• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    神农架大九湖不同生境表土磷脂脂肪酸揭示的微生物群落结构差异

    赵美玲 张一鸣 张志麒 黄咸雨

    赵美玲, 张一鸣, 张志麒, 黄咸雨, 2020. 神农架大九湖不同生境表土磷脂脂肪酸揭示的微生物群落结构差异. 地球科学, 45(6): 1877-1886. doi: 10.3799/dqkx.2019.272
    引用本文: 赵美玲, 张一鸣, 张志麒, 黄咸雨, 2020. 神农架大九湖不同生境表土磷脂脂肪酸揭示的微生物群落结构差异. 地球科学, 45(6): 1877-1886. doi: 10.3799/dqkx.2019.272
    Zhao Meiling, Zhang Yiming, Zhang Zhiqi, Huang Xianyu, 2020. Comparison of Microbial Community in Topsoil among Different Habitats in Dajiuhu, Hubei Province: Evidence from Phospholipid Fatty Acids. Earth Science, 45(6): 1877-1886. doi: 10.3799/dqkx.2019.272
    Citation: Zhao Meiling, Zhang Yiming, Zhang Zhiqi, Huang Xianyu, 2020. Comparison of Microbial Community in Topsoil among Different Habitats in Dajiuhu, Hubei Province: Evidence from Phospholipid Fatty Acids. Earth Science, 45(6): 1877-1886. doi: 10.3799/dqkx.2019.272

    神农架大九湖不同生境表土磷脂脂肪酸揭示的微生物群落结构差异

    doi: 10.3799/dqkx.2019.272
    基金项目: 

    国家自然科学基金项目 41877317

    中央高校基本科研业务费专项资金项目 CUGCJ1703

    中央高校基本科研业务费专项资金项目 CUGQY1902

    生物地质与环境地质国家重点实验室自主课题 GBL11612

    详细信息
      作者简介:

      赵美玲(1994-), 硕士研究生, 主要从事土壤微生物脂类研究

      通讯作者:

      黄咸雨

    • 中图分类号: Q93

    Comparison of Microbial Community in Topsoil among Different Habitats in Dajiuhu, Hubei Province: Evidence from Phospholipid Fatty Acids

    • 摘要: 磷脂脂肪酸(phospholipid fatty acid,PLFAs)是活体微生物细胞膜的重要组成部分,微生物通过改变细胞膜中PLFA组成,快速响应环境变化.目前,表土PLFAs研究主要集中于季节和植被群落变化对微生物群落结构影响,对于不同生境下表土PLFAs揭示的微生物群落结构的差异性尚不明确.基于此,对神农架大九湖7种不同生境表土进行PLFAs研究.结果表明,表土样品PLFAs集中分布于C14到C19;除湿生泥炭沼泽和湿生半退化沼泽生境外,其他生境以n16:0为主峰.不同生境的PLFAs含量差异较大,沼泽生境TPLFAs含量是草甸及阔叶林生境下的3~8倍.PLFAs组成还揭示出生境间主要受到pH和含水率的影响,微生物群落结构存在差异.不同生境下表层土壤PLFAs揭示的微生物丰度和群落结构具有一定的相似性及差异性.运用PLFAs对微生物量及微生物群落结构的划分将有助于更好的了解区域生态系统中微生物群落结构的变化,为研究微生物参与碳循环及古生态研究奠定基础.

       

    • 图  1  大九湖代表性生境表土PLFAs含量分布

      a.湿生泥炭沼泽;b.湿生草本沼泽; c.湿生-中生草甸;d.落叶阔叶林

      Fig.  1.  PLFAs concentration in topsoils collected from typical habitats in Dajiuhu basin

      图  2  总有机碳含量与总PLFAs含量关系

      Fig.  2.  The relationship between total organic carbon content and total PLFAs concentration

