• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    河南省永城市浅层地下水化学特征及形成机制

    王攀 靳孟贵 路东臣

    王攀, 靳孟贵, 路东臣, 2020. 河南省永城市浅层地下水化学特征及形成机制. 地球科学, 45(6): 2232-2244. doi: 10.3799/dqkx.2019.280
    引用本文: 王攀, 靳孟贵, 路东臣, 2020. 河南省永城市浅层地下水化学特征及形成机制. 地球科学, 45(6): 2232-2244. doi: 10.3799/dqkx.2019.280
    Wang Pan, Jin Menggui, Lu Dongchen, 2020. Hydrogeochemistry Characteristics and Formation Mechanismof Shallow Groundwater in Yongcheng City, Henan Province. Earth Science, 45(6): 2232-2244. doi: 10.3799/dqkx.2019.280
    Citation: Wang Pan, Jin Menggui, Lu Dongchen, 2020. Hydrogeochemistry Characteristics and Formation Mechanismof Shallow Groundwater in Yongcheng City, Henan Province. Earth Science, 45(6): 2232-2244. doi: 10.3799/dqkx.2019.280

    河南省永城市浅层地下水化学特征及形成机制

    doi: 10.3799/dqkx.2019.280
    基金项目: 

    河南省国土资源厅2016年度基础性地质环境调查项目 No.2015-2077-8

    详细信息
      作者简介:

      王攀(1984-), 博士研究生, 主要从事水工环地质研究工作.ORCID:0000-0002-6487-7616.E-mail:wangpan2019@cug.edu.cn

      通讯作者:

      靳孟贵, E-mail:mgjin@cug.edu.cn

    • 中图分类号: P641.3

    Hydrogeochemistry Characteristics and Formation Mechanismof Shallow Groundwater in Yongcheng City, Henan Province

    • 摘要: 地下水是河南省永城市重要的供水水源,浅层地下水水质污染严重制约了该市经济发展和居民生活质量的提高.在实地调查采样分析的基础上,运用水化学图解法、数理统计法、地球化学模拟法等方法综合分析了永城市浅层地下水的水化学特征和形成机制,探讨了该市浅层地下水污染来源和主要影响因素.结果表明:随含水介质和人类活动影响强度的变化,浅层地下水中K+、Ca2+、NO3-、Cl-、SO42-的浓度和COD(chemical oxygen demand)随深度增加而减少,而Na+、F-、Mg2+、HCO3-的浓度和TDS(total dissolved solids)随深度增加而上升.在煤矿区及煤化工区浅层地下水中SO42-浓度大于250 mg/L,远远高于其他区域的SO42-浓度,而在农业区浅层地下水中NO3-浓度大于30 mg/L,远远高于其他区域的NO3-浓度.综合分析表明:煤矿及其化工业废水和生活污水排放、过量使用化肥农药是永城市浅层地下水污染的主要因素.

       

    • 图  1  研究区浅层地下水水文地质图、地下水流向及采样点位置图

      Fig.  1.  Contours of water table and sample locations and hydrogeological profile of study area

      图  2  浅层地下水三线图及水化学类型分区图

      Fig.  2.  Piper diagram and hydrochemical type of shallow groundwater

      图  3  浅层地下水Gibbs图

      Fig.  3.  Gibbs diagrams of shallow groundwater

      图  4  Na+与Cl-相关性及岩盐饱和指数(SIh)图

      Fig.  4.  Scatter diagrams of Na+ vs Cl- and (Na+ + Cl-) vs SIh

      图  5  浅层地下水氯碱指数图

      Fig.  5.  Histograms of chloride alkalinity index

      图  6  [Ca2++Mg2+]/[HCO3-]与[SO42-]/[HCO3-]比值关系图

      Fig.  6.  Scatter diagram of [Ca2++Mg2+]/[HCO3-] vs.[SO42-]/[HCO3-]

