Genesis of Reservoirs of Lagoon in the Mishrif Formation, M Oilfield, Iraq
-
摘要: 为深化潟湖相碳酸盐岩储集层非均质性认识,以伊拉克M油田白垩系Mishrif组为例,基于岩心观察、物性分析数据、铸体薄片及压汞实验,对潟湖相储集层特征及成因机理开展研究.结果显示:研究区潟湖环境岩石类型复杂,生物碎屑具有多样性,储集层以低渗、特低渗为主,孔隙度分布范围宽,发育大量的基质微孔、铸模孔和晶间孔.储集层强非均质性是复杂沉积作用和差异成岩作用的结果.潟湖沉积物泥质含量高,发育大量基质微孔,与生物扰动作用相伴生的埋藏白云化作用可形成晶间孔,易溶型生物碎屑被选择性溶蚀形成大量的铸模孔.研究认为:潟湖沉积物原始物性较低,后期成岩作用可改善储集层物性.生物扰动期次、扰动强度、充填物类型、环境的封闭性及外来流体性质等因素控制了潜穴中充填物的改造趋势;生屑类型、成岩序列和成岩环境等影响了沉积物中铸模孔的发育和保存.综合潜穴充填物类型、生屑类型、成岩环境和成岩作用等因素,建立了生物扰动成因孔隙模式和铸模孔发育模式.Abstract: In order to understand the genesis of reservoir heterogeneity in lagoon, based on core, reservoir physical property data, cast thin section and mercury injection experiment, the characteristics and genetic mechanism of reservoir of lagoon facies in the Mishrif Formation in M oilfield were studied. The results showed that the reservoirs of lagoon facies were diversified in rock types and bioclastic.The reservoir with low or extra-low permeability and wide porosity mainly developed matrix-host micropores, intercrystal line pore and moldic pore. The correlation of porosity and permeability were poor. The different diagenesis and complex sedimentation led to serious heterogeneity. The sediments in lagoon had high micrites matrix which was the fundamental of matrix-host micropores. The intercrystalline pore results from the dolomitization after bioturbation. Bioclastic which were easy to dissolve were selective dissolved to form large amount of moldic pore. It concluded that the sediment had poor physical property and the transform by diagenesis were the main reservoir genesis.The factors such as bioturbation period, extent, infill materials, environment closed or open, fluid property controlled the transform tendency to reservoir and the development and preservation of moldic pore was controlled by the bioclastic type, diagenesis sequence and environment. Based on the factors such as infill materials, bioclastic, diagenetic environment and diagenesis, the pore mode associated bioturbation and selective dissolution was established.
-
Key words:
- carbonate rock /
- Cretaceous /
- Mishrif Formation /
- lagoon /
- bioturbation /
- dolomitization /
- petroleum geology
-
图 1 伊拉克M油田构造地理位置和Mishrif组沉积模式
Fig. 1. Structure location of M oilfield in Iraq and depositional mode of the Mishrif Formation
-
[1] Aqrawi, A.A.M., Goff, J.C., Horbury, A.D., et al., 2010. The Petroleum Geology of Iraq. Scientific Press, London. [2] Bąbel, M., 2007. Depositional Environments of a Salina-Type Evaporite Basin Recorded in the Badenian Gypsum Facies in the Northern Carpathian Foredeep. Geological Society, London, Special Publications, 285(1):107-142. https://doi.org/10.1144/sp285.7 [3] Baniak, G. M., Amskold, L., Konhauser, K. O., et al., 2014a. Sabkha and Burrow-Mediated Dolomitization in the Mississippian Debolt Formation, Northwestern Alberta, Canada. Ichnos, 21(3):158-174. https://doi.org/10.1080/10420940.2014.930036 [4] Baniak, G. M., Gingras, M. K., Burns, B. A., et al., 2014b. An Example of a Highly Bioturbated, Storm-Influenced Shoreface Deposit:Upper Jurassic Ula Formation, Norwegian North Sea. Sedimentology, 61(5):1261-1285. https://doi.org/10.1111/sed.12100 [5] Baniak, G. M., Gingras, M. K., Pemberton, S. G., 2013. Reservoir Characterization of Burrow-Associated Dolomites in the Upper Devonian Wabamun Group, Pine Creek Gas Field, Central Alberta, Canada. Marine and Petroleum Geology, 48:275-292. https://doi.org/10.1016/j.marpetgeo.2013.08.020 [6] Bi, Y.Q., Tian, H.Q., Zhao, Y.S., et al., 2001. On the Micrite Envelope to Restoration of Primary Texture Character of Secondary Dolomites and Its Significance. Acta