• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    歧口凹陷热液流体活动及其对储集层的改造

    侯中帅 周立宏 金凤鸣 陈世悦 蒲秀刚 鄢继华 李宏军

    侯中帅, 周立宏, 金凤鸣, 陈世悦, 蒲秀刚, 鄢继华, 李宏军, 2021. 歧口凹陷热液流体活动及其对储集层的改造. 地球科学, 46(1): 200-214. doi: 10.3799/dqkx.2019.282
    引用本文: 侯中帅, 周立宏, 金凤鸣, 陈世悦, 蒲秀刚, 鄢继华, 李宏军, 2021. 歧口凹陷热液流体活动及其对储集层的改造. 地球科学, 46(1): 200-214. doi: 10.3799/dqkx.2019.282
    Hou Zhongshuai, Zhou Lihong, Jin Fengming, Chen Shiyue, Pu Xiugang, Yan Jihua, Li Hongjun, 2021. Hydrothermal Fluid Activity and Its Reformation on Reservoirs in Qikou Depression. Earth Science, 46(1): 200-214. doi: 10.3799/dqkx.2019.282
    Citation: Hou Zhongshuai, Zhou Lihong, Jin Fengming, Chen Shiyue, Pu Xiugang, Yan Jihua, Li Hongjun, 2021. Hydrothermal Fluid Activity and Its Reformation on Reservoirs in Qikou Depression. Earth Science, 46(1): 200-214. doi: 10.3799/dqkx.2019.282

    歧口凹陷热液流体活动及其对储集层的改造

    doi: 10.3799/dqkx.2019.282
    基金项目: 

    国家科技重大专项 2016ZX05006-007

    中石化胜利油田分公司科技项目 YKK1910

    详细信息
      作者简介:

      侯中帅(1990-), 男, 助理研究员, 从事沉积学及储层地层学方面的研究.ORCID:0000-0003-2887-3420.E-mail:hzsxdz@qq.com

      通讯作者:

      陈世悦, E-mail:chenshiyue@vip.sina.com

    • 中图分类号: P168.130

    Hydrothermal Fluid Activity and Its Reformation on Reservoirs in Qikou Depression

    • 摘要: 为了明确富油气凹陷中热液流体活动的发育特征及其对储集层的改造作用,以渤海湾盆地歧口凹陷为研究对象,通过岩心、薄片、XRF元素扫描、扫描电镜观察和地层水矿化度、热解、包裹体均一温度、黏土矿物、微量元素、稀土元素、常规物性等资料,分析了歧口凹陷热液流体活动发育的证据,明确其对不同类型储层的改造方式,认为歧口凹陷中热液流体活动较为发育,对于储集层有较强的改造作用.研究结果表明:歧口凹陷中热液流体活动发育的标志包括热液角砾岩、斑马状结构、褪色泥岩和多种类型的热液矿物组合;地层水矿化度异常高;具有异常高TmaxS1S2值的泥岩;包裹体均一化温度超过正常热演化最高温度;浅层砂岩中高岭石质量分数异常高和中深层砂岩中绿泥石质量分数的异常高值;泥岩中Zn、Cd、Ba和Pb等微量元素出现异常高值;碳酸盐岩的稀土元素具有Eu正异常.不同类型储层中热液流体的改造方式具有差异性,碳酸盐岩中主要发育水力压裂作用和溶蚀作用,凝灰岩中主要发育水力压裂作用和促进脱玻化作用,玄武岩中主要发育水力压裂作用,热液流体通过溶蚀作用和促进绿泥石的发育来对砂岩储层进行改造.