      图  3  基于PLFAs的微生物群落结构分析

      A.湿生泥炭沼泽;B.湿生草本沼泽;C.湿生半退化沼泽;D.湿生-中生草甸;E.中生-旱生草甸;F.旱生草甸;G.落叶阔叶林

      Fig.  3.  Analysis of microbial community structure based on PLFAs

      图  4  RDA(冗余分析)基于PLFAs的微生物群落结构与环境因子关系

      Fig.  4.  Redundancy analysis between microbial community structure and environmental factors based on PLFAs

      图  5  来源于革兰氏阴性菌的PLFAs含量与土壤含水率关系

      Fig.  5.  The relationship between the concentration of gram-negative bacteria derived PLFAs and soil moisture content

      表  1  不同生境下表土的物理化学性质

      Table  1.   Physical and chemical properties of topsoil collected from different habitats

      生境类型 SWC pH NH3-N NO3--N C/N TOC T
      (%) (mg/L) (mg/L) (%) (℃)
      湿生泥炭沼泽(n=4) 94.0 4.1±0.1 2.9±0.7 0.2±0.1 15.5±2.6 19.8±2.0 17.5±3.7
      湿生草本沼泽(n =5) 84.0±0.1 4.1±0.3 2.6±0.9 0.1±0.1 18.6±2.0 19.7±3.0 16.6±2.9
      湿生半退化沼泽(n =3) 76.0±0.1 3.9±0.2 3.4±1.3 0.2±0.1 16.8±0.6 18.8±5.4 17.7±0.5
      湿生-中生草甸(n =3) 51.0±0.1 4.6±0.1 2.5±0.9 0.2±0.2 18.8±5.0 5.7±2.7 18.7±1.7
      中生-旱生草甸(n =2) 34.0±0.1 4.7±0.1 3.0±0.3 1.0±0.6 15.4±4.4 6.9±0.8 19.5±0.6
      旱生草甸(n =2) 36.0 4.6±0.1 3.4±0.2 1.0±0.4 16.6±6.2 5.8±1.1 20.0
      落叶阔叶林(n =3) 48.0 4.8±1.0 3.5±1.6 0.1±0.1 25.2±6.9 9.1±0.7 18.0
      下载: 导出CSV
    • [1] Andersen, R., Grasset, L., Thormann, M.N., et al., 2010.Changes in Microbial Community Structure and Function Following Sphagnum Peatland Restoration.Soil Biology and Biochemistry, 42(2):291-301. https://doi.org/10.1016/j.soilbio.2009.11.006
      [2] Anderson, J.P.E., Domsch, K.H., 1973.Quantification of Bacterial and Fungal Contributions to Soil Respiration.Archives of Microbiology, 93:113-127. doi: 10.1007-BF00424942/
      [3] Borga, P., Nilsson, M., Tunlid, A., 1994.Bacterial Communities in Peat in Relation to Botanical Composition as Revealed by Phospholipid Fatty Acid Analysis.Soil Biology and Biochemistry, 26(7):841-848. https://doi.org/10.1016/0038-0717(94)90300-x
      [4] Börjesson, J., Menichetti, L., Thornton, B., et al., 2016.Seasonal Dynamics of the Soil Microbial Community:Assimilation of Old and Young Carbon Sources in a Long-Term Field Experiment as Revealed by Natural 13C Abundance.European Journal of Soil Science, 67:79-89. https://doi.org/10.1111/ejss.12309
      [5] Ding, X., Chen, S., Zhang, B., et al., 2019.Warming Increases Microbial Residue Contribution to Soil Organic Carbon in an Alpine Meadow.Soil Biology and Biochemistry, 15:13-19. https://doi.org/10.1016/j.soilbio.2019.04.004
      [6] Eberlein, C., Baumgarten, T., Starke, S., et al., 2018.Immediate Response Mechanisms of Gram-Negative Solvent-Tolerant Bacteria to Cope with Environmental Stress:Cis-Trans Isomerization of Unsaturated Fatty Acids and Outer Membrane Vesicle Secretion.Applied Microbiology and Biotechnology, 102:2583-2593. https://doi.org/10.1007/s00253-018-8832-9
      [7] Fanina, N., Kardola, P., Farrellc, M., et al., 2019.The Ratio of Gram-Positive to Gram-Negative Bacterial PLFA Markers as an Indicator of Carbon Availability in Organic Soils.Soil Biology and Biochemistry, 128:111-114. https://doi.org/10.1016/j.soilbio.2018.10.010
