• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    低温高压榴辉岩锆石Ti温度计的有效性

    蔺梦 张贵宾 宋述光 李慧娟 张丽娟

    蔺梦, 张贵宾, 宋述光, 李慧娟, 张丽娟, 2019. 低温高压榴辉岩锆石Ti温度计的有效性. 地球科学, 44(12): 4034-4041. doi: 10.3799/dqkx.2019.268
    引用本文: 蔺梦, 张贵宾, 宋述光, 李慧娟, 张丽娟, 2019. 低温高压榴辉岩锆石Ti温度计的有效性. 地球科学, 44(12): 4034-4041. doi: 10.3799/dqkx.2019.268
    Lin Meng, Zhang Guibin, Song Shuguang, Li Huijuan, Zhang Lijuan, 2019. The Validity of Ti-in-Zircon Thermometry in Low-Temperature/High-Pressure Eclogites. Earth Science, 44(12): 4034-4041. doi: 10.3799/dqkx.2019.268
    Citation: Lin Meng, Zhang Guibin, Song Shuguang, Li Huijuan, Zhang Lijuan, 2019. The Validity of Ti-in-Zircon Thermometry in Low-Temperature/High-Pressure Eclogites. Earth Science, 44(12): 4034-4041. doi: 10.3799/dqkx.2019.268

    低温高压榴辉岩锆石Ti温度计的有效性

    doi: 10.3799/dqkx.2019.268
    基金项目: 

    国家“973”计划项目 2015CB56105

    国家自然科学基金项目 41972056

    国家自然科学基金项目 41622202

    国家自然科学基金项目 91755206

    国家重点研发计划项目 2017YFC0601302

    详细信息
      作者简介:

      蔺梦(1994-), 女, 博士, 主要从事变质岩和地球化学研究

    • 中图分类号: P595

    The Validity of Ti-in-Zircon Thermometry in Low-Temperature/High-Pressure Eclogites

    • 摘要: 为了探讨锆石的Ti温度计对于低温高压(超高压)榴辉岩的适用性,利用前人版本的温度计对北祁连和西天山4个典型低温高压(超高压)榴辉岩中的锆石进行了温度计算.结合其他地区高压/超高压榴辉岩锆石文献数据,发现对于低温变质锆石,Ti温度计得到的结果普遍高于其他温度计算方法,最高可达到58%.虽然温度是控制锆石中Ti含量的主要因素,但是其他因素(例如压力、SiO2和TiO2的活度,锆石中的晶格缺陷、其他微量元素替代、锆石的不平衡生长和变质流体活动)也会影响锆石Ti温度计的计算结果.研究认为,在锆石重结晶和再生长过程中,流体活动可能是造成锆石Ti温度计计算结果偏高的主要原因.

       

    • 图  1  锆石阴极发光图像和Ti、U元素含量

      温度数据根据Ferry and Watson(2007)提出的锆石Ti温度计计算,空心圆圈代表激光剥蚀点.a和b.样品QS45;c.样品2Q27;d.样品15BJS;e~h.样品HB121;Ti, U的单位为10-6

      Fig.  1.  Cathodoluminescene images of zircon samples with Ti and U contents

      图  2  不同地区榴辉岩样品的锆石Ti温度计和其他温度计温度结果对比

      a.大别-苏鲁造山带;b.红安、桐柏和北山造山带;c.柴北缘和北祁连造山带;d.西南天山、阿尔卑斯造山带、弗朗西斯科杂岩、希腊蒂诺斯岛和罗多彼杂岩

      Fig.  2.  Plots of the Ti-in-zircon temperatures vs. estimations by other thermometers for eclogite samples

      图  3  相同地区同岩性样品的锆石Ti温度计和其他温度计温度结果对比

      a.石榴石-单斜辉石Fe-Mg交换温度计和其他矿物对温度计;b.金红石Zr温度计,石英-矿物氧同位素温度计和相平衡模拟

      Fig.  3.  Plots of the Ti-in-zircon temperatures for all samples compiled vs. the results from other thermometers