       

    • 图  1  歧口凹陷位置及地层柱状图

      Huang et al.(2012)

      Fig.  1.  Location of and stratigraphic histogram of Qikou depression

      图  2  热液流体活动的岩石学证据

      a.凝灰岩发生角砾岩化,角砾间充填热液矿物,GG16102井,上古生界,2 187.27 m;b.玄武岩发生角砾岩化,角砾间充填热液矿物,GG1507井,中生界,2 030.25 m;c.碳酸盐岩发生角砾岩化,角砾间充填热液矿物,GG16102井,上古生界,2 206.65 m;d.碳酸盐岩形成热碎裂结构,GG16102井,上古生界,2 206.56 m;e.泥岩中发育斑马状结构,GG16102井,上古生界,2 182.70 m;f.泥岩褪色呈土黄色,GG16102井,上古生界,2 182.30 m

      Fig.  2.  Petrological evidence of hydrothermal fluid activity

      图  3  热液流体活动的矿物学证据

      a.粗晶方解石、石英与黄铁矿,BS701井,下古生界,4 622.75 m;b.粗晶方解石、石英与硬石膏,BS701井,下古生界,4 622.82 m;c.粗晶方解石、石英与黄铁矿,BS701井,下古生界,4 622.75 m;d.粗晶白云石、方解石与黄铁矿,GG16102井,上古生界,2 206.56 m;e.脉状微晶石英,GG16102井,上古生界,2 204.13 m;f.重晶石、白云石与黄铁矿脉,GG16102井,上古生界,2 187.35 m;g.硫元素扫描成像,GG16102井,上古生界,2 187.35 m;h.钡元素扫描成像,GG16102井,上古生界,2 187.35 m;i.板条状钠长石、白云石与方沸石,GG1507井,中生界,2 029.50 m;j.白云石、石英与方沸石,GG1507井,中生界,2 029.50 m;k.板条状石膏与自形白云石,T12井,上古生界,1 915.00 m;l.放射状、菊花状片钠铝石与粗晶白云石,G1井,古近系,1 963.28 m

      Fig.  3.  Mineralogical evidence of hydrothermal fluid activity

      图  4  地层水矿化度对热液流体活动的响应

      Fig.  4.  Response of formation water salinity to hydrothermal fluid activity

      图  5  热解参数特征对热液流体活动的响应

      Fig.  5.  Response of pyrolysis parameter characteristics to hydrothermal fluid activity

      图  6  流体包裹体特征对热液流体活动的响应

      Fig.  6.  Response of fluid inclusion characteristics to hydrothermal fluid activity

      图  7  黏土矿物转化特征对热液流体活动的响应

      Fig.  7.  Response of clay mineral transformation characteristics to hydrothermal fluid activity

      图  8  热液流体活动发育段泥岩特征

      a.泥岩中脉体发育,GG16102井,上古生界,1 917.20 m;b.脉体中碳酸盐强烈交代岩石,GG16102井,上古生界,1 917.05 m

      Fig.  8.  The characteristics of mudstone in hydrothermal fluid development zone

      图  9  歧口凹陷奥陶系碳酸盐岩稀土元素配分曲线

      a.稀土元素配分曲线表现为Eu负异常;b.稀土元素配分曲线表现为Eu正异常

      Fig.  9.  Rare earth element curves of Ordovician carbonate rock in Qikou depression

      图  10  热液流体活动对凝灰岩和碳酸盐岩的改造

      a.成像测井显示碳酸盐岩中水力压裂缝发育,GG16102井,上古生界,2 205.00~2 207.50 m;b.粗晶白云石中发育溶蚀孔隙,GG16102井,上古生界,2 206.56 m;c.碳酸盐岩中沿裂缝发育溶蚀孔洞,GG16102井,上古生界,2 207.10 m;d.裂缝和溶蚀孔洞中发黄色和白黄色荧光,GG16102井,上古生界,2 207.10 m;e凝灰中发育热液流体压裂作用,裂缝被热液矿物部分充填,GG16102井,上古生界,2 187.27 m;f.玻屑脱玻化后形成石英晶间微孔隙,GG16102井,上古生界,2 185.77 m;g.玻屑脱玻化后形成长石晶间微孔隙,GG16102井,上古生界,2 185.77 m;h.玻屑被黄铁矿交代后形成的晶间微孔隙,GG16102井,上古生界,2 185.77 m

