Regularities of Ore-Controlling Structures and Exploration Predictions of Buzhu Au (Sb) Deposit in Kangma County, South Tibet, China
-
摘要: 藏南金锑铅锌银多金属成矿带又称北喜马拉雅成矿带,是特提斯喜马拉雅成矿域的重要组成部分.康马地区虽处于EW向和SN向断裂交汇的有利成矿位置,但由于海拔高覆盖厚,本区构造控矿规律不明、缺乏有效的勘探方法和可借鉴的找矿范例,这致使找矿工作长期未获突破.近年来,布主金(锑)矿等一批矿床的发现彻底填补了本区的找矿空白.但由于缺乏对矿区断裂带内部组成及其控矿作用的深入认识,布主金(锑)矿的普查勘探工作受到严重制约.本文在详实地质调查基础上,对矿区NW-近EW向和近SN向断裂带内部结构进行了系统剖析,发现两组断裂带均由中部的断层核和外围的破碎带构成.在NW-近EW断裂带,其断层核控制着强揉皱含黄铁矿方解石石英脉型等矿体,而破碎带控制着平直陡倾含多金属硫化物石英脉型和富毒砂石英脉型矿体.在近SN向断裂带,断层核由劈理化带和角砾岩带组成,几乎不含矿.而破碎带中近顺层节理则控制着发育强褐铁矿化和黏土化的高品位矿体.结合区域构造演化,建立了布主矿区断裂带形成、发展及控矿的三阶段演化模型.并在此指导下,以地质事实为基础,结合1:1万土壤化探综合异常及围岩蚀变、矿化露头等找矿信息,圈定找矿靶区6处.并综合考虑多种因素对靶区进行优选,得到A、B、C级靶区各2个.通过对布主矿区断裂带结构、控矿规律、断裂带演化模型等方面的研究和结合化探综合异常的靶区圈定,以期为布主矿区及康马地区矿床成因研究和找矿勘探工作提供有益借鉴.
-
关键词:
- 布主金(锑)矿 /
- 构造控矿规律 /
- 找矿预测 /
- 藏南金锑多金属成矿带 /
- 矿床
Abstract: The Au-Sb-Pb-Zn-Ag Polymetallogenic Metallogenic belt in South Tibet, also known as the North Himalayan Metallogenic belt, is an important part of the Tethyan Himalayan Metallogenic Region. Although Kangma area is in an advantageous metallogenic location where the SN-trending faults cross the EW- trending faults, few breakthroughs have been made in exploration prediction for a long time due to the lack of clear ore-controlling regularities, feasible prospection methods, and effective prediction examples for reference, which caused by high altitude and thick coverage. In recent years, the discovery of a group of deposits such as Buzhu gold (antimony) deposit has filled the gap of exploration in this area. However, due to the lack of in-depth understanding of the internal architecture and ore-controlling styles of the fault zones, the exploration of Buzhu deposit is seriously restricted. Based on detailed geological survey, the internal architectures of NW- (and EW-) and SN- trending fault zones in this deposit have been systematically dissected here. It is identified that both sets of fault zones were composed of the fault core in the central part and the damage zone in the peripheral. In the NW- (and EW-) trending fault zones, the crumpled pyrite-bearing quartz veins were controlled by the fault core and the straight and steep quartz veins bearing multiple sulfide phases and quartz veins bearing abundant arsenopyrite filled in the joints of the damage zone. In the SN-trending fault zones, the fault core consisting of cleavage zone and breccia zone is barren. While, the bedding tension fractures in the damage zone were filled by high grade veins characterized by obvious limonite and clay alteration. Combined with regional tectonic evolution, a three-stage evolution model depicting the formation, development and ore-controlling of the major fault zones in Buzhu deposit is established in this paper. Under the guidance of this model, 6 prospecting targets were delineated according to the