      图  7  Ca2+-SO42-与HCO3-、Mg2+与HCO3-相关关系

      Fig.  7.  Scatter diagrams of Ca2+-SO42- vs. HCO3- and Mg2+ vs. HCO3-

      图  8  萤石饱和指数与方解石、白云石饱和指数关系图

      Fig.  8.  Scatter diagram of SIc vs SIf and SId vs SIf

      表  1  浅层地下水水化学组分

      Table  1.   Statistical summary of hydrochemical parameters of shallow groundwater samples

      pH K+ Na+ Ca2+ Mg2+ Cl- SO42- HCO3- F- NO3- TDS COD 总硬度
      mg/L
      浅井水 极小值 7.2 0.28 8.55 25.25 10.69 3.54 24.02 64.18 0.3 0.02 192.24 0.21 138.5
      极大值 8.3 49.94 283.6 206.81 105.58 207.74 453.4 655.96 2.6 89.25 1177.9 3.67 893.5
      均值 7.538 4.132 77.68 88.628 54.634 54.38 111.955 466.497 1.093 25.585 680.107 0.764 445.92
      标准差 0.259 10.011 60.365 44.153 22.034 48.957 90.082 162.078 0.594 32.023 237.28 0.862 148.254
      变异系数 0.034 2.423 0.777 0.498 0.403 0.900 0.805 0.347 0.543 1.252 0.349 1.128 0.332
      深井水 极小值 7.3 0.43 51.83 32.06 32.93 15.95 47.07 386.87 0.7 0.1 472.57 0.07 277
      极大值 8.15 4.92 262.04 108.42 89.67 135.77 271.85 769.46 2.48 103.5 1235.26 0.48 577.86
      均值 7.555 1.348 132.364 65.591 55.452 50.799 109.268 576.09 1.508 19.399 739.428 0.193 405.386
      标准差 0.278 1.285 73.841 24.036 15.485 36.338 67.94 120.09 0.684 30.798 227.958 0.123 93.598
      变异系数 0.037 0.953 0.558 0.366 0.279 0.715 0.622 0.208 0.454 1.588 0.308 0.637 0.231
      注:1.浅井水样共25个, 深井水样共10个;2.变异系数无量纲.
      下载: 导出CSV

      表  2  浅层地下水离子间Pearson相关系数

      Table  2.   Pearson correlation coefficient matrix of shallow groundwater samples

      K+ Na+ Ca2+ Mg2+ Cl- SO42- HCO3- NO3- F- 总硬度 COD TDS pH H2SiO3


      K+ 1 0.764** -0.32 0.044 0.140 0.203 0.409* -0.086 -0.175 -0.211 0.071 0.417* 0.693** 0.495*
      Na+ 1 -0.240 0.369 0.375 0.365 0.570** 0.212 -0.038 0.048 0.058 0.709** 0.621** 0.465**
      Ca2+ 1 0.081 0.530** 0.489* 0.023 0.043 -0.437* 0.793** -0.215 0.431* -0.602** -0.141
      Mg2+ 1 0.614** 0.493* 0.361 0.107 0.397* 0.672** 0.118 0.660** 0.134 -0.121
      Cl- 1 0.652** 0.215 0.312 -0.102 0.769** 0.121 0.801** -0.041 -0.004
      SO42- 1 0.165 -0.133 0.042 0.664** -0.111 0.752** 0.163 -0.093
      HCO3- 1 0.106 -0.076 0.238 -0.011 0.552** 0.210 0.286
      NO3- 1 -0.106 0.097 0.376 0.210 -0.004 0.005
      F- 1 -0.082 -0.177 -0.131 -0.058 -0.326
      总硬度 1 -0.087 0.724** -0.365 -0.179
      COD 1 -0.002 -0.013 -0.010
      TDS 1 0.186 0.229
      PH 1 0.311
      H2SiO3 1


