Hydrogeochemistry Characteristics and Formation Mechanismof Shallow Groundwater in Yongcheng City, Henan Province
-
摘要: 地下水是河南省永城市重要的供水水源,浅层地下水水质污染严重制约了该市经济发展和居民生活质量的提高.在实地调查采样分析的基础上,运用水化学图解法、数理统计法、地球化学模拟法等方法综合分析了永城市浅层地下水的水化学特征和形成机制,探讨了该市浅层地下水污染来源和主要影响因素.结果表明:随含水介质和人类活动影响强度的变化,浅层地下水中K+、Ca2+、NO3-、Cl-、SO42-的浓度和COD(chemical oxygen demand)随深度增加而减少,而Na+、F-、Mg2+、HCO3-的浓度和TDS(total dissolved solids)随深度增加而上升.在煤矿区及煤化工区浅层地下水中SO42-浓度大于250 mg/L,远远高于其他区域的SO42-浓度,而在农业区浅层地下水中NO3-浓度大于30 mg/L,远远高于其他区域的NO3-浓度.综合分析表明:煤矿及其化工业废水和生活污水排放、过量使用化肥农药是永城市浅层地下水污染的主要因素.Abstract: Groundwater is one of the most important water supply resources in Yongcheng City, but the pollution of shallow groundwater seriously restricts the economic development and the improvement of living standards in the city. On the basis of groundwater investigation and sampling, hydrogeochemical diagram method and multivariate statistics method and geochemical simulation method were comprehensively used to analyze the hydrochemical characteristics and formation mechanism, as well as the pollution source and the main affecting factors. With the change of aquifer medium and the intensity of human activities, the concentrations of K+, Ca2+, NO3-, Cl-, SO42- and COD (chemical oxygen demand) gradually decreased, while the concentrations of Na+, F-, Mg2+, HCO3- and TDS (total dissolved solids) gradually increased with the increase of depth, the former comes from human activities, while the latter comes from the original sedimentary environment. The concentration of SO42- in the areas of coal mine and coal chemical industry is higher than 250 mg/L, which is much higher than that in other regions. The concentration of NO3- is higher than 30 mg/L in agricultural areas. Integrated analyses implies that wastewater discharge of coal mine and chemical industry, leakage of household waste leachate and discharge of sewage, excessive application of pesticides and fertilizers are the main factors affecting the water quality of shallow groundwater.
-
Key words:
- coal mining city /
- shallow groundwater /
- mathematical statistics /
- geochemical simulation /
- groundwater /
- hydrogeology /
-
表 1 浅层地下水水化学组分
Table 1. Statistical summary of hydrochemical parameters of shallow groundwater samples
pH K+ Na+ Ca2+ Mg2+ Cl- SO42- HCO3- F- NO3- TDS COD 总硬度 mg/L 浅井水 极小值 7.2 0.28 8.55 25.25 10.69 3.54 24.02 64.18 0.3 0.02 192.24 0.21 138.5 极大值 8.3 49.94 283.6 206.81 105.58 207.74 453.4 655.96 2.6 89.25 1177.9 3.67 893.5 均值 7.538 4.132 77.68 88.628 54.634 54.38 111.955 466.497 1.093 25.585 680.107 0.764 445.92 标准差 0.259 10.011 60.365 44.153 22.034 48.957 90.082 162.078 0.594 32.023 237.28 0.862 148.254 变异系数 0.034 2.423 0.777 0.498 0.403 0.900 0.805 0.347 0.543 1.252 0.349 1.128 0.332 深井水 极小值 7.3 0.43 51.83 32.06 32.93 15.95 47.07 386.87 0.7 0.1 472.57 0.07 277 极大值 8.15 4.92 262.04 108.42 89.67 135.77 271.85 769.46 2.48 103.5 1235.26 0.48 577.86 均值 7.555 1.348 132.364 65.591 55.452 50.799 109.268 576.09 1.508 19.399 739.428 0.193 405.386 标准差 0.278 1.285 73.841 24.036 15.485 36.338 67.94 120.09 0.684 30.798 227.958 0.123 93.598 变异系数 0.037 0.953 0.558 0.366 0.279 0.715 0.622 0.208 0.454 1.588 0.308 0.637 0.231 注:1.浅井水样共25个, 深井水样共10个;2.变异系数无量纲. 表 2 浅层地下水离子间Pearson相关系数
Table 2. Pearson correlation coefficient matrix of shallow groundwater samples
K+ Na+ Ca2+ Mg2+ Cl- SO42- HCO3- NO3- F- 总硬度 COD TDS pH H2SiO3 浅