geological facts combined with the prospecting information such as synthetic anomalies of 1:10 000 soil geochemical exploration, wall rock alteration and ore outcrops. And each of the 2 targets was finally selected in the 3 levels of A, B and C, comprehensively considering various factors. Through the above studies on the internal architecture, ore-controlling regularities and evolution model of the fault zones, as well as the delineation of the targets combined with synthetic anomalies, the authors hope to provide useful reference for the ore genesis research and prospection in the Buzhu deposit and Kangma areas. -
图 1 研究区大地构造位置及区域地质简图
1.第四系;2.古近系;3.白垩系;4.侏罗系;5.三叠系;6.二叠系;7.石炭系;8.奥陶系;9.拉轨岗日岩群;10.中新世二云母二长花岗岩;11.中新世花岗闪长岩;12.辉绿玢岩脉;13.正断层;14.逆断层;15.左行断层;16.左行逆断层;17.水系;18.工作区位置;19.班公-怒江缝合带;20.印度河-雅鲁藏布江缝合带;21.主中央逆冲断裂;22.金沙江缝合带;23.高喜马拉雅构造带;24.特提斯喜马拉雅岩系;25.藏南拆离系;a据张刚阳(2011);b据郑有业等(2012)修编;c据1:25万江孜幅、洛扎幅地质图修编
Fig. 1. Tectonic map and regional geological map of study area
图 5 布主金(锑)矿区NW-近EW向断裂带控矿特征
a.Fs-3断裂带主断裂面特征;b.Fs-3主断裂面擦痕;c.主断裂面上盘断层核中矿化特征;d.次级断裂及其上盘断层核矿化特征;e.破碎带中陡倾含黄铁矿等硫化物石英脉;f.含多金属硫化物石英脉矿石特征;g.Fs-4断裂带中Au-Ⅳ矿体矿化特征;h.Au-Ⅰ矿体绿帘石化富毒砂石英脉型矿化;i.Au-Ⅷ矿体宏观特征;j.Au-Ⅷ绿帘石化富毒砂石英脉;k.Fs-4断裂带控矿规律平面-剖面示意
Fig. 5. Structural ore-controlling characters of NW-EW-trending fracture zone in Buzhu Au(Sb) deposit
表 1 布主金(锑)矿矿体特征对比
Table 1. Comparison of characteristics of ore bodies in Buzhu gold (antimony) deposit
性质 NW-EW向断裂带型矿体
(Au-Ⅱ、Au-Ⅲ、Au-Ⅳ)NW-EW向富毒砂石英脉型矿体
(Au-Ⅰ、Au-Ⅷ)SN向褐铁矿化蚀变带型矿体
(Au-Ⅵ、Au-Ⅶ、Au-Ⅸ)控矿构造 NW-近EW向断裂带 近NW-近EW向断裂带上盘张裂隙 近SN向断裂(带) 矿体类型 强揉皱含黄铁矿石英方解石脉褐铁矿化炭化蚀变带平直含硫化物石英方解石脉 绿帘石化黏土化富毒砂石英脉 褐铁矿细脉、含毒砂石英脉、含星点状黄铁矿石英脉、褐铁矿化黏土化石英脉 矿物组合 黄铁矿、方铅矿、毒砂、石英、方解石,少量闪锌矿、黄铜矿、磁黄铁矿 大量毒砂、石英,绿帘石,少量黄铁矿、黄铜矿、辉锑矿、可能含钠长石 黄铁矿、毒砂、石英、绢云母、黏土矿物(高岭石),少量方铅矿、方解石、可能含冰长石 矿化规模 矿体赋存于断裂带内,矿化较连续延伸长,品位较高 矿体品位高,宽度大,石英脉较连续,但矿化不连续 矿化蚀变强,矿化集中,品位高宽度大,但受后期错断 -
[1] Agosta, F., Alessandroni, M., Tondi, E., et al., 2009.Oblique Normal Faulting along the Northern Edge of the Majella Anticline, Central Italy:Inferences on Hydrocarbon Migration and Accumulation.Journal of Structural Geology, 31(7):674-690. https://doi.org/10.1016/j.jsg.2009.03.012 [2] Billi, A., 2010.Microtectonics of Low-P Low-T Carbonate Fault Rocks.Journal of Structural Geology, 32(9):1392-1402. https://doi.org/10.1016/j.jsg.2009.05.007 [3] Billi, A., Salvini, F., Storti, F., 2003.The Damage Zone-Fault Core Transition in Carbonate Rocks:Implications for Fault Growth, Structure and Permeability.Journal of Structural Geology, 25(11):1779-1794.https://doi.org/10.1016/s0191-8141(03)00037-3 doi: 10.1016-S0191-8141(03)00037-3/ [4] Blisniuk, P.M., Hacker, B.R., Glodny, J., et al., 2001.Normal Faulting in Central Tibet since at Least 13.5 Myr Ago.Nature, 412(6847):628-632. https://doi.org/10.1038/35088045 [5] Burg, J.P., Brunel, M., Gapais, D., et al., 1984.Deformation of Leucogranites of the