, H.Y., Ramezani, J., et al., 2016.High-Precision U-Pb Geochronology of the Jurassic Yanliao Biota from Jianchang (Western Liaoning Province, China):Age Constraints on the Rise of Feathered Dinosaurs and Eutherian Mammals.Geochemistry, Geophysics, Geosystems, 17(10):3983-3992. https://doi.org/10.1002/2016gc006529
      [3] Chu, Z.Y., Xu, J.J., Chen, Z., et al., 2016.Ultra-Low Blank Analytical Procedure for High Precision CA-ID-TIMS U-Pb Dating of Single Grain Zircons.Chinese Science Bulletin, 61(10):1121-1129(in Chinese). doi: 10.1360/N972015-01048
      [4] Condon, D.J., Schoene, B., McLean, N.M., et al., 2015.Metrology and Traceability of U-Pb Isotope Dilution Geochronology (EARTHTIME Tracer Calibration Part Ⅰ).Geochimica et Cosmochimica Acta, 164:464-480. https://doi.org/10.1016/j.gca.2015.05.026
      [5] Geng, J.Z., Zhang, J., Li, H.K., et al., 2012.Ten-Micron-Sized Zircon U-Pb Dating Using LA-MC-ICP-MS.Acta Geoscientica Sinica, 33(6):877-884(in Chinese with English abstract).
      [6] Gerstenberger, H., Haase, G., 1997.A Highly Effective Emitter Substance for Mass Spectrometric Pb Isotope Ratio Determinations.Chemical Geology, 136(3-4):309-312. https://doi.org/10.1016/s0009-2541(96)00033-2
      [7] Hattori, K., Sakata, S., Tanaka, M., et al., 2017.U-Pb Age Determination for Zircons Using Laser Ablation-ICP-Mass Spectrometry Equipped with Six Multiple-Ion Counting Detectors.Journal of Analytical Atomic Spectrometry, 32:88-95. doi: 10.1039/C6JA00311G
      [8] Hoffmann, D.L., 2008.230Th Isotope Measurements of Femtogram Quantities for U-Series Dating Using Multi Ion Counting (MIC) MC-ICPMS.International Journal of Mass Spectrometry, 275(1-3):75-79. https://doi.org/10.1016/j.ijms.2008.05.033
      [9] Hou, K.J., Li, Y.H., Tian, Y.R., 2009.In Situ U-Pb Zircon Dating Using Laser Ablation-Multi Ion Counting-ICP-MS.Mineral Deposits, 28(4):481-492(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz200904010
      [10] Li, X.H., Liu, Y., Li, Q.L., et al., 2009.Precise Determination of Phanerozoic Zircon Pb/Pb Age by Multicollector SIMS without External Standardization.Geochemistry, Geophysics, Geosystems, 10:Q04010. https://doi.org/10.1029/2009gc002400
      [11] Li, X.H., Tang, G.Q., Guo, B., et al., 2013.A Working Reference for Microbeam Analysis of U-Pb Age and Hf and O Isotopes.Chinese Science Bulletin, 58(36):1954-1961(in Chinese).
      [12] Mattinson, J.M., 2005.Zircon U-Pb Chemical Abrasion ("CA-TIMS") Method:Combined Annealing and Multi-Step Partial Dissolution Analysis for Improved Precision and Accuracy of Zircon Ages.Chemical Geology, 220(1-2):47-66. https://doi.org/10.1016/j.chemgeo.2005.03.011
      [13] Quadt, A.V., Wotzlaw, J.F., Buret, Y., et al., 2016.High-Precision Zircon U-Pb Geochronology by ID-TIMS Using New 1 013 Ohm Resistors.Journal of Analytical Atomic Spectrometry, 31(3):658-665.https://doi.10.1039/c5ja00457h doi: 10.1039/c5ja00457h
      [14] Sarkar, C., Pearson, D.G., Heaman, L.M., et al., 2015.Precise Pb Isotope Ratio Determination of Picogram-Size Samples:A Comparison between Multiple Faraday Collectors Equipped with 1 012 Ω Amplifiers and Multiple Ion Counters.Chemical Geology, 395:27-40. https://doi.org/10.1016/j.chemgeo.2014.11.027