Petrologica Sinica, 17(3):491-496 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-YSXB200103018.htm [7] Choquette, P.W., Pray, L.C., 1970. Geologic Nomenclature and Classification of Porosity in Sedimentary Carbonates. AAPG Bulletin, 54(2):207-250. https://doi.org/10.1306/5d25c98b-16c1-11d7-8645000102c1865d [8] Corlett, H. J., Jones, B., 2012. Petrographic and Geochemical Contrasts between Calcite- and Dolomite-Filled Burrows in the Middle Devonian Lonely Bay Formation, Northwest Territories, Canada:Implications for Dolomite Formation in Paleozoic Burrows. Journal of Sedimentary Research, 82(9):648-663. https://doi.org/10.2110/jsr.2012.57 [9] Gao, Z. Q., Ding, Q. N., Hu, X. L., 2015. Characteristics and Controlling Factors of Carbonate Intra-Platform Shoals in the Tarim Basin, NW China. Journal of Petroleum Science and Engineering, 127:20-34. https://doi.org/10.1016/j.petrol.2015.01.027 [10] Gingras, M. K., Pemberton, S. G., Mendoza, C. A., et al., 1999. Assessing the Anisotropic Permeability of Glossifungites Surfaces. Petroleum Geoscience, 5(4):349-357. https://doi.org/10.1144/petgeo.5.4.349 [11] Gingras, M. K., Pemberton, S. G., Muelenbachs, K., et al., 2004. Conceptual Models for Burrow-Related, Selective Dolomitization with Textural and Isotopic Evidence from the Tyndall Stone, Canada. Geobiology, 2(1):21-30. https://doi.org/10.1111/j.1472-4677.2004.00022.x [12] Huang, Z.S., Yang, X.F., Wang, X.Z., et al., 2019.Sedimentary Facies and the Reservoir of the Lower Cambrian Longwangmiao Formation in Northern Sichuan Basin, China. Marine Origin Petroleum Geology, 24(1):1-8(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-HXYQ201901001.htm [13] Jin, Z.K., Shi, L., Gao, B.S., et al., 2013. Carbonate Facies and Facies Models. Acta Sedimentologica Sinica, 31(6):965-979 (in Chinese with English abstract). [14] Johnson, C.C., 2002. The Rise and Fall of Rudist Reefs:Reefs of the Dinosaur Era Were Dominated Not by Corals But by Odd Mollusks, Which Died off at the End of the Cretaceous From Causes Yet to be Discovered. American Scientist, 90(2):148-153. https://doi.org/10.2307/27857629. [15] Kang, Y.Z., 2013. Status of World Hydrocarbon Resource Potential and Strategic Thinking of Overseas Oil and Gas Projects for China. Natural Gas Industry, 33(3):1-4 (in Chinese with English abstract). http://www.researchgate.net/publication/298289497_Status_of_world_hydrocarbon_resource_potential_and_strategic_thinking_of_overseas_oil_and_gas_projects_for_China [16] La Croix, A. D., Gingras, M. K., Pemberton, S. G., et al., 2013. Biogenically Enhanced Reservoir Properties in the Medicine Hat Gas Field, Alberta, Canada. Marine and Petroleum Geology, 43:464-477. https://doi.org/10.1016/j.marpetgeo.2012.12.002 [17] Mahdi, T. A., Aqrawi, A. A., Horbury, A. D., et al., 2013.Sedimentological Characterization of the Mid-Cretaceous Mishrif Reservoir in Southern Mesopotamian Basin, Iraq. Geo Arabia, 18(1):139-174. [18] Mu, L.X., Pan, X.H., Tian, Z.J., et al., 2013. The Overseas Hydrocarbon Resources Strategy of Chinese Oil-Gas Companies. Acta Petroleum Sinica, 34(5):1023-1030 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB201305029.htm [19] Ni, X.F., Huang, L.L., Chen, Y.Q., et al., 2017.Characteristics and Main Controlling Factors of the Cambrian Pre-salt Dolomite Reservoirs in Tazhong Block, Tarim Basin. Oil & Gas Geology, 38(3):489-498 (in Chinese with English abstract). http://www.researchgate.net/publication/319345942_Characteristics_and_main_controlling_factors_of_the_Cambrian_pre-salt_dolomite_reservoirs_in_Tazhong_Block_Tarim_Basin [20] Niu, Y.B., Cui, S.L., Hu, Y.Z., et