      图  4  锆石Ti-U相关性对比

      a.大洋型榴辉岩样品;b.大陆型榴辉岩样品

      Fig.  4.  Plots of Ti vs. U contents in zircon

    • [1] Antignano, A., Manning, C.E., 2008.Rutile Solubility in H2O, H2O-SiO2, and H2O-NaAlSi3O8 Fluids at 0.7-2.0 GPa and 700-1 000 ℃:Implications for Mobility of Nominally Insoluble Elements.Chemical Geology, 255(1-2):283-293. https://doi.org/10.1016/j.chemgeo.2008.07.001
      [2] Beinlich, A., Klemd, R., John, T., et al., 2010.Trace-Element Mobilization during Ca-Metasomatism along a Major Fluid Conduit:Eclogitization of Blueschist as a Consequence of Fluid-Rock Interaction.Geochimica et Cosmochimica Acta, 74(6):1892-1922. https://doi.org/10.1016/j.gca.2009.12.011
      [3] Breiter, K., Förster, H.J., Škoda, R., 2006.Extreme P-, Bi-, Nb-, Sc-, U- and F-Rich Zircon from Fractionated Perphosphorous Granites:The Peraluminous Podlesí Granite System, Czech Republic.Lithos, 88(1-4):15-34. https://doi.org/10.1016/j.lithos.2005.08.011
      [4] Bulle, F., Bröcker, M., Gärtner, C., et al., 2010.Geochemistry and Geochronology of HP Mélanges from Tinos and Andros, Cycladic Blueschist Belt, Greece.Lithos, 117(1-4):61-81. https://doi.org/10.1016/j.lithos.2010.02.004
      [5] Carswell, D.A., 1990.Eclogite Facies Rocks.Blackie, Glasgow, London.
      [6] Castelli, D., Rolfo, F., Compagnoni, R., et al., 1998.Metamorphic Veins with Kyanite, Zoisite and Quartz in the Zhu-Jia-Chong Eclogite, Dabie Shan, China.The Island Arc, 7(1-2):159-173. https://doi.org/10.1046/j.1440-1738.1998.00185.x
      [7] Chen, R.X., Zheng, Y.F., Xie, L.W., 2010.Metamorphic Growth and Recrystallization of Zircon:Distinction by Simultaneous In-Situ Analyses of Trace Elements, U-Th-Pb and Lu-Hf Isotopes in Zircons from Eclogite-Facies Rocks in the Sulu Orogen.Lithos, 114(1-2):132-154. https://doi.org/10.1016/j.lithos.2009.08.006
      [8] Ferriss, E.D.A., Essene, E, J., Becker, U., 2008.Computational Study of the Effect of Pressure on the Ti-in-Zircon Geothermometer.European Journal of Mineralogy, 20(5):745-755. https://doi.org/10.1127/0935-1221/2008/0020-1860
      [9] Ferry, J.M., Watson, E.B., 2007.New Thermodynamic Models and Revised Calibrations for the Ti-in-Zircon and Zr-in-Rutile Thermometers.Contributions to Mineralogy and Petrology, 154(4):429-437. https://doi.org/10.1007/s00410-007-0201-0
      [10] Fu, B., Page, F.Z., Cavosie, A.J., et al., 2008.Ti-in-Zircon Thermometry:Applications and Limitations.Contributions to Mineralogy and Petrology, 156(2):197-215. https://doi.org/10.1007/s00410-008-0281-5
      [11] Gao, J., John, T., Klemd, R., et al., 2007.Mobilization of Ti-Nb-Ta during Subduction:Evidence from Rutile-Bearing Dehydration Segregations and Veins Hosted in Eclogite, Tianshan, NW China.Geochimica et Cosmochimica Acta, 71(20):4974-4996. https://doi.org/10.1016/j.gca.2007.07.027
      [12] Harrison, T.M., Schmitt, A.K., 2007.High Sensitivity Mapping of Ti Distributions in Hadean Zircons.Earth and Planetary Science Letters, 261(1-2):9-19. https://doi.org/10.1016/j.epsl.2007.05.016
      [13] Lin, M., Zhang, G.B., Song, S.G., et al., 2019.The Validity of Ti-in-Zircon Thermometry in Low Temperature Eclogites.Geological Society, London, Special Publications, 474(1):69-87. https://doi.org/10.1144/sp474.13
      [14] Liu, X., Wu, Y., Gao, S., et al., 2012.First Record and Timing of UHP Metamorphism from Zircon in the Xitieshan Terrane:Implications for the Evolution of the Entire North Qaidam Metamorphic Belt.American Mineralogist, 97(7):1083-1093. https://doi.org/10.2138/am.2012.4048
      [15] Münker, C., Wörner, G., Yogodzinski, G., et al., 2004.Behaviour of High Field Strength Elements in Subduction Zones:Constraints from Kamchatka-Aleutian Arc Lavas.Earth and Planetary Science Letters, 224(3-4):275-293. https://doi.org/10.1016/j.epsl.2004.05.030
      [16] Page, F.Z., Essene, E.J., Mukasa, S.B., et al., 2014.A Garnet-Zircon Oxygen Isotope Record of Subduction and Exhumation Fluids from the Franciscan Complex, California.Journal of Petrology, 55(1):103-131. https://doi.org/10.1093/petrology/egt062