      K+ 1 0.660 -0.019 0.822** 0.797** 0.842** 0.649* -0.210 -0.142 0.525 -0.074 0.797** -0.135 0.453
      Na+ 1 -0.511 0.800** 0.669* 0.882** 0.911** -0.116 0.339 0.042 0.595 0.924** -0.179 -0.067
      Ca2+ 1 -0.295 0.215 -0.150 0.478 0.218 0.867** 0.611 -0.316 -0.186 -0.326 0.425
      Mg2+ 1 0.661* 0.880** 0.852** -0.078 0.174 0.459 0.276 0.885** -0.273 0.326
      Cl- 1 0.903** 0.516 -0.024 -0.193 0.481 0.252 0.853** -0.253 0.402
      SO42- 1 0.798** -0.114 0.097 0.399 0.389 0.974** -0.293 0.293
      HCO3- 1 -0.255 0.206 0.204 0.517 0.857** -0.356 0.151
      NO3- 1 -0.057 0.034 0.154 0.008 -0.150 -0.019
      F- 1 -0.641* 0.257 0.073 0.394 -0.567
      总硬度 1 -0.084 0.369 -0.542 0.733*
      COD 1 0.492 -0.384 0.096
      TDS 1 -0.355 0.286
      pH 1 -0.419
      H2SiO3 1
      注:*0.05水平上(双侧)显著相关;**0.01水平上(双侧)显著相关;单位:mg/L.
      下载: 导出CSV

      表  3  浅井水旋转成分载荷矩阵

      Table  3.   Matrix of rotated factor loadings of groundwater in shallow wells

      成分
      F1 F2 F3 F4
      K+ -0.004 0.912 -0.023 -0.050
      Na+ -0.299 0.882 -0.108 0.148
      Ca2+ 0.674 -0.381 -0.571 -0.165
      Mg2+ 0.734 0.106 0.499 0.179
      Cl- 0.865 0.114 -0.062 0.242
      HCO3- 0.336 0.557 -0.045 0.078
      SO42- 0.806 0.173 -0.086 -0.252
      F- -0.008 -0.121 0.928 -0.136
      NO3- 0.128 0.017 -0.066 0.820
      H2SiO3 -0.139 0.683 -0.390 -0.023
      总硬度 0.950 -0.218 -0.119 -0.013
      TDS 0.864 0.476 -0.069 0.081
      PH -0.141 0.749 0.501 -0.053
      COD -0.175 0.031 -0.001 0.810
      贡献率(%) 30.73 24.55 13.49 68.77
      累积贡献率(%) 30.73 55.28 11.21 79.98
      下载: 导出CSV