      Fig.  10.  Reformation on tuff and carbonate rock by hydrothermal fluid activity

      图  11  热液流体活动改造储层模式图

      a.热液流体活动对凝灰岩和玄武岩的改造模型;b.热液流体活动对碳酸盐岩的改造模型

      Fig.  11.  The reformation models of hydrothermal fluid activity on reservoirs

      图  12  热液流体活动对玄武岩的改造

      a.白云石晶间孔和残余裂缝,GG1507井,中生界,2 031.18 m;b.水力压裂缝中含油,GG1507井,中生界,2 032.85 m;c.热液矿物晶间发蓝绿色荧光,GG1507井,中生界,2 030.25 m

      Fig.  12.  Reformation on basalt by hydrothermal fluid activity

      图  13  热液改造砂岩储层与未改造砂岩储层特征对比

      a.绿泥石膜上发育石英晶芽,BS16井,沙河街组,3 486.50 m;b.伊利石延伸至粒间孔隙中,B8井,沙河街组,2 726.00 m;c.热液流体作用砂岩与正常砂岩压汞曲线

      Fig.  13.  Characteristic contrast of hydrothermal reformed and unformed sandstone reservoirs

      表  1  歧口凹陷上古生界泥岩微量元素含量

      Table  1.   Trace element content of Upper Paleozoic mudstone in Qikou depression

      井号 深度(m) 微量元素含量(μg/g) 热液流体活动
      Zn Cd Ba Pb
      GG16102 1 912.70 206.35 1.13 606.90 40.96 发育
      GG16102 1 919.45 237.87 1.56 674.99 108.64
      GG16102 1 972.91 241.75 1.00 535.07 35.96
      GG16102 1 976.91 38.69 0.17 264.39 26.08 不发育
      GG16102 2 196.09 78.77 0.26 195.43 10.81
      GG16102 2 197.09 71.00 0.26 186.49 17.13
      GG16102 2 204.81 91.86 0.20 130.96 11.12
      GG16102 2 207.98 14.49 0.09 109.11 19.27
      GG16102 2 222.23 87.02 0.41 269.78 23.06
      下载: 导出CSV

      表  2  歧口凹陷奥陶系碳酸盐岩稀土元素含量及相关参数

      Table  2.   Rare earth element contents and related parameters of Ordovician carbonate rocks in Qikou depression