      [8] Findlay, R.H., King, G.M., Watling, L., 1989.Efficacy of Phospholipid Analysis Determining Microbial Biomass in Sediments.Applied and Environmental Microbiology, 55(11):2888-2893. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_203186
      [9] Frostegård, A., Tunlid, A., Bååth, E., 1991.Microbial Biomass Measured as Total Lipid Phosphate in Soils of Different Organic Content.Journal of Microbiological Methods, 14(3):151-163. doi: 10.1016-0167-7012(91)90018-L/
      [10] Hooper, D.U., Bignell, D.E., Brown, V.K., et al., 2000.Interactions between Aboveground and Belowground Biodiversity in Terrestrial Ecosystems.Bioscience, 50(12):1049-1061. doi: 10.1641/0006-3568(2000)050[1049:IBAABB]2.0.CO;2
      [11] Huang, X., Wang, C., Xue, J., et al., 2010.Occurrence of Diploptene in Moss Species from the Dajiuhu Peatland in Southern China.Organic Geochemistry, 41:321-324. https://doi.org/10.1016/j.orggeochem.2009.09.008
      [12] Huang, X.Y., Zhang, Z.Q., Wang, H.M., et al., 2017.Overview on Critical Zone Observatory at Dajiuhu Peatland, Shennongjia.Earth Science, 42(6):1026-1038(in Chinese with English abstract). https://doi.org/10.3799/dpkx.2017.081
      [13] Jaatinen, K., Tuittila, E.S., Laine, J., et al., 2005.Methane-Oxidizing Bacteria in a Finnish Raised Mire Complex:Effects of Site Fertility and Drainage.Microbial Ecology, 50(3):429-439. https://doi.org/10.1007/s00248-005-0219-7
      [14] Kourtev, P.S., Ehrenfeld, J.G., Häggblom, M.H., 2003.Experimental Analysis of the Effect of Exotic and Native Plant Species on the Structure and Function of Soil Microbial Communities.Soil Biology and Biochemistry, 35(7):895-905. https://doi.org/10.1016/S0038-0717(03)00120-2
      [15] Lauber, C.L., Strickland, M.S., Bradford, M.A., et al., 2008.The Influence of Soil Properties on the Structure of Bacterial and Fungal Communities across Land-Use Types.Soil Biology and Biochemistry, 40(9):2407-2415. https://doi.org/10.1016/j.soilbio.2008.05.021
      [16] Li, J.X., Li, J., Dang, H.S., et al., 2007.Vegetation and Conservation Strategy of Dajiuhu Wetland Park in Shennongjia Region.Journal of Wuhan Botanical Research, 25(6):605-611(in Chinese with English abstract). http://www.cabdirect.org/abstracts/20083053494.html
      [17] Li, X.Y., Sun, J., Wang, H.H., et al., 2017.Changes in the Soil Microbial Phospholipid Fatty Acid Profile with Depth in Three Soil Types of Paddy Fields in China.Geoderma, 290:69-74. https://doi.org/10.1016/j.geoderma.2016.11.006
      [18] Li, Y.Y., Ge, J.W., Peng, F.J., et al., 2017.Characteristics of Methane Flux and Their Effect Factor on Dajiuhu Peatland of Shennongjia.Earth Science, 42(5):832-842(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.071
      [19] Liang, C., Schimel, J.P., Jastrow, J.D., 2017.The Importance of Anabolism in Microbial Control over Soil Carbon Storage.Nature Microbiology, 2:17105. https://doi.org/10.1038/nmicrobiol.2017.105
      [20] Lipson, D.A., Schmidt, S.K., Monson, R.K., 2000.Carbon Availability and Temperature Control the Post-Snowmelt Decline of Microbial Biomass in an Alpine Soil.Soil Biology and Biochemistry, 32:441-448. https://doi.org/10.1016/s0038-0717(99)00068-1