      表  4  深井水旋转成分载荷矩阵

      Table  4.   Matrix of rotated factor loadings of groundwater in deep wells

      成分
      F1 F2 F3
      K+ 0.853 0.312 -0.350
      Na+ 0.930 -0.277 0.166
      Ca2+ -0.309 0.891 0.038
      Mg2+ 0.931 0.051 -0.010
      Cl- 0.797 0.365 -0.010
      HCO3- 0.902 -0.166 0.147
      SO42- 0.970 0.099 0.036
      F- 0.159 -0.901 -0.006
      NO3- -0.198 0.117 0.596
      H2SiO3 0.294 0.731 0.077
      总硬度 0.345 0.855 0.022
      TDS 0.966 0.072 0.184
      PH -0.259 -0.486 -0.625
      COD 0.402 -0.265 0.773
      贡献率(%) 45.53 25.31 11.13
      累积贡献率(%) 45.53 70.84 81.97
      下载: 导出CSV
    • [1] An L.S., Zhao Q.S., Ye S.Y., et al.2012.Hydrochemical Characteristics and Formation Mechanism of Shallow Groundwater in the Yellow River Delta.Environmental Science, 33(2):370-378(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/hjkx201202006
      [2] Batabyal A.K..2018.Hydrogeochemistry and Quality of Groundwater in a Part of Damodar Valley, Eastern India:An Integrated Geochemical and Statistical Approach.Stochastic Environmental Research and Risk Assessment, 32(8):2351-2368. doi: 10.1007/s00477-018-1552-y
      [3] Barzegar R., Moghaddam A.A., Tziritis E., et al.2017.Identification of Hydrogeochemical Processes and Pollution Sources of Groundwater Resources in the Marand Plain, Northwest of Iran.Environmental Earth Science, 76(7):297. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f08de40c67b6d032cc78da7b1281e7a5
      [4] Chen T..2019.Analysis of Chemical Characteristics and Water Quality of Shallow Groundwater in Yongcheng City.Environmental Science Survey, 38(1):79-82(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ynhjkx201901017
      [5] Cheng D.H., Chen H.H., He J.T., et al.2007.A Study of Indicators of Anthropogenic Influence and Water-Rock Interaction in Groundwater System in the Urban Region of Beijing.Hydrogeology & Engineering Geology, 34(5):37-42(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=swdzgcdz200705010
      [6] Chung S.Y., Venkatramanan S., Kim T.H., et al.2015.Infl-uence of Hydrogeochemical Processes and Assessment of Suitability for Groundwater Uses in Busan City, Korea.Environ. Dev. Sustain., 17:423-441. https://doi.org/10.1007/s10668-0149552-7 http://www.researchgate.net/profile/Senapathi_Venkatramanan/publication/263057721_Influence_of_hydrogeochemical_processes_and_assessment_of_suitability_for_groundwater_uses_in_Busan_City_Korea/links/5412940b0cf2bb7347daeb5f
      [7] Dar M.A., Sankar K., Dar I.A..2011.Fluorine Contamination in Groundwater:A Major Challenge.Environmental Monitoring & Assessment, 173(1-4):955-968. doi: 10.1007/s10661-010-1437-0
      [8] Feng H.B., Dong S.G., Zhang T., et al.2019.Evolution Mechanism of a Groundwater System in the Opencast Coalmine Area in the Typical Prairie.Hydrogeology & Engineering Geology, 46(1):163-172(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/swdzgcdz201901022
      [9] Gibbs R.J..1970.Mechanisms Controlling World Water Chemistry.Science, 170(3962):1088-1090. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0232095384/
      [10] Hu Y., Wang X., Dong Z., et al.2015.Groundwater Quality at the Huaibei Coalfield, China.Analytical Letters, 48(10):1654-1669. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/00032719.2014.991961
      [11] Jacks G., Bhattacharya P., Chaudhary V., et al.2005.Controls on the Genesis of Some High-Fluoride Groundwater in India.Applied Geochemistry, 20(2):221-228. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a02a5abaddf335202c7f46e52b0be351
      [12] Li P., Qian H., Wu J., et al.2013.Major Ion Chemistry of Shallow Groundwater in the Dongsheng Coalfield, Ordos Basin, China.Mine Water and the Environment, 32(3):195-206. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a95abf397b1f49895659b3f199aa7b16
      [13] Li Q.M., Zhai L.J., Fu Y.J., et al.2012.A Study on Coal Mining Aquifer Destruction Mode in North China Typed Coalfields.Coal Geology of China, 24(7):38-43(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgmtdz201207009