      井名 深度(m) 岩性 稀土元素含量(10-6 ∑REE δEu
      La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
      T14 2 992.85 亮晶灰岩 3.88 8.81 1.02 4.26 0.89 0.16 0.71 0.11 0.6 0.12 0.35 0.06 0.3 0.04 21.31 0.59
      QG1 4 105.24 泥晶白云岩 8.11 17.64 1.97 7.52 1.55 0.28 1.26 0.22 1.32 0.26 0.72 0.12 0.65 0.1 41.72 0.59
      QG1 4 196.00 泥晶灰岩 2.59 4.96 0.55 2.05 0.43 0.08 0.32 0.05 0.25 0.05 0.15 0.03 0.13 0.02 11.67 0.67
      K24 2 197.96 泥晶白云岩 1.18 2.63 0.29 1.03 0.25 0.07 0.33 0.07 0.41 0.08 0.21 0.04 0.17 0.03 6.79 0.69
      K24 2 298.27 泥晶灰岩 1.22 2.38 0.25 0.83 0.17 0.04 0.15 0.03 0.13 0.03 0.08 0.02 0.08 0.01 5.40 0.67
      K24 2 298.73 泥晶白云岩 0.62 1.4 0.16 0.67 0.19 0.05 0.19 0.04 0.21 0.04 0.11 0.03 0.11 0.02 3.83 0.72
      K24 2 299.23 泥晶灰岩 2.33 4.44 0.46 1.73 0.36 0.07 0.34 0.06 0.28 0.05 0.14 0.03 0.13 0.02 10.44 0.55
      K19 2 253.35 泥晶白云岩 1.47 3.07 0.35 1.38 0.28 0.05 0.25 0.04 0.2 0.04 0.12 0.03 0.09 0.01 7.38 0.62
      BS701 4 652.02 泥晶白云岩 6.94 14.49 1.53 5.48 1.13 0.21 1.03 0.2 1.14 0.21 0.55 0.09 0.48 0.08 33.55 0.59
      BS701 4 659.78 泥晶白云岩 4.25 8.89 1.01 3.75 0.79 0.15 0.68 0.12 0.65 0.12 0.34 0.06 0.29 0.04 21.14 0.60
      BS6 4 029.38 泥晶白云岩 1.93 4.41 0.56 2.51 0.57 0.11 0.47 0.08 0.42 0.09 0.25 0.05 0.23 0.03 11.7 0.61
      K19 2 372.26 泥晶白云岩 1.12 2.34 0.26 0.96 0.22 0.15 0.21 0.04 0.21 0.04 0.11 0.02 0.09 0.01 5.78 2.11
      K19 2 173.55 泥晶灰岩 0.97 1.92 0.21 0.79 0.26 0.30 0.31 0.06 0.31 0.05 0.12 0.02 0.10 0.02 5.43 3.32
      G2035 3 074.39 颗粒灰岩 2.64 4.74 0.51 2.01 0.41 0.27 0.34 0.05 0.25 0.05 0.13 0.03 0.12 0.02 11.57 2.15
      注:δEu=2EuN/(SmN+GdN),N表示球粒陨石标准化后的值.
      下载: 导出CSV

      表  3  太原组中碳酸盐岩物性对比

      Table  3.   Comparison of physical characteristics of carbonate in Taiyuan Formation

      井号 层位 深度(m) 孔隙度(%) 渗透率(mD) 热液流体活动
      GG16102 太原组 2
      205.72
      3.59 0.180 发育
      GG16102 太原组 2
      205.94
      0.11 0.003 欠发育
      GG16102 太原组 2
      206.40
      1.54 0.004
      GG16102 太原组 2
      206.56
      1.43 0.005
      GG16102 太原组 2
      206.74
      1.21 0.006
      GG16102 太原组 2
      206.95
      1.50 0.050
      下载: 导出CSV