Crystalline Main Central Sheet in Southern Tibet (China).Journal of Structural Geology, 6(5):535-542. https://doi.org/10.1016/0191-8141(84)90063-4 [6] Faulkner, D.R., Jackson, C.A.L., Lunn, R.J., et al., 2010.A Review of Recent Developments Concerning the Structure, Mechanics and Fluid Flow Properties of Fault Zones.Journal of Structural Geology, 32(11):1557-1575. https://doi.org/10.1016/j.jsg.2010.06.009 [7] Fu, J.G., Li, G.M., Wang, G.H., et al., 2018.Timing of E-W Extension Deformation in North Himalaya:Evidences from Ar-Ar Age in the Cuonadong Dome, South Tibet.Earth Science, 43(8):2638-2650(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201808008 [8] Guillot, S., LeFort, P., 1995.Geochemical Constraints on the Bimodal Origin of High Himalayan Leucogranites.Lithos, 35 (3-4):221-234. https://doi.org/10.1016/0024-4937(94)00052-4 [9] Harrison, T.M., Grove, M., Lovera, O.M., et al., 1998.A Model for the Origin of Himalayan Anatexis and Inverted Metamorphism.Journal of Geophysical Research:Solid Earth, 103(B11):27017-27032. https://doi.org/10.1029/98jb02468 [10] Hou, Z.Q., Pan, G.T., Wang, A.J., et al., 2006a.Metallogenesis in Tibetan Collisional Orogenic Belt:Ⅱ.Mineralization in Late Collisional Transformation Setting.Mineral Deposits, 25(5):521-543(in Chinese with English abstract). doi: 10.1016/S1872-2040(06)60004-2 [11] Hou, Z.Q., Qu, X.M., Yang, Z.S., et al., 2006b.Metallogenesis in Tibetan Collisional Orogenic Belt:Ⅲ.Mineralization in Post-Collisional Extension Setting.Mineral Deposits, 25(6):629-651(in Chinese with English abstract). [12] Hou, Z.Q., Yang, Z.S., Xu, W.Y., et al., 2006c.Metallogenesis in Tibetan Collisional Orogenic Belt:Ⅰ.Mineralization in Main Collisional Orogenic Setting.Mineral Deposits, 25(4):337-358(in Chinese with English abstract). https://www.researchgate.net/publication/284229523_Metallogenesis_in_Tibetan_collisional_orogenic_belt_I_Mineralization_in_main_collisional_orogenic_setting [13] Hou, Z.Q., Zhang, H.R., 2015.Geodynamics and Metallogeny of the Eastern Tethyan Metallogenic Domain.Ore Geology Reviews, 70:346-384. https://doi.org/10.1016/j.oregeorev.2014.10.026. [14] Li, G.M., Zhang, L.K., Jiao, Y.J., et al., 2017.First Discovery and Implications of Cuonadong Superlarge Be-W-Sn Polymetallic Deposit in Himalayan Metallogenic Belt, Southern Tibet.Mineral Deposits, 36(4):1003-1008(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201704014 [15] Li, J.G., Wang, Q.H., Chen, J.K., et al., 2002.Study of Metallogenic and Prospecting Models for the Shalagang Antimony Deposit, Gyangze, Tibet.Journal of Chengdu University of Technology, 29(5):533-538(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cdlgxyxb200205011 [16] Liang, W., Zheng, Y.C., 2019.Hydrothermal Sericite Ar-Ar Dating of Jisong Pb-Zn Deposit, Southern Tibet.Geology in China, 