al., 2018.Three-Dimensional Reconstruction of the Ordovician Bio-Disturbing Reservoir in Tahe Oilfield and Its Enlightenment Significance. Journal of Palaeogeography, 20(4):691-702 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GDLX201804013.htm [21] Ortí, F., Rosell, L., Anadón, P., 2010. Diagenetic Gypsum Related to Sulfur Deposits in Evaporites (Libros Gypsum, Miocene, NE Spain). Sedimentary Geology, 228(3/4):304-318. https://doi.org/10.1016/j.sedgeo.2010.05.005 [22] Rao, X., Anderson, A., Skelton, P. W., et al., 2015. Mid-Cretaceous Rudists (Bivalvia:Hippuritida) from the Langshan Formation, Lhasa Block, Tibet. Papers in Palaeontology, 1(4):401-424. https://doi.org/10.1002/spp2.1019 [23] Sadooni, F. N., 1996. Stratigraphic and Lithological Characteristics of Upper Cretaceous Carbonates in Central Iraq. Journal of Petroleum Geology, 19(3):271-288. https://doi.org/10.1111/j.1747-5457.1996.tb00434.x. [24] Sadooni, F. N., 2005. The Nature and Origin of Upper Cretaceous Basin-Margin Rudist Buildups of the Mesopotamian Basin, Southern Iraq, with Consideration of Possible Hydrocarbon Stratigraphic Entrapment. Cretaceous Research, 26(2):213-224. https://doi.org/10.1016/j.cretres.2004.11.016 [25] Saller, A.H., Henderson, N., 2001. Distribution of Porosity and Permeability in Platform Dolomites:Insight from the Permian of West Texas:Reply. AAPG Bulletin, 85(3):530-532. https://doi.org/10.1016/S0377-0273(98)00026-2 [26] Stanley, G. D. Jr., 2003. The Evolution of Modern Corals and their Early History. Earth-Science Reviews, 60(3/4):195-225. https://doi.org/10.1016/s0012-8252(02)00104-6 [27] Tian, Y., Xu, H., Zhang, X.Y., et al., 2017. Sedimentary Characteristics, Distribution Regularities and Main Controlling Factors of Carbonate Intra-Platform Shoal Reservoir:A Case Study of Intra-Platform Shoal Gas Field in the Amu Darya Basin. Earth Science Frontiers, 24(6):312-321 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201706027.htm [28] Wagner, C.W., van der Togt, C., 1973. Holocene Sediment Types and Their Distribution in the Southern Persian Gulf. In: Purser, B.H., ed., The Persian Gulf: Holocene Carbonate Sedimentation and Diagenesis in a Shallow Epicontinental Sea. Springer, New York, 471. [29] Wang, Y.W., Chen, H.H., Cao, Z.C., et al., 2019.Forming Mechanism of Ordovician Microbial Carbonate Reservoir in Northern Slope of Tazhong Uplift, Tarim Basin. Earth Sicence, 44(2):559-571 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201902019.htm [30] Weber, J. N., Woodhead, P. M. J., 1972. Carbonate Lagoon and Beach Sediments of Tarawa Atoll, Gilbert Islands. Atoll Research Bulletin, 157:1-21. https://doi.org/10.5479/si.00775630.157.1 [31] Wei, D., Gao, Z. Q., Fan, T. L., et al., 2017. Experimental Hydraulic Fracture Propagation on Naturally Tight Intra-Platform Shoal Carbonate. Journal of Petroleum Science and Engineering, 157:980-989. https://doi.org/10.1016/j.petrol.2017.08.016 [32] Wu, H.Y., Wang, J.G., Wang, P.X., et al., 2018.Genesis of Dolomite Reservoir of Middle-Lower Cambrian in Nanpu Sag, Bohai Bay Basin. Acta Petrolei Sinica, 39(4):416-426 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SYXB201804005.htm [33] Xing, F.C., Hu, H.R., Hou, M.C., et al., 2018. Carbonate Reservoirs Cycles and Assemblages under the Tectonic and Palaeogeography Control:A Case Study from Sichuan Basin. Earth Science, 43(10):3540-3552 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201810017.htm [34] Yang, S.P., Zhang, J.P., Yang, M.F., 2004. Chinese Ichnofossil. Science Press, Beijing (in Chinese). [35] Zhang, X.F., Liu, B., Cai, Z.X., et al., 2010. Dolomiteization and