      表  4  太原组中凝灰岩孔隙度对比

      Table  4.   Comparison of porosity of tuff in Taiyuan Formation

      热液流体活动 井号 层段 深度(m) 孔隙度(%)
      发育 GG16102 太原组 2 183.70 15.72
      GG16102 太原组 2 184.10 18.24
      GG16102 太原组 2 185.28 14.10
      GG16102 太原组 2 185.61 17.41
      GG16102 太原组 2 185.94 15.24
      GG16102 太原组 2 186.60 16.01
      GG16102 太原组 2 187.59 17.45
      GG16102 太原组 2 190.23 16.16
      不发育 GG4-1 太原组 1 992.41 11.78
      GG4-1 太原组 1 993.00 12.04
      GG4-1 太原组 1 993.70 10.87
      GG4-1 太原组 1 994.15 10.92
      GG4-1 太原组 1 995.58 10.79
      GG4-1 太原组 1 996.73 10.74
      GG4-1 太原组 1 997.28 7.92
      GG4-1 太原组 1 998.16 8.32
      下载: 导出CSV
    • [1] Allan, J.R., Wiggins, W.D., 1996. Dolomite Reservoirs: Geochemical Techniques for Evaluating Origin and Distribution. AAPG, Tulsa, 36-129.
      [2] Barker, C.E., Pawlewicz, M.J., 1986. The Correlation of Vitrinite Reflectance with Maximum Temperature in Humic Organic Matter. In: Buntebarth, G., Stegena, L., eds., Paleogeothermics: Lecture Notes in Earth Sciences. Springer, Berlin Heidelberg, 79-93.
      [3] Boni, M., Parente, G., Bechstädt, T., et al., 2000. Hydrothermal Dolomites in SW Sardinia (Italy): Evidence for a Widespread Late-Variscan Fluid Flow Event. Sedimentary Geology, 131(3-4):181-200. https://doi.org/10.1016/S0037-0738(99)00131-1
      [4] Davies, G.R., Smith, L.B., 2006. Structurally Controlled Hydrothermal Dolomite Reservoir Facies: An Overview. AAPG Bulletin, 90(11):1641-1690. https://doi.org/10.1306/05220605164
      [5] Feng, M.Y., Wu, P.C., Qiang, Z.T., et al., 2017. Hydrothermal Dolomite Reservoir in the Precambrian Dengying Formation of Central Sichuan Basin, Southwestern China. Marine and Petroleum Geology, 82(1):206-219. https://doi.org/10.1016/j.marpetgeo.2017.02.008
      [6] Gao, B., Tao, M.X., Wang, W.C., 2001. Influences of Deeply Sourced Thermal Fluid on the Formation of Hydrocarbon Reservoirs. Bulletin of Mineralogy, Petrology and Geochemisty, 20(1):30-34 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYDH200101007.htm
      [7] Garaguly, I., Varga, A., Raucsik, B., et al., 2018. Pervasive Early Diagenetic Dolomitization, Subsequent Hydrothermal Alteration, and Late Stage Hydrocarbon Accumulation in a Middle Triassic Carbonate Sequence (Szeged Basin, SE Hungary). Marine and Petroleum Geology, 98(1):270-290. https://doi.org/10.1016/j.marpetgeo.2018.07.024
      [8] Hanor, J.S., 1994. Physical and Chemical Controls on the Composition of Waters in Sedimentary Basins. Marine and Petroleum Geology, 11(1):31-45. https://doi.org/10.1016/0264-8172(94)90007-8
      [9] He, X.Y., Shou, J.F., Shen, A.J., et al., 2014. Geochemical Characteristics and Origin of Dolomite: A Case Study from the Middle Assemblage of Majiagou Formation Member 5 of the West of Jingbian Gas Field, Ordos Basin, North China. Petroleum Exploration and Development, 41(3):375-384 (in Chinese with English abstract). http://qikan.cqvip.com/Qikan/Article/Detail?id=49757812
      [10] Hou, Z.S., Zhou, L.H., Chen, S.Y., et al., 2018. Reservoir Types and Controlling Factors of Upper Paleozoic in Dagang Exploration Area. Journal of China University of Mining & Technology, 47(5):1021-1037 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZGKD201805011.htm