46(1):126-139(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201901009 [17] Mulch, A., Chamberlain, C.P., 2006.The Rise and Growth of Tibet.Nature, 439(7077):670-671. doi: 10.1126-science.105978/ [18] Nelson, K.D., Zhao, W., Brown, L.D., et al., 1996.Partially Molten Middle Crust beneath Southern Tibet:Synthesis of Project INDEPTH Results.Science, 274(5293):1684-1688. https://doi.org/10.1126/science.274.5293.1684. [19] Nie, F.J., Hu, P., Jiang, S.H., et al., 2005.Type and Temporal-Spatial Distribution of Gold and Antimony Deposits (Prospects) in Southern Tibet, China.Acta Geologica Sinica, 79(3):373-385(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200503009 [20] Pan, G.T., Li, X.Z., Wang, L.Q., et al., 2002.Preliminary Division of Tectonic Units of the Qinghai-Tibet Plateau and Its Adjacent Regions.Geological Bulletin of China, 21(11):701-707(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200211002 [21] Qi, X.X., Li, T.F., Meng, X.J., et al., 2008.Cenozoic Tectonic Evolution of the Tethyan Himalayan Foreland Fault-Fold Belt in Southern Tibet, and Its Constraint on Antimony-Gold Polymetallic Minerogenesis.Acta Petrologica Sinica, 24(7):1638-1648(in Chinese with English abstract). http://www.researchgate.net/publication/282673782_Cenozoic_tectonic_evolution_of_the_Tethyan_Himalayan_foreland_fault-fold_belt_in_Southern_Tibet_and_its_constraint_on_antimony-gold_polymetallic_minerogenesis [22] Sun, X., Zheng, Y.Y., Pirajno, F., et al., 2018.Geology, S-Pb Isotopes, and 40Ar/39Ar Geochronology of the Zhaxikang Sb-Pb-Zn-Ag Deposit in Southern Tibet:Implications for Multiple Mineralization Events at Zhaxikang.Mineralium Deposita, 53(3):435-458. https://doi.org/10.1007/s00126-017-0752-6 [23] Sun, X.M., Wei, X.H., Zhai, W., et al., 2010.Ore-Forming Fluid Geochemistry and Metallogenic Mechanism of Bangbu Large-Scale Orogenic Gold Deposit in Southern Tibet, China.Acta Petrologica Sinica, 26(6):1672-1684(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201006004 [24] Wang, D., Zheng, Y.Y., Mathur, R., et al., 2019.Multiple Mineralization Events in the Zhaxikang Sb-Pb-Zn-Ag Deposit and Their Relationship with the Geodynamic Evolution in the North Himalayan Metallogenic Belt, South Tibet.Ore Geology Reviews, 105:201-215. https://doi.org/10.1016/j.oregeorev.2018.12.024. [25] Wang, X.X., Zhang, J.J., Yan, S.Y., et al., 2015.Structural Characteristics and Active Time of the Kangmar Detachment, Southern Tibet.Geotectonica et Metallogenia, 39(2):250-259(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201502005 [26] Wang, Y.Y., Gao, L.E., Zeng, L.S., et al., 2016.Multiple Phases of Cretaceous Mafic Magmatism in the Gyangze-Kangma Area, Tethyan Himalaya, Southern Tibet.Acta Petrologica Sinica, 32(12):3572-3596(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201612002.htm [27] Xia, Q.L., Cheng, Q.M., Zuo, R.G., et al., 2009.GIS Technique of Optimum Target Areas in Mineral Resource Prospecting.Earth Science, 34(2):287-293(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx200902010 [28] Xie, Y.L., Yang, K.J., Li, Y.X., et al., 2019.Mazhala Gold-Antimony Deposit in Southern Tibet:The Characteristics of Ore-Forming Fluids and the Origin of Gold and Antimony.Earth Science, 44(6):1998-2016(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201906018 [29] Yang, Z.S., Hou, Z.Q., Meng, X.J., et al., 2009.Post-Collisional Sb and Au Mineralization Related to the South Tibetan Detachment System, Himalayan Orogen.Ore Geology Reviews, 36(1-3):194-212. doi: 10.1016-j.oregeorev.2009.04.004/ [30] Yin, A., Harrison, T.M., 2000.Geologic Evolution of the Himalayan-Tibetan Orogen.Annual Review of Earth and Planetary Sciences, 28(1):211-280. https://doi.org/10.1146/annurev.earth.28.1.211 [31] Zha, X., Basang, C.R., Dunzhu, C.R., et al., 2018.A Brief Analysis of the Geological Characteristics and Metallogenic Regularity of the Sexiu Deposit in Tibet.World Nonferrous Metals, (19):253-254(in Chinese with English abstract)). [32] Zhai, W., Sun, X.M., Yi, J.Z., et al., 2014.Geology, Geochemistry, and Genesis of Orogenic Gold-Antimony Mineralization in the Himalayan Orogen, South Tibet, China.Ore Geology Reviews, 58:68-90. https://doi.org/10.1016/j.oregeorev.2013.11.001 [33] Zhang, G.Y., Zheng, Y.Y., Zhang, J.F., et al., 2011.Ore-Control Structural and Geochronologic Constrain in Shalagang Antimony Deposit in Southern Tibet, China.Acta Petrologica Sinica, 27(7):2143-2149(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201107021 [34] Zhang, H.R., Yang, T.N., Hou, Z.Q., et al., 2017.Structural Controls on Carbonate-Hosted Pb-Zn Mineralization in the Dongmozhazhua Deposit, Central Tibet.Ore Geology Reviews, 90:863-876. https://doi.org/10.1016/j.oregeorev.2017.02.008 [35] Zhang, J.F., Zheng, Y.Y., Zhang, G.Y., et al., 2010.Genesis of Zhaxikang Pb-Zn-Sb-Ag Deposit in Northern Himalaya:Constraints from Multi-Isotope Geochemistry.Earth Science, 35(6):1000-1010(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201006010 [36] Zhang, L.K., Zhang, Z., Li, G.M., et al., 2018.Rock Assemblage, Structural Characteristics and Genesis Mechanism of the Cuonadong Dome, Tethys Himalaya.Earth Science, 43(8):2664-2683(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201808010 [37] Zheng, Y.Y., Sun, X., Tian, L.M., et al., 2014.Mineralization, Deposit Type and Metallogenic Age of the Gold Antimony Polymetallic Belt in the Eastern Part of North Himalayan.Geotectonica et Metallogenia, 38(1):108-118(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201401011 [38] Zheng, Y.Y., Zhang, L.X., Sun, X., 2012.Mineralization and Deposit Types of the North Himalayan Au-Sb Polymetallic Metallogenic Belt and Controlling Factors.Mineral Deposits, 31(Suppl.1):1081-1082(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DGYK201401010.htm [39] 付建刚, 李光明, 王根厚, 等, 2018.