      [15] Wan, Y.S., Dong, C.Y., Xie, H.Q., et al., 2018.Formation Age of BIF-Bearing Anshan Group Supracrustal Rocks in Anshan-Benxi Area:New Evidence from SHRIMP U-Pb Zircon Dating.Earth Science, 43(1):57-81(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201801004
      [16] Wang, X.L., Li, X.H., Wang, F., et al., 2006.Single-Grain Zircon Evaporation 207Pb/206Pb Dating Method with Static Measurement Mode.Rock and Mineral Analysis, 25(3):201-205(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ykcs200603001
      [17] Wieser, M.E., Schwieters, J.B., 2005.The Development of Multiple Collector Mass Spectrometry for Isotope Ratio Measurements.International Journal of Mass Spectrometry, 242(2-3):97-115.https://https://doi.10.1016/j.ijms.2004.11.029 doi: 10.1016/j.ijms.2004.11.029
      [18] Wotzlaw, J.F., Buret, Y., Large, S.J.E., et al., 2017.ID-TIMS U-Pb Geochronology at the 0.1‰ Level Using 1013 Ω Resistors and Simultaneous U and 18O/16O Isotope Ratio Determination for Accurate UO2 Interference Correction.Journal of Analytical Atomic Spectrometry, 32(3):579-586.https://doi.10.1039/c6ja00278a doi: 10.1039/c6ja00278a
      [19] Xie, L.W., Yang, J.H., Yin, Q.Z., et al., 2017.High Spatial Resolution In Situ U-Pb Dating by Laser Ablation Multiple Ion Counting Collector Inductively Coupled Plasma Mass Spectrometry (LA-MIC-ICPMS).Journal of Analytical Atomic Spectrometry, 32(5):975-986.https://doi.10.1039/c6ja00387g doi: 10.1039/c6ja00387g
      [20] Zhou, X.W., Geng, Y.S., Zheng, C.Q., 2018.Zircon U-Pb Dating of Metamorphic Rock from Guanghua Group in Tonghua Area and Its Geological Significance.Earth Science, 43(1):109-126(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201801007
      [21] Zhu, L.Y., Liu, Y.S., Jiang, S.Y., et al., 2019.An Improved In Situ Technique for the Analysis of the Os Isotope Ratio in Sulfides Using Laser Ablation-Multiple Ion Counter Inductively Coupled Plasma Mass Spectrometry.Journal of Analytical Atomic Spectrometry, 34(8):1546-1552.https://doi.10.1039/c9ja00066f doi: 10.1039/c9ja00066f
      [22] 陈福坤, 李秋立, 李潮峰, 等, 2005.高精度质谱计在同位素地球化学的应用前景.地球科学, 30(6):639-645. doi: 10.3321/j.issn:1000-2383.2005.06.001
      [23] 储著银, 许俊杰, 陈知, 等, 2016.超低本底单颗粒锆石CA-ID-TIMS U-Pb高精度定年方法.科学通报, 61(10):1121-1129. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201610012
      [24] 耿建珍, 张健, 李怀坤, 等, 2012.10 μm尺度锆石U-Pb年龄的LA-MC-ICP-MS测定.地球学报, 33(6):877-884. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb201206007
      [25] 侯可军, 李延河, 田有荣, 2009.LA-MC-ICP-MS锆石微区原位U-Pb定年技术.矿床地质, 28(4):481-492. doi: 10.3969/j.issn.0258-7106.2009.04.010
      [26] 李献华, 唐国强, 龚冰等, 2013.Qinghu(清湖)锆石:一个新的U-Pb年龄和O, Hf同位素微区分析工作标样.科学通报, 58(36):1954-1961.
      [27] 万渝生, 董春艳, 颉颃强, 等, 2018.鞍山-本溪地区鞍山群含BIF表壳岩形成时代新证据:锆石SHRIMP U-Pb定年.地球科学, 43(1):57-81. doi: 10.3799/dqkx.2018.004
      [28] 王秀丽, 李向辉, 王芳, 等, 2006.静态测量方式的单颗粒锆石蒸发铅同位素定年方法.岩矿测试, 25(3):201-205. doi: 10.3969/j.issn.0254-5357.2006.03.001
      [29] 周喜文, 耿元生, 郑常青, 2018.通化地区光华岩群变质岩锆石U-Pb定年及其地质意义.地球科学, 43(1):109-126. doi: 10.3799/dqkx.2018.007
    • 加载中
    图(3) / 表(4)
    计量
    • 文章访问数:  750
    • HTML全文浏览量:  69
    • PDF下载量:  25
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-10-28
    • 刊出日期:  2020-06-15

    目录

      /

      返回文章
      返回