      [11] Huang, C.Y., Wang, H., Wu, Y.P., et al., 2012. Genetic Types and Sequence Stratigraphy Models of Palaeogene Slope Break Belts in Qikou Sag, Huanghua Depression, Bohai Bay Basin, Eastern China. Sedimentary Geology, 261-262(1):65-75. https://doi.org/10.1016/j.sedgeo.2012.03.005
      [12] Jacquemyn, C., Huysmans, M., Hunt, D., et al., 2015. Multi-Scale Three-Dimensional Distribution of Fracture-and Igneous Intrusion-Controlled Hydrothermal Dolomite from Digital Outcrop Model, Latemar Platform, Dolomites, Northern Italy. AAPG Bulletin, 99(5):957-984. https://doi.org/10.1306/10231414089
      [13] Katz, D.A., Eberli, G.P., Swart, P.K., et al., 2006. Tectonic-Hydrothermal Brecciation Associated with Calcite Precipitation and Permeability Destruction in Mississippian Carbonate Reservoirs, Montana and Wyoming. AAPG Bulletin, 90(11):1803-1841. https://doi.org/10.1306/03200605072
      [14] Li, C., Luo, J.L., Hu, H.Y., et al., 2019. Thermody Namic Impacton Deep Water Sandstone Diagenetic Evolution of Zhuhai Formation in Baiyun Sag, Pearl River Mouth Basin. Earth Science, 44(2):572-587 (in Chinese with English abstract). http://www.researchgate.net/publication/332557272_Thermodynamic_Impact_on_Deepwater_Sandstone_Diagenetic_Evolution_of_Zhuhai_Formation_in_Baiyun_Sag_Pearl_River_Mouth_Basin
      [15] Liu, N., Wu, K.Q., Liu, L., et al., 2019. Dawsonite Characteristics and Its Implications on the CO2 in Yinggehai-Huangliu Formation of Ledong area, Yinggehai Basin. Earth Science, 44(8):2695-2703 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201908015.htm
      [16] Liu, Q.Y., Zhu, D.Y., Jin, Z.J., et al., 2016. Coupled Alteration of Hydrothermal Fluids and Thermal Sulfate Reduction(TSR) in Ancient Dolomite Reservoirs-An Example From Sinian Dengying Formation in Sichuan Basin, Southern China. Precambrian Research, 285(1):39-57. https://doi.org/10.1016/j.precamres.2016.09.006
      [17] Long, H.S., Xiang, C.F., Niu, J.Y., et al., 2014. Hydrothermal Fluid Flow and Its Influence on the Hydrocarbon Migration and Accumulation Along Binhai Fault in Qikou Sag, Bohai Bay Basin. Acta Petrolei Sinica, 35(4):673-684 (in Chinese with English abstract). http://www.researchgate.net/publication/286284043_Hydrothermal_fluid_flow_and_its_influence_on_the_hydrocarbon_migration_and_accumulation_along_Binhai_fault_in_Qikou_sag_Bohai_Bay_Basin
      [18] Lonnee, J., Machel, H.G., 2006. Pervasive Dolomitization with Subsequent Hydrothermal Alteration in the Clarke Lake Gas Field, Middle Devonian Slave Point Formation, British Columbia, Canada. AAPG Bulletin, 90(11):1739-1761. https://doi.org/10.1306/03060605069
      [19] Ma, J., Huang, Z.L., Liang, S.J., et al., 2016. Geochemical and Tight Reservoir Characteristics of Sedimentary Organic-Matter-Bearing Tuff from the Permian Tiaohu Formation in the Santanghu Basin, Northwest China. Marine and Petroleum Geology, 73(1):405-418. https://doi.org/10.1016/j.marpetgeo.2016.03.017
      [20] Morrow, D.W., 2014. Zebra and Boxwork Fabrics in Hydrothermal Dolomites of Northern Canada: Indicators for Dilational Fracturing, Dissolution or in situ Replacement. Sedimentology, 61(4):915-951. https://doi.org/10.1111/sed.12094
      [21] Olivarez, A.M., Owen, R.M., 1991.The Europium Anomaly of Seawater: Implications for Fluvial versus Hydrothermal REE Inputs to the Oceans. Chemical Geology, 92(4):317-328. https://doi.org/10.1016/0009-2541(91)90076-4