北喜马拉雅E-W向伸展变形时限:来自藏南错那洞穹隆Ar-Ar年代学证据.地球科学, 43(8):2638-2650. doi: 10.3799/dqkx.2018.530 [40] 侯增谦, 潘桂棠, 王安建, 等, 2006a.青藏高原碰撞造山带:Ⅱ.晚碰撞转换成矿作用.矿床地质, 25(5):521-543. http://d.old.wanfangdata.com.cn/Periodical/kcdz200604001 [41] 侯增谦, 曲晓明, 杨竹森, 等, 2006b.青藏高原碰撞造山带:Ⅲ.后碰撞伸展成矿作用.矿床地质, 25(6):629-651. http://d.old.wanfangdata.com.cn/Periodical/kcdz200604001 [42] 侯增谦, 杨竹森, 徐文艺, 等, 2006c.青藏高原碰撞造山带:Ⅰ.主碰撞造山成矿作用.矿床地质, 25(4):337-358. http://d.old.wanfangdata.com.cn/Periodical/kcdz200604001 [43] 李光明, 张林奎, 焦彦杰, 等, 2017.西藏喜马拉雅成矿带错那洞超大型铍锡钨多金属矿床的发现及意义.矿床地质, 36(4):1003-1008. http://d.old.wanfangdata.com.cn/Periodical/kcdz201704014 [44] 李金高, 王全海, 陈健坤, 等, 2002.西藏江孜县沙拉岗锑矿床成矿与找矿模式的初步研究.成都理工学院学报, 29(5):533-538. http://d.old.wanfangdata.com.cn/Periodical/cdlgxyxb200205011 [45] 梁维, 郑远川, 2019.藏南吉松铅锌矿成矿时代的厘定:热液绢云母Ar-Ar年龄.中国地质, 46(1):126-139. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201901009 [46] 聂凤军, 胡朋, 江思宏, 等, 2005.藏南地区金和锑矿床(点)类型及其时空分布特征.地质学报, 79(3):373-385. http://d.old.wanfangdata.com.cn/Periodical/dizhixb200503009 [47] 潘桂棠, 李兴振, 王立全, 等, 2002.青藏高原及邻区大地构造单元初步划分.地质通报, 21(11):701-707. http://d.old.wanfangdata.com.cn/Periodical/zgqydz200211002 [48] 戚学祥, 李天福, 孟祥金, 等, 2008.藏南特提斯喜马拉雅前陆断褶带新生代构造演化与锑金多金属成矿作用.岩石学报, 24(7):1638-1648. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200807020 [49] 孙晓明, 韦慧晓, 翟伟, 等, 2010.藏南邦布大型造山型金矿成矿流体地球化学和成矿机制.岩石学报, 26(6):1672-1684. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201006004 [50] 王晓先, 张进江, 闫淑玉等, 2015.藏南康马拆离断层的构造特征及其活动时代.大地构造与成矿学, 39(2):250-259. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201502005 [51] 王亚莹, 高利娥, 曾令森, 等, 2016.藏南特提斯喜马拉雅带内江孜-康马地区白垩纪多期基性岩浆作用.岩石学报, 32(12):3572-3596. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201612002.htm [52] 夏庆霖, 成秋明, 左仁广, 等, 2009.基于GIS矿产勘查靶区优选技术.地球科学, 34(2):287-293. http://www.earth-science.net/article/id/1827 [53] 谢玉玲, 杨科君, 李应栩, 等, 2019.藏南马扎拉金-锑矿床:成矿流体性质和成矿物质来源.地球科学, 44(6):1998-2016. doi: 10.3799/dqkx.2019.122 [54] 扎西, 巴桑次仁, 顿珠次仁, 等, 2018.浅析西藏布主色秀地区矿床地质特征及成矿规律.世界有色金属, (19):253-254. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sjysjs201819150 [55] 张刚阳, 郑有业, 张建芳, 等, 2011.西藏沙拉岗锑矿控矿构造及成矿时代约束.岩石学报, 27(7):2143-2149. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201107021 [56] 张建芳, 郑有业, 张刚阳, 等, 2010.北喜马拉雅扎西康铅锌锑银矿床成因的多元同位素制约.地球科学, 35(6):1000-1010. doi: 10.3799/dqkx.2010.113 [57] 张林奎, 张志, 李光明, 等, 2018.特提斯喜马拉雅错那洞穹隆的岩石组合、构造特征与成因.地球科学, 43(8):2664-2683. doi: 10.3799/dqkx.2018.141 [58] 郑有业, 孙祥, 田立明, 等, 2014.北喜马拉雅东段金锑多金属成矿作用、矿床类型与成矿时代.大地构造与成矿学, 38(1):108-118. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201401011 [59] 郑有业, 张立雪, 孙祥, 2012.北喜马拉雅金锑多金属成矿带成矿作用、矿床类型与控矿因素.矿床地质, 31(增刊1):1081-1082. http://d.old.wanfangdata.com.cn/Conference/7864773