      [14] Li S.S..2011.Studies of Evaluation on Heavy Mentals Contamination in Soil of Yongcheng Mining Areas.Henan Science, 29(4):484-488(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-HNKX201104025.htm
      [15] Liu Y.X., Chen X.E., Zhang S.L..2002.The Mechanics of Water Inflow from Coal Floor Fissure in Yongcheng Mining Area.Coal Geology & Exploration, (3):45-46(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=mtdzykt200203014
      [16] Ma L., Qian J.Z., Zhao, W.D..2012.GIS-based Approaches for Spatially Dividing Groundwater Chemical Types.Journal of China Coal Society, 37(3):490-494(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/mtxb201203025
      [17] Nayak B., Roy M.M., Das B., et al.2009.Health Effects of Groundwater Fluoride Contamination.Clinical Toxicology, 47(4):292-295. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/15563650802660349
      [18] Nielsen F.H..2009.Micronutrients in Parenteral Nutrition:Boron, Silicon, and Fluoride.Gastroenterology, 137(5):55-60. http://www.ncbi.nlm.nih.gov/pubmed/19874950
      [19] Pan D., Guo Q.L., Kong F.B..2019.Spatial Correlation Pattern Analysis of Overuse Fertilization about Major Grain Crops in China from 2002 to 2015.Journal of China Agricultural University.24(4):187-201(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnydxxb201904022
      [20] Piper A.M..1944.A Graphic Procedure in the Geochemical Interpretation of Water Analysis.Trans. Amer. Geophys.Union, 25(1):27-39. http://www.researchgate.net/publication/244957129_A_Graphic_Procedure_in_the_Geochemical_Interpretation_of_Water-Analyses
      [21] Qiao X.J., Li G.M., Zhou J.L., et al.2010.Analysis of Influence of Coal Exploitation on Water Resources and Environment:A Case Study of Coal Exploitation in Xishan of Taiyuan City.Water Resources Protection, 26(1):49-52(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SZYB201001013.htm
      [22] Qin T., Yang P., Groves C., et al.2018.Natural and Anthropogenic Factors Affecting the Hydrogeochemistry of the Jialing River and Yangtze River in the Chongqing Main Urban Area, SW China. Applied Geochemistry.98:448-458. http://www.onacademic.com/detail/journal_1000040875690310_7398.html
      [23] Rafique T., Naseem S., Usmani T.H., et al.2009.Geochemical Factors Controlling the Occurrence of High Fluoride Groundwater in the Nagar Parkar Area, Sindh, Pakistan.Journal of Hazardous Materials, 171(1-3):424-430. https://www.sciencedirect.com/science/article/pii/S0304389409009303
      [24] Rashid A., Guan D.X., Farooqi A., et al.2018.Fluoride Prevalence in Groundwater around a Fluorite Mining Area in the Flood Plain of the River Swat, Pakistan.Science of the Total Environment, 635:203-215. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5e4569724574853029257462bb2fee5a
      [25] Schoeller H..1967.Qualitative Evaluation of Ground Water Resources.In:Schoeller H., ed., Methods and Techniques of Groundwater Investigation and Development.Water Resource Series No.33, UNESCO, Paris, 44-52. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_96da504cdfd3656a28b2c4be0308aafd
      [26] Singh A.K., Mahato M.K., Neogi B., et al.2010.Quality Assessment of Mine Water in the Raniganj Coalfield Area, India.Mine Water and the Environment, 29(4):248-262. https://www.academia.edu/4181949/Quality_Assessment_of_Mine_Water_in_the_Raniganj_Coalfield_Area_India
      [27] Su K.F..2014.Environmental Geological Problems in the Coal Mining Area and Prevention Measures of Yongcheng County, Henan Province.The Chinese Journal of Geological Hazard and Control, 25(1):77-81(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zgdzzhyfzxb201401014
      [28] Wang J.Y., Wang J.L., Jin M.G..2017.Hydrochemical Characteristics and Formation Caused of Karst Water in Jinan Spring Catchment.Earth Science, 42(5):821-831(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201705018