井
水K+ 1 0.764** -0.32 0.044 0.140 0.203 0.409* -0.086 -0.175 -0.211 0.071 0.417* 0.693** 0.495* Na+ 1 -0.240 0.369 0.375 0.365 0.570** 0.212 -0.038 0.048 0.058 0.709** 0.621** 0.465** Ca2+ 1 0.081 0.530** 0.489* 0.023 0.043 -0.437* 0.793** -0.215 0.431* -0.602** -0.141 Mg2+ 1 0.614** 0.493* 0.361 0.107 0.397* 0.672** 0.118 0.660** 0.134 -0.121 Cl- 1 0.652** 0.215 0.312 -0.102 0.769** 0.121 0.801** -0.041 -0.004 SO42- 1 0.165 -0.133 0.042 0.664** -0.111 0.752** 0.163 -0.093 HCO3- 1 0.106 -0.076 0.238 -0.011 0.552** 0.210 0.286 NO3- 1 -0.106 0.097 0.376 0.210 -0.004 0.005 F- 1 -0.082 -0.177 -0.131 -0.058 -0.326 总硬度 1 -0.087 0.724** -0.365 -0.179 COD 1 -0.002 -0.013 -0.010 TDS 1 0.186 0.229 PH 1 0.311 H2SiO3 1 深
井
水K+ 1 0.660 -0.019 0.822** 0.797** 0.842** 0.649* -0.210 -0.142 0.525 -0.074 0.797** -0.135 0.453 Na+ 1 -0.511 0.800** 0.669* 0.882** 0.911** -0.116 0.339 0.042 0.595 0.924** -0.179 -0.067 Ca2+ 1 -0.295 0.215 -0.150 0.478 0.218 0.867** 0.611 -0.316 -0.186 -0.326 0.425 Mg2+ 1 0.661* 0.880** 0.852** -0.078 0.174 0.459 0.276 0.885** -0.273 0.326 Cl- 1 0.903** 0.516 -0.024 -0.193 0.481 0.252 0.853** -0.253 0.402 SO42- 1 0.798** -0.114 0.097 0.399 0.389 0.974** -0.293 0.293 HCO3- 1 -0.255 0.206 0.204 0.517 0.857** -0.356 0.151 NO3- 1 -0.057 0.034 0.154 0.008 -0.150 -0.019 F- 1 -0.641* 0.257 0.073 0.394 -0.567 总硬度 1 -0.084 0.369 -0.542 0.733* COD 1 0.492 -0.384 0.096 TDS 1 -0.355 0.286 pH 1 -0.419 H2SiO3 1 注:*0.05水平上(双侧)显著相关;**0.01水平上(双侧)显著相关;单位:mg/L. 表 3 浅井水旋转成分载荷矩阵
Table 3. Matrix of rotated factor loadings of groundwater in shallow wells
成分 F1 F2 F3 F4 K+ -0.004 0.912 -0.023 -0.050 Na+ -0.299 0.882 -0.108 0.148 Ca2+ 0.674 -0.381 -0.571 -0.165 Mg2+ 0.734 0.106 0.499 0.179 Cl- 0.865 0.114 -0.062 0.242 HCO3- 0.336 0.557 -0.045 0.078 SO42- 0.806 0.173 -0.086 -0.252 F- -0.008 -0.121 0.928 -0.136 NO3- 0.128 0.017 -0.066 0.820 H2SiO3 -0.139 0.683 -0.390 -0.023 总硬度 0.950 -0.218 -0.119 -0.013 TDS 0.864 0.476 -0.069 0.081 PH -0.141 0.749 0.501 -0.053 COD -0.175 0.031 -0.001 0.810 贡献率(%) 30.73 24.55 13.49 68.77 累积贡献率(%) 30.73 55.28 11.21 79.98 表 4 深井水旋转成分载荷矩阵
Table 4. Matrix of rotated factor loadings of groundwater in deep wells
成分 F1 F2 F3 K+ 0.853 0.312 -0.350 Na+ 0.930 -0.277 0.166 Ca2+ -0.309 0.891 0.038 Mg2+ 0.931 0.051 -0.010 Cl- 0.797 0.365 -0.010 HCO3- 0.902 -0.166 0.147 SO42- 0.970 0.099 0.036 F- 0.159 -0.901 -0.006 NO3- -0.198 0.117 0.596 H2SiO3 0.294 0.731 0.077 总硬度 0.345 0.855 0.022 TDS 0.966 0.072 0.184 PH -0.259 -0.486 -0.625 COD 0.402 -0.265 0.773 贡献率(%) 45.53 25.31 11.13 累积贡献率(%) 45.53 70.84 81.97 -
[1] An L.S., Zhao Q.S., Ye S.Y., et al.2012.Hydrochemical Characteristics and Formation Mechanism of Shallow Groundwater in the Yellow River Delta.Environmental Science, 33(2):370-378(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/hjkx201202006 [2] Batabyal A.K..2018.Hydrogeochemistry and Quality of Groundwater in a Part of Damodar Valley, Eastern India:An Integrated Geochemical and Statistical Approach.Stochastic Environmental Research and Risk Assessment, 32(8):2351-2368. doi: 10.1007/s00477-018-1552-y [3] Barzegar R., Moghaddam A.A., Tziritis E., et al.2017.Identification of Hydrogeochemical Processes and Pollution Sources of Groundwater Resources in the Marand Plain, Northwest of Iran.Environmental Earth Science, 76(7):297. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f08de40c67b6d032cc78da7b1281e7a5 [4] Chen T..2019.Analysis of Chemical Characteristics and Water Quality of Shallow Groundwater in Yongcheng City.Environmental Science Survey, 38(1):79-82(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ynhjkx201901017 [5] Cheng D.H., Chen H.H., He J.T., et al.2007.A Study of Indicators of Anthropogenic Influence and Water-Rock Interaction in Groundwater System in the Urban Region of Beijing.Hydrogeology & Engineering Geology, 34(5):37-42(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=swdzgcdz200705010 [6] Chung S.Y., Venkatramanan S., Kim T.H., et al.2015.Infl-uence of Hydrogeochemical Processes and Assessment of Suitability for Groundwater Uses in Busan City, Korea.Environ. Dev. Sustain., 17:423-441. https://doi.org/10.1007/s10668-0149552-7 http://www.researchgate.net/profile/Senapathi_Venkatramanan/publication/263057721_Influence_of_hydrogeochemical_processes_and_assessment_of_suitability_for_groundwater_uses_in_Busan_City_Korea/links/5412940b0cf2bb7347daeb5f [7] Dar M.A., Sankar K., Dar I.A..2011.Fluorine Contamination in Groundwater:A Major Challenge.Environmental Monitoring & Assessment, 173(1-4):955-968. doi: 10.1007/s10661-010-1437-0 [8] Feng H.B., Dong S.G., Zhang T., et al.2019.Evolution Mechanism of a Groundwater System in the Opencast Coalmine Area in the Typical Prairie.Hydrogeology & Engineering Geology, 46(1):163-172(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/swdzgcdz201901022 [9] Gibbs R.J..1970.Mechanisms Controlling World Water Chemistry.Science, 170(3962):1088-1090. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0232095384/ [10] Hu Y., Wang X., Dong Z., et al.2015.Groundwater Quality at the Huaibei Coalfield, China.Analytical Letters, 48(10):1654-1669. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/00032719.2014.991961 [11] Jacks G., Bhattacharya P., Chaudhary V., et al.2005.Controls on the Genesis of Some High-Fluoride Groundwater in India.Applied Geochemistry, 20(2):221-228. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a02a5abaddf335202c7f46e52b0be351 [12] Li P., Qian H., Wu J., et al.2013.Major Ion Chemistry of Shallow Groundwater in the Dongsheng Coalfield, Ordos Basin, China.Mine Water and the Environment, 32(3):195-206. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a95abf397b1f49895659b3f199aa7b16 [13] Li Q.M., Zhai L.J., Fu Y.J., et al.2012.A Study on Coal Mining Aquifer Destruction Mode in North China Typed Coalfields.Coal Geology of China, 24(7):38-43(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgmtdz201207009 [14] Li S.S..2011.Studies of Evaluation on Heavy Mentals Contamination in Soil of Yongcheng Mining Areas.Henan Science, 29(4):484-488(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-HNKX201104025.htm [15] Liu Y.X., Chen X.E., Zhang S.L..2002.The Mechanics of Water Inflow from Coal Floor Fissure in Yongcheng Mining Area.Coal Geology & Exploration, (3):45-46(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=mtdzykt200203014 [16] Ma L., Qian J.Z., Zhao, W.D..2012.GIS-based Approaches for Spatially Dividing Groundwater Chemical Types.Journal of China Coal Society, 37(3):490-494(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/mtxb201203025 [17] Nayak B., Roy M.M., Das B., et al.2009.Health Effects of Groundwater Fluoride Contamination.Clinical Toxicology, 47(4):292-295. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/15563650802660349 [18] Nielsen F.H..2009.Micronutrients in Parenteral Nutrition:Boron, Silicon, and Fluoride.Gastroenterology, 137(5):55-60. http://www.ncbi.nlm.nih.gov/pubmed/19874950 [19] Pan D., Guo Q.L., Kong F.B..2019.Spatial Correlation Pattern Analysis of Overuse Fertilization about Major Grain Crops in China from 2002 to 2015.Journal of China Agricultural University.24(4):187-201(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnydxxb201904022 [20] Piper A.M..1944.A Graphic Procedure in the Geochemical Interpretation of Water Analysis.Trans. Amer. Geophys.Union, 25(1):27-39. http://www.researchgate.net/publication/244957129_A_Graphic_Procedure_in_the_Geochemical_Interpretation_of_Water-Analyses [21] Qiao X.J., Li G.M., Zhou J.L., et al.2010.Analysis of Influence of Coal Exploitation on Water Resources and Environment:A Case Study of Coal Exploitation in Xishan of Taiyuan City.Water Resources Protection, 26(1):49-52(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SZYB201001013.htm [22] Qin T., Yang P., Groves C., et al.2018.Natural and Anthropogenic Factors Affecting the Hydrogeochemistry of the Jialing River and Yangtze River in the Chongqing Main Urban Area, SW China. Applied Geochemistry.98:448-458. http://www.onacademic.com/detail/journal_1000040875690310_7398.html [23] Rafique T., Naseem S., Usmani T.H., et al.2009.Geochemical Factors Controlling the Occurrence of High Fluoride Groundwater in the Nagar Parkar Area, Sindh, Pakistan.Journal of Hazardous Materials, 171(1-3):424-430. https://www.sciencedirect.com/science/article/pii/S0304389409009303 [24] Rashid A., Guan D.X., Farooqi A., et al.2018.Fluoride Prevalence in Groundwater around a Fluorite Mining Area in the Flood Plain of the River Swat, Pakistan.Science of the Total Environment, 635:203-215. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5e4569724574853029257462bb2fee5a [25] Schoeller H..1967.Qualitative Evaluation of Ground Water Resources.In:Schoeller H., ed., Methods and Techniques of Groundwater Investigation and Development.Water Resource Series No.33, UNESCO, Paris, 44-52. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_96da504cdfd3656a28b2c4be0308aafd [26] Singh A.K., Mahato M.K., Neogi B., et al.2010.Quality Assessment of Mine Water in the Raniganj Coalfield Area, India.Mine Water and the Environment, 29(4):248-262. https://www.academia.edu/4181949/Quality_Assessment_of_Mine_Water_in_the_Raniganj_Coalfield_Area_India [27] Su K.F..2014.Environmental Geological Problems in the Coal Mining Area and Prevention Measures of Yongcheng County, Henan Province.The Chinese Journal of Geological Hazard and Control, 25(1):77-81(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zgdzzhyfzxb201401014 [28] Wang J.Y., Wang J.L., Jin M.G..2017.Hydrochemical Characteristics and Formation Caused of Karst Water in Jinan Spring Catchment.Earth Science, 42(5):821-831(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201705018 [29] World Health Organization (WHO).2011.Guidelines for Drinking Water Quality.World Health Organization, Geneva. http://d.old.wanfangdata.com.cn/Periodical/jshjkj201804008 [30] Wu Y.Z., Pan C.F., Lin Y., et al.2018.Hydrogeochemical Characteristics and Controlling Factors of Main Water Filled Aquifers in the Typical North