      [22] Ronchi, P., Masetti, D., Tassan, S., et al., 2012. Hydrothermal Dolomitization in Platform and Basin Carbonate Successions during Thrusting:A Hydrocarbon Reservoir Analogue (Mesozoic of Venetian Southern Alps, Italy). Marine and Petroleum Geology, 29(1):68-89. https://doi.org/10.1016/j.marpetgeo.2011.09.004
      [23] Schmidt, R.B., Bucher, K., Drüppel, K., et al., 2017. Experimental Interaction of Hydrothermal Na-cl Solution with Fracture Surfaces of Geothermal Reservoir Sandstone of the Upper Rhine Graben. Applied Geochemistry, 81(1):36-52. https://doi.org/10.1016/j.apgeochem.2017.03.010
      [24] Smith, L.B., 2006. Origin and Reservoir Characteristics of Upper Ordovician Trenton-Black River Hydrothermal Dolomite Reservoirs in New York. AAPG Bulletin, 90(11):1691-1718. https://doi.org/10.1306/04260605078
      [25] Sykes, R., Snowdon, L.R., 2002. Guidelines for Assessing the Petroleum Potential of Coaly Source Rocks using Rock-Eval Pyrolysis. Organic Geochemistry, 33(12):1441-1455. https://doi.org/10.1016/S0146-6380(02)00183-3
      [26] Wang, Q.B., Zang, C, Y., Zhu, W, S., et al., 2012. The Impact of Mantle Source CO2 on Clay Minerals of Clastic Reservoirs in the East Part of Shijiutuo Symon Fault, Bozhong Depression. Acta Petrologica et Mineralogica, 31(5):674-680 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW201205006.htm
      [27] Wang, Q.B., Liu, L., Niu, C.M., et al., 2019. The Geological Evidences and Impacts of Deep Thermal Fluid on Lacustrine Carbonate Reservoir in the Actic Area of the North Part of Bozhong Depression, Bohai Bay Basin. Earth Science, 44(8):2751-2760 (in Chinese with English abstract).
      [28] Wang, Z.H., Zhang, S.J., 1998. Discovery and Characteristics of High-Mineralized Soda-Dicarbonate-Type Water in Karamay Oil Region. Experimental Petroleum Geology, 20(1):39-43 (in Chinese with English abstract).
      [29] Wang, Z.S., Hua, S.J., Yu, X.M., et al., 2014. Grading Evaluation and High Quality Source Rock Distribution in Qikou Sag. Natural Gas Geoscience, 25(12):1896-1902 (in Chinese with English abstract).
      [30] White, D.E., 1957. Thermal Waters of Volcanic Origin. Geological Society of America Bulletin, 68(12):1637-1658. https://doi.org/10.1130/0016-7606(1957)68[1637:TWOVO]2.0.CO; 2 doi: 10.1130/0016-7606(1957)68[1637:TWOVO]2.0.CO;2
      [31] Yang, Y., Gao, F.H., Pu, X.G., 2014. REE Characteristics and Genesis of Dolostones from Paleogene Shahejie Formation in Qikou Depression. Journal of China University of Petroleum, 38(2):1-9 (in Chinese with English abstract). http://www.researchgate.net/publication/287394580_REE_characteristics_and_genesis_of_dolostones_from_Paleogene_Shahejie_Formation_in_Qikou_depression
      [32] Yin, Y., 2011. Analysis of Hydrochemical Characteristics of Paleogene Local Water and the Affecting Factors in Dongying Sag. Offshore Oil, 31(1):37-52 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYSY201101012.htm
      [33] Yu, Z.C., Liu, K.Y., Liu, L., et al., 2016. Characterization of Paleogene Hydrothermal Events and Their Effects on Reservoir Properties in the Qikou Sag, Eastern China. Journal of Petroleum Science and Engineering, 146(1):1226-1241. https://doi.org/10.1016/j.petrol.2016.08.026