Physical Properties of Carbonate Reservoirs. Geological Science and Technology Information, 29(3):79-85 (in Chinese with English abstract). [36] Zhang, Y. F., Tan, F., Sun, Y. B., et al., 2018. Differences between Reservoirs in the Intra-Platform and Platform Margin Reef-Shoal Complexes of the Upper Ordovician Lianglitag Formation in the Tazhong Oil Field, NW China, and Corresponding Exploration Strategies. Marine and Petroleum Geology, 98:66-78. https://doi.org/10.1016/j.marpetgeo.2018.07.013 [37] Zhang, Z.H., Qiao, Z.F., Pan, W.Q., et al., 2017. Formation and Development of Reef-Shoal Reservoir:Extending Knowledge From the Dissolution Experiment. Marine Origin Petroleum Geology, 22(03):57-66 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HXYQ201703007.htm [38] Zhao, W.Z., Shen, A.J., Hu, A.P., et al., 2015.A Discussion on the Geological Background of Marine Carbonate Reservoirs Development in Tarim, Sichuan and Ordos Basin, China. Acta Petrologica Sinica, 31(11):3495-3508 (in Chinese with English abstract). http://www.researchgate.net/publication/290276073_A_Discussion_on_the_geological_background_of_marine_carbonate_reservoirs_development_in_Tarim_Sichuan_and_Ordos_Basin_China [39] Zhou, J.G., Zhang, F., Guo, Q.X., et al., 2011.Barrier-Lagoon Sedimentary Model and Reservoir Distribution Regularity of Lower-Ordovician Majiagou Formation in Ordos Basin.Acta Sedimentologica Sinica, 29(1):64-71 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB201101008.htm [40] Zhu, X.M., 2008 Sedimentary Petrology (4th Edition). Petroleum Industry Press, Beijing(in Chinese). [41] 毕义泉, 田海芹, 赵勇生, 等, 2001.论泥晶套与次生白云岩原岩结构特征的恢复及意义.岩石学报, 17(3):491-496. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200103018.htm [42] 黄梓桑, 杨雪飞, 王兴志, 等, 2019.川北地区下寒武统龙王庙组沉积相及与储层的关系.海相油气地质, 24(1):1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ201901001.htm [43] 金振奎, 石良, 高白水, 等, 2013.碳酸盐岩沉积相及相模式.沉积学报, 31(6):965-979. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201306003.htm [44] 康玉柱, 2013.世界油气资源潜力及中国海外油气发展战略思考.天然气工业, 33(3):1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201303000.htm [45] 穆龙新, 潘校华, 田作基, 等, 2013.中国石油公司海外油气资源战略.石油学报, 34(5):1023-1030. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201305029.htm [46] 倪新锋, 黄理力, 陈永权, 等, 2017.塔中地区深层寒武系盐下白云岩储层特征及主控因素.石油与天然气地质, 38(3):489-498. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201703008.htm [47] 牛永斌, 崔胜利, 胡亚洲, 等, 2018.塔河油田奥陶系生物扰动型储集层的三维重构及启示意义.古地理学报, 20(04):691-702. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201804013.htm [48] 田雨, 徐洪, 张兴阳, 等, 2017.碳酸盐岩台内滩储层沉积特征, 分布规律及主控因素研究:以阿姆河盆地台内滩气田为例.地学前缘, 24(6):312-321. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201706027.htm [49] 王玉伟, 陈红汉, 曹自成, 等, 2019.塔里木盆地塔中北坡奥陶系微生物碳酸盐岩储层形成机制与评价.地球科学, 44(02):559-571. doi: 10.3799/dqkx.2018.121 [50] 吴和源, 汪建国, 王培玺, 等, 2018.渤海湾盆地南堡凹陷中-下寒武统白云岩成因及储层形成机理.石油学报, 39(4):416-426. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201804005.htm [51] 邢凤存, 胡华蕊, 侯明才, 等, 2018.构造和古地理控制下的碳酸盐岩储集体旋回和集群性探讨:以四川盆地为例.地球科学, 43(10):3540-3552. doi: 10.3799/dqkx.2018.310 [52] 杨式溥, 张建平, 杨美芳, 2004.中国遗迹化石.北京:科学出版社. [53] 张学丰, 刘波, 蔡忠贤, 等, 2010.白云岩化作用与碳酸盐岩储层物性.地质科技情报, 29(3):79-85. doi: 10.3969/j.issn.1000-7849.2010.03.012 [54] 张正红, 乔占峰, 潘文庆, 等, 2017.碳酸盐岩礁滩储层的形成和发育规律-溶蚀模拟实验.海相油气地质, 22(03):57-66. doi: 10.3969/j.issn.1672-9854.2017.03.007 [55] 赵文智, 沈安江, 胡安平, 等, 2015.塔里木, 四川和鄂尔多斯盆地海相碳酸盐岩规模储层发育地质背景初探.岩石学报, 31(11):3495-3508. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201511024.htm [56] 周进高, 张帆, 郭庆新, 等, 2011.鄂尔多斯盆地下奥陶统马家沟组障壁潟湖沉积相模式及有利储层分布规律.沉积学报, 29(1):64-71. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201101008.htm [57] 朱筱敏, 2008.沉积岩石学(第四版).北京:石油工业出版社.