      [29] World Health Organization (WHO).2011.Guidelines for Drinking Water Quality.World Health Organization, Geneva. http://d.old.wanfangdata.com.cn/Periodical/jshjkj201804008
      [30] Wu Y.Z., Pan C.F., Lin Y., et al.2018.Hydrogeochemical Characteristics and Controlling Factors of Main Water Filled Aquifers in the Typical North China Coalfield.Geological Science and Technology Information, 37(5):191-199(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201805026
      [31] Yang S.N., Yang W.R..1985.China Regional Geotectonics.Geological Publishing House, Beijing(in Chinese).
      [32] Yu H.T., Ma T., Deng Y.M., et al.2017.Hydrochemical Characteristics of Shallow Groundwater in Eastern Jianghan Plain.Earth Science, 42(5):685-692(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201705004
      [33] Zhang J.H..2016.Experimental Study of Oxidation-Acid Erosion Reaction in Black Shale (Dissertation).Southwest Jiaotong University, Chengdu(in Chinese with English abstract).
      [34] Zhao Z.J..2012.Analysis on Yongcheng City Ground Surface Water Resource Quality.Journal of Yellow River Conservancy Technical Institute, 24(4):8-10(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hhslzyjsxyxb201204004
      [35] Zheng C., Liu J., Cao G., et al.2010.Can China Cope with Its Water Crisis? Perspectives from the North China Plain.Ground Water, 48(3):350-354(in Chinese with English abstract). https://pubmed.ncbi.nlm.nih.gov/20331747/
      [36] Zhou Z.F., Zhu H.S..2004.Analysis on Groundwater Environmental Effect in Urban Geologic Hazard.Advance in Earth Sciences, 19(3):467-471(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkxjz200403019
      [37] 安乐生, 赵全升, 叶思源, 等.2012.黄河三角洲浅层地下水化学特征及形成作用.环境科学, 33(2):370-378. http://d.old.wanfangdata.com.cn/Periodical/hjkx201202006
      [38] 陈涛.2019.永城市浅层地下水水化学特征和水质状况分析.环境科学导刊, 38(1):79-82. http://d.old.wanfangdata.com.cn/Periodical/ynhjkx201901017
      [39] 程东会, 陈鸿汉, 何江涛, 等.2007.北京城近郊区地下水人为影响和水-岩作用指示性指标研究.水文地质工程地质, 34(5):37-42. http://d.old.wanfangdata.com.cn/Periodical/swdzgcdz200705010
      [40] 冯海波, 董少刚, 张涛, 等.2019.典型草原露天煤矿区地下水环境演化机理研究.水文地质工程地质, 46(1):163-172. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=swdzgcdz201901022
      [41] 李七明, 翟立娟, 傅耀军, 等.2012.华北型煤田煤层开采对含水层的破坏模式研究.中国煤炭地质, 24(7):38-43. http://d.old.wanfangdata.com.cn/Periodical/zgmtdz201207009
      [42] 李绍生.2011.永城矿区土壤重金属污染评价研究.河南科学, 29(4):484-488. http://d.old.wanfangdata.com.cn/Periodical/hnkx201104026
      [43] 刘蕴祥, 陈祥恩, 张胜利.2002.永城矿区煤层底板裂隙灰岩突水机理.煤田地质与勘探, (3):45-46. http://d.old.wanfangdata.com.cn/Periodical/mtdzykt200203014
      [44] 马雷, 钱家忠, 赵卫东.2012.基于GIS的地下水化学类型空间分区方法.煤炭学报, 37(3):490-494. http://d.old.wanfangdata.com.cn/Periodical/mtxb201203025
      [45] 潘丹, 郭巧苓, 孔凡斌.2019.2002-2015年中国主要粮食作物过量施肥程度的空间关联格局分析.中国农业大学学报, 24(4):187-201. http://d.old.wanfangdata.com.cn/Periodical/zgnydxxb201904022
      [46] 乔小娟, 李国敏, 周金龙, 等.2010.采煤对地下水资源与环境的影响分析:以山西太原西山煤矿开采区为例.水资源保护, 26(1):49-52. http://d.old.wanfangdata.com.cn/Periodical/szybh201001013
      [47] 苏凯峰.2014.河南永城煤炭矿区环境地质问题及防治对策.中国地质灾害与防治学报, 25(1):77-81. http://d.old.wanfangdata.com.cn/Periodical/zgdzzhyfzxb201401014
      [48] 王珺瑜, 王家乐, 靳孟贵.2017.济南泉域岩溶水水化学特征及其成因.地球科学, 42(5):821-831. doi: 10.3799/dqkx.2017.070
      [49] 武亚遵, 潘春芳, 林云, 等.2018.典型华北型煤矿区主要充水含水层水文地球化学特征及控制因素.地质科技情报, 37(5):191-199. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201805026
      [50] 杨森楠, 杨巍然.1985.中国区域大地构造学.北京:地质出版社.
      [51] 於昊天, 马腾, 邓娅敏, 等.2017.江汉平原东部地区浅层地下水水化学特征.地球科学, 42(5):685-692. http://www.earth-science.net/cn/search
      [52] 张金行.2016.黑色页岩氧化-酸蚀作用实验硏究(博士学位论文).成都:西南交通大学.
      [53] 赵自建.2012.河南永城地表水资源质量分析.黄河水利职业技术学院学报, 24(4):8-10. http://d.old.wanfangdata.com.cn/Periodical/hhslzyjsxyxb201204004
      [54] 周志芳, 朱海生.2004.城市地质灾害中的地下水环境效应.地球科学进展, 19(3):467-471. http://d.old.wanfangdata.com.cn/Periodical/dqkxjz200403019
    • 加载中
    图(8) / 表(4)
    计量
    • 文章访问数:  1279
    • HTML全文浏览量:  116
    • PDF下载量:  93
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-06-18
    • 刊出日期:  2020-06-15

    目录

      /

      返回文章
      返回