      [34] Zhang, T.W., Zhang, M.J., Bai, B.J., et al., 2008. Origin and Accumulation of Carbon Dioxide in the Huanghua Depression, Bohai Bay Basin, China. AAPG Bulletin, 92(3):341-358. https://doi.org/10.1306/10230706141
      [35] Zhao, X.Y., He, D.B., 2016. Clay Mineral and Application in Oil and Gas Exploration and Development. Petroleum Industry Press, Beijing, 270-280 (in Chinese).
      [36] Zhou, L.H., Fu, L.X., Lou, D., et al., 2012. Structural Anatomy and Dynamics of Evolution of the Qikou Sag, Bohai Bay Basin: Implications for the Destruction of North China Craton. Journal of Asian Earth Sciences, 47(1):94-106. https://doi.org/10.1016/j.jseaes.2011.06.004
      [37] Zhou, X.Q, Yu H., Huang T.Y., et al., 2016. Genetic Classification of Sedimentary Barites and Discussion on the Origin of the Lower Cambrian Barite-Rich Deposits in the Yangtze Block, South China. Acta Sedimentologica Sinica, 34(6):1044-1056 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB201606004.htm
      [38] Zhu, D.Y., Meng, Q.Q., Jin, Z.J., et al., 2015. Formation Mechanism of Deep Cambrian Dolomite Reservoirs in the Tarim Basin, Northwestern China. Marine and Petroleum Geology, 59(1):232-244. https://doi.org/10.1016/j.marpetgeo.2014.08.022
      [39] 高波, 陶明信, 王万春, 2001.深部热流体对油气成藏的影响.矿物岩石地球化学通报, 20(1):30-34. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH200101007.htm
      [40] 贺训云, 寿建峰, 沈安江, 等, 2014.白云岩地球化学特征及成因-以鄂尔多斯盆地靖西马五段中组合为例.石油勘探与开发, 41(3):375-384. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201403018.htm
      [41] 侯中帅, 周立宏, 陈世悦, 等, 2018.大港探区上古生界储层类型与控制因素.中国矿业大学学报, 47(5):1021-1037. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201805011.htm
      [42] 李弛, 罗静兰, 胡海燕, 等, 2019.热动力条件对白云凹陷深水区珠海组砂岩成岩演化过程的影响.地球科学, 44(2): 572-587. doi: 10.3799/dqkx.2017.618
      [43] 刘娜, 吴克强, 刘立, 等, 2019.莺歌海盆地乐东区片钠铝石特征及其对浅层CO2充注的指示.地球科学, 44(8):2695-2703. doi: 10.3799/dqkx.2019.106
      [44] 龙华山, 向才富, 牛嘉玉, 等, 2014.歧口凹陷滨海断裂带热液流体活动及其对油气成藏的影响.石油学报, 35(4):673-684. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201404007.htm
      [45] 王清斌, 臧春艳, 朱文森, 等, 2012.渤中坳陷石臼陀凸起东段幔源CO2充注对储集层粘土矿物的影响.岩石矿物学杂志, 31(5):674-680. doi: 10.3969/j.issn.1000-6524.2012.05.005
      [46] 王清斌, 刘立, 牛成民, 等, 2019.渤中凹陷北部陡坡带热液活动及其对湖相碳酸盐岩储层的影响.地球科学, 44(8):2751-2760. doi: 10.3799/dqkx.2018.347
      [47] 王振升, 滑双君, 于学敏, 等, 2014.歧口凹陷沙河街组烃源岩分级评价及优质烃源岩分布.天然气地球科学, 25(12):1896-1902. doi: 10.11764/j.issn.1672-1926.2014.12.1896
      [48] 王仲侯, 张淑君, 1998.克拉玛依油区高矿化度重碳酸钠型水的发现与特征.石油实验地质, 20(1):39-43. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD199801007.htm
      [49] 杨扬, 高福红, 蒲秀刚, 2014.歧口凹陷古近系沙河街组白云岩稀土元素特征及成因.中国石油大学学报(自然科学版), 38(2):1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201402001.htm
      [50] 银燕, 2011.东营凹陷古近系地层水化学特征及其演化主控因素分析.海洋石油, 31(1):37-41. https://www.cnki.com.cn/Article/CJFDTOTAL-HYSY201101012.htm
      [51] 赵杏媛, 何东博, 2016.黏土矿物与油气勘探开发.北京:石油工业出版社, 270-280.
      [52] 周锡强, 遇昊, 黄泰誉, 等, 2016.重晶石沉积类型及成因评述-兼论扬子地区下寒武统重晶石的富集机制.沉积学报, 34(6):1044-1056. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201606004.htm
    • 加载中
    图(13) / 表(4)
    计量
    • 文章访问数:  698
    • HTML全文浏览量:  159
    • PDF下载量:  50
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-11-23
    • 刊出日期:  2021-01-15

    目录

      /

      返回文章
      返回