      [17] Page, F.Z., Fu, B., Kita, N.T., et al., 2007.Zircons from Kimberlite:New Insights from Oxygen Isotopes, Trace Elements, and Ti in Zircon Thermometry.Geochimica et Cosmochimica Acta, 71(15):3887-3903. https://doi.org/10.1016/j.gca.2007.04.031
      [18] Rapp, J.F., Klemme, S., Butler, I.B., et al., 2010.Extremely High Solubility of Rutile in Chloride and Fluoride-Bearing Metamorphic Fluids:An Experimental Investigation.Geology, 38(4):323-326. https://doi.org/10.1130/g30753.1
      [19] Rubatto, D., Gebauer, D., Compagnoni, R., 1999.Dating of Eclogite-Facies Zircons:The Age of Alpine Metamorphism in the Sesia-Lanzo Zone (Western Alps). Earth and Planetary Science Letters, 167(3-4):141-158. https://doi.org/10.1016/s0012-821x(99)00031-x
      [20] Rubatto, D., Hermann, J., 2003.Zircon Formation during Fluid Circulation in Eclogites (Monviso, Western Alps):Implications for Zr and Hf Budget in Subduction Zones.Geochimica et Cosmochimica Acta, 67(12):2173-2187. https://doi.org/10.1016/s0016-7037(02)01321-2
      [21] Rubatto, D., Hermann, J., 2007.Zircon Behaviour in Deeply Subducted Rocks.Elements, 3(1):31-35. https://doi.org/10.2113/gselements.3.1.31
      [22] Schmidt, M.W., Poli, S., 2003.Generation of Mobile Components during Subduction of Oceanic Crust.Treatise on Geochemistry, 3:567-591. https://doi.org/10.1016/b0-08-043751-6/03034-6
      [23] Song, S.G., Zhang, L.F., Niu, Y.L., et al., 2004.Zircon U-Pb SHRIMP Ages of Eclogites from the North Qilian Mountains in NW China and Their Tectonic Implication.Chinese Science Bulletin, 49(8):848-852. https://doi.org/10.1007/bf02889759
      [24] Song, S.G., Zhang, L.F., Niu, Y., et al., 2007.Eclogite and Carpholite-Bearing Metasedimentary Rocks in the North Qilian Suture Zone, NW China:Implications for Early Palaeozoic Cold Oceanic Subduction and Water Transport into Mantle.Journal of Metamorphic Geology, 25(5):547-563. https://doi.org/10.1111/j.1525-1314.2007.00713.x
      [25] Spandler, C., Hermann, J., 2006.High-Pressure Veins in Eclogite from New Caledonia and Their Significance for Fluid Migration in Subduction Zones.Lithos, 89(1-2):135-153. https://doi.org/10.1016/j.lithos.2005.12.003
      [26] Spandler, C., Pettke, T., Rubatto, D., 2011.Internal and External Fluid Sources for Eclogite-Facies Veins in the Monviso Meta-Ophiolite, Western Alps:Implications for Fluid Flow in Subduction Zones.Journal of Petrology, 52(6):1207-1236. https://doi.org/10.1093/petrology/egr025
      [27] Watson, E.B., Wark, D.A., Thomas, J.B., 2006.Crystallization Thermometers for Zircon and Rutile.Contributions to Mineralogy and Petrology, 151(4):413-433. https://doi.org/10.1007/s00410-006-0068-5
      [28] Wu, Y.B., 2009.Multistage Evolution of Continental Collision Orogen:A Case Study for Western Dabie Orogen.Chinese Science Bulletin, 54(15):2568-2579.
      [29] Xia, Q.X., Zheng, Y.F., Hu, Z.C., 2010.Trace Elements in Zircon and Coexisting Minerals from Low-T/UHP Metagranite in the Dabie Orogen:Implications for Action of Supercritical Fluid during Continental Subduction-Zone Metamorphism.Lithos, 114(3-4):385-412. https://doi.org/10.1016/j.lithos.2009.09.013
      [30] Xia, Q.X., Zheng, Y.F., Yuan, H.L., et al., 2009.Contrasting Lu-Hf and U-Th-Pb Isotope Systematics between Metamorphic Growth and Recrystallization of Zircon from Eclogite-Facies Metagranites in the Dabie Orogen, China.Lithos, 112(3-4):477-496. https://doi.org/10.1016/j.lithos.2009.04.015
      [31] Zhang, G.B., Zhang, L.F., Song, S.G., et al., 2009.UHP Metamorphic Evolution and SHRIMP Geochronology of a Coesite-Bearing Meta-Ophiolitic Gabbro in the North Qaidam, NW China.Journal of Asian Earth Sciences, 35(3-4):310-322. https://doi.org/10.1016/j.jseaes.2008.11.013
      [32] Zhang, G.B., Ellis, D.J., Christy, A.G., et al., 2010.Zr-in-Rutile Thermometry in HP/UHP Eclogites from Western China.Contributions to Mineralogy and Petrology, 160(3):427