      [21] Liu, H.Y, Gu, Y.S., Lun, Z.J., et al., 2018.Phytolith-Inferred Transfer Function for Paleohydrological Reconstruction of Dajiuhu Peatland, Central China.The Holocene, 28:1623-1630. https://doi.org/10.1177/0959683618782590
      [22] Luo, T., Lun, Z.J., Gu, Y.S., et al., 2015.Plant Community Survey and Ecological Protection of Dajiuhu Wetlands in Shengnongjia Area.Wetland Science, 13(2):153-160(in Chinese with English abstract).
      [23] Miltner, A., Bombach, P., Schmidt-Brücken, B., et al., 2012.SOM Genesis:Microbial Biomass as a Significant Source.Biogeochemistry, 111(1-3):41-55. https://doi.org/10.1007/s10533-011-9658-z
      [24] Miura, T., Makotoa, K., Niwab, S., et al., 2017.Comparison of Fatty Acid Methyl Ester Methods for Characterization of Microbial Communities in Forest and Arable Soil:Phospholipid Fraction (PLFA) versus Total Ester Linked Fatty Acids (EL-FAME).Pedobiologia Journal of Soil Ecology, 63:14-18. https://doi.org/10.1016/j.pedobi.2017.04.002
      [25] Moore-Kucera, J., Dick, R.P., 2008.PLFA Profiling of Microbial Community Structure and Seasonal Shifts in Soils of a Douglas-Fir Chronosequence.Microbial Ecology, 55(3):500-511. https://doi.org/10.1007/s00248-007-9295-1
      [26] Mutabaruka, R., Hairiah, K., Cadisch, G., 2007.Microbial Degradation of Hydrolysable and Condensed Tannin Polyphenol-Protein Complexes in Soils from Different Land-Use Histories.Soil Biology and Biochemistry, 39:1479-1492. https://doi.org/10.1016/j.soilbio.2006.12.036
      [27] Olsson, S., Alström, S., 2000.Characterisation of Bacteria in Soils under Barley Monoculture and Crop Rotation.Soil Biology and Biochemistry, 32(10):1443-1451. https://doi.org/10.1016/s0038-0717(00)00062-6
      [28] Qin, Y.M., Gong, J., Gu, Y.S., et al., 2018.Ecological Monitoring and Environmental Significance of Testate Amoebae in Subalpine Peatlands in West Hubei Province, China.Earth Science, 43(11):4036-4045(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.599
      [29] Rousk, J., Brookes, P.C., Bååth, E., 2010a.Investigating the Mechanisms for the Opposing pH Relationships of Fungal and Bacterial Growth in Soil.Soil Biology and Biochemistry, 42:926-934. https://doi.org/10.1016/j.soilbio.2010.02.009
      [30] Rousk, J., Brookes, P.C., Bååth, E., 2010b.The Microbial PLFA Composition as Affected by pH in an Arable Soil.Soil Biology and Biochemistry, 42:516-520. https://doi.org/10.1016/j.soilbio.2009.11.026
      [31] Sundh, I., Borgå, P., Nilsson, M., et al., 1995.Estimation of Cell Numbers of Methanotrophic Bacteria in Boreal Peatlands Based on Analysis of Specific Phospholipid Fatty Acids.FEMS Microbiology Ecology, 18:103-112. https://doi.org/10.1016/0168-6496(95)00046-d
      [32] Wagner, D., Eisenhauer, N., Cesarz, S., 2015.Plant Species Richness does not Attenuate Responses of Soil Microbial and Nematode Communities to a Flood Event.Soil Biology and Biochemistry, 89:135-149. https://doi.org/10.1016/j.soilbio.2015.07.001