China Coalfield.Geological Science and Technology Information, 37(5):191-199(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201805026 [31] Yang S.N., Yang W.R..1985.China Regional Geotectonics.Geological Publishing House, Beijing(in Chinese). [32] Yu H.T., Ma T., Deng Y.M., et al.2017.Hydrochemical Characteristics of Shallow Groundwater in Eastern Jianghan Plain.Earth Science, 42(5):685-692(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201705004 [33] Zhang J.H..2016.Experimental Study of Oxidation-Acid Erosion Reaction in Black Shale (Dissertation).Southwest Jiaotong University, Chengdu(in Chinese with English abstract). [34] Zhao Z.J..2012.Analysis on Yongcheng City Ground Surface Water Resource Quality.Journal of Yellow River Conservancy Technical Institute, 24(4):8-10(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hhslzyjsxyxb201204004 [35] Zheng C., Liu J., Cao G., et al.2010.Can China Cope with Its Water Crisis? Perspectives from the North China Plain.Ground Water, 48(3):350-354(in Chinese with English abstract). https://pubmed.ncbi.nlm.nih.gov/20331747/ [36] Zhou Z.F., Zhu H.S..2004.Analysis on Groundwater Environmental Effect in Urban Geologic Hazard.Advance in Earth Sciences, 19(3):467-471(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkxjz200403019 [37] 安乐生, 赵全升, 叶思源, 等.2012.黄河三角洲浅层地下水化学特征及形成作用.环境科学, 33(2):370-378. http://d.old.wanfangdata.com.cn/Periodical/hjkx201202006 [38] 陈涛.2019.永城市浅层地下水水化学特征和水质状况分析.环境科学导刊, 38(1):79-82. http://d.old.wanfangdata.com.cn/Periodical/ynhjkx201901017 [39] 程东会, 陈鸿汉, 何江涛, 等.2007.北京城近郊区地下水人为影响和水-岩作用指示性指标研究.水文地质工程地质, 34(5):37-42. http://d.old.wanfangdata.com.cn/Periodical/swdzgcdz200705010 [40] 冯海波, 董少刚, 张涛, 等.2019.典型草原露天煤矿区地下水环境演化机理研究.水文地质工程地质, 46(1):163-172. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=swdzgcdz201901022 [41] 李七明, 翟立娟, 傅耀军, 等.2012.华北型煤田煤层开采对含水层的破坏模式研究.中国煤炭地质, 24(7):38-43. http://d.old.wanfangdata.com.cn/Periodical/zgmtdz201207009 [42] 李绍生.2011.永城矿区土壤重金属污染评价研究.河南科学, 29(4):484-488. http://d.old.wanfangdata.com.cn/Periodical/hnkx201104026 [43] 刘蕴祥, 陈祥恩, 张胜利.2002.永城矿区煤层底板裂隙灰岩突水机理.煤田地质与勘探, (3):45-46. http://d.old.wanfangdata.com.cn/Periodical/mtdzykt200203014 [44] 马雷, 钱家忠, 赵卫东.2012.基于GIS的地下水化学类型空间分区方法.煤炭学报, 37(3):490-494. http://d.old.wanfangdata.com.cn/Periodical/mtxb201203025 [45] 潘丹, 郭巧苓, 孔凡斌.2019.2002-2015年中国主要粮食作物过量施肥程度的空间关联格局分析.中国农业大学学报, 24(4):187-201. http://d.old.wanfangdata.com.cn/Periodical/zgnydxxb201904022 [46] 乔小娟, 李国敏, 周金龙, 等.2010.采煤对地下水资源与环境的影响分析:以山西太原西山煤矿开采区为例.水资源保护, 26(1):49-52. http://d.old.wanfangdata.com.cn/Periodical/szybh201001013 [47] 苏凯峰.2014.河南永城煤炭矿区环境地质问题及防治对策.中国地质灾害与防治学报, 25(1):77-81. http://d.old.wanfangdata.com.cn/Periodical/zgdzzhyfzxb201401014 [48] 王珺瑜, 王家乐, 靳孟贵.2017.济南泉域岩溶水水化学特征及其成因.地球科学, 42(5):821-831. doi: 10.3799/dqkx.2017.070 [49] 武亚遵, 潘春芳, 林云, 等.2018.典型华北型煤矿区主要充水含水层水文地球化学特征及控制因素.地质科技情报, 37(5):191-199. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201805026 [50] 杨森楠, 杨巍然.1985.中国区域大地构造学.北京:地质出版社. [51] 於昊天, 马腾, 邓娅敏, 等.2017.江汉平原东部地区浅层地下水水化学特征.地球科学, 42(5):685-692. http://www.earth-science.net/cn/search [52] 张金行.2016.黑色页岩氧化-酸蚀作用实验硏究(博士学位论文).成都:西南交通大学. [53] 赵自建.2012.河南永城地表水资源质量分析.黄河水利职业技术学院学报, 24(4):8-10. http://d.old.wanfangdata.com.cn/Periodical/hhslzyjsxyxb201204004 [54] 周志芳, 朱海生.2004.城市地质灾害中的地下水环境效应.地球科学进展, 19(3):467-471. http://d.old.wanfangdata.com.cn/Periodical/dqkxjz200403019