      [33] Wickland, K.P., Striegl, R.G., Mast, M.A., et al., 2001.Carbon Gas Exchange at a Southern Rocky Mountain Wetland, 1996-1998.Global Biogeochemical Cycle, 15:321-335. https://doi.org/10.1029/2000GB001325
      [34] Wu, Y., Ma, B., Zhou, L., et al., 2009.Changes in the Soil Microbial Community Structure with Latitude in Eastern China, Based on Phospholipid Fatty Acid Analysis.Applied Soil Ecology, 43(1-2):234-240. https://doi.org/10.1016/j.apsoil.2009.08.002
      [35] Xie, S.C., Evershed, R.P., Huang, X.Y., et al., 2013.Concordant Monsoon-Driven Postglacial Hydrological Changes in Peat and Stalagmite Records and Their Impacts on Prehistoric Cultures in Central China.The Geological Society of America, 41(8):827-830. https://doi.org/10.1130/g34318.1
      [36] Yu, S.F., She, G.H., Ye, S.M., et al., 2018.Characteristics of Soil Microbial Biomass and Community Composition in Pinus Yunnanensis var.Tenuifolia Secondary Forests.Journal of Sustainable Forestry, 20:1-19. https://doi.org/10.1080/10549811.2018.1483250
      [37] Zelles, L., 1997.Phospholipid Fatty Acid Profiles in Selected Members of Soil Microbial Communities.Chemosphere, 35:275-294. https://doi.org/10.1016/s0045-6535(97)00155-0
      [38] Zelles, L., 1999.Fatty Acid Patterns of Phospholipids and Lipopolysaccharides in the Characterisation of Microbial Communities in Soil:A Review.Biology and Fertility of Soils, 29(2):111-129. http://www.bioone.org/servlet/linkout?suffix=i0277-5212-29-1-353-Zelles2&dbid=16&doi=10.1672%2F08-114.1&key=10.1007%2Fs003740050533
      [39] Zhang, G., Zheng, C.Y., Wang, Y., et al., 2015.Soil Organic Carbon and Microbial Community Structure Exhibit Different Responses to Three Land Use Types in the North China Plain.Acta Agriculture Scandinavica, 65(4):341-349. https://doi.org/10.1080/09064710.2015.1011223
      [40] Zhang, Y.Y., Zheng, N.G., Wang, J., et al., 2019.High Turnover Rate of Free Phospholipids in Soil Confirms the Classic Hypothesis of PLFA Methodology.Soil Biology and Biochemistry, 135:323-330. https://doi.org/10.1016/j.soilbio.2019.05.023
      [41] Zogg, P.G., Zak, D.R., Ringelberg, D.B., et al., 1997.Compositional and Functional Shifts in Microbial Communities Due to Soil Warming.Soil Science Society of America Journal, 61(2):475-481. https://doi.org/10.2136/sssaj1997.03615995006100020015x
      [42] 黄咸雨, 张志麒, 王红梅, 等, 2017.神农架大九湖泥炭湿地关键带监测进展.地球科学, 42(6):1026-1038. doi: 10.3799/dqkx.2017.081
      [43] 李静霞, 李佳, 党海山, 等, 2007.神农架大九湖湿地公园的植被现状与保护对策.武汉植物学研究, 25(6):605 -611. http://d.old.wanfangdata.com.cn/Periodical/whzwxyj200706016
      [44] 李艳元, 葛继稳, 彭凤娇, 等, 2017.神农架大九湖泥炭湿地CH4通量特征及影响因子.地球科学, 42(5):832-842. doi: 10.3799/dqkx.2017.071
      [45] 罗涛, 伦子健, 顾延生, 等, 2015.神农架大九湖湿地植物群落调查与生态保护研究.湿地科学, 13(2):153-160. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=shidkx201502003
      [46] 秦养民, 巩静, 顾延生, 等, 2018.鄂西亚高山泥炭地有壳变形虫生态监测及对水位的指示意义.地球科学, 43(11):4036-4045. doi: 10.3799/dqkx.2018.599
    • 加载中
    图(5) / 表(1)
    计量
    • 文章访问数:  591
    • HTML全文浏览量:  77
    • PDF下载量:  43
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-09-10
    • 刊出日期:  2020-06-15

    目录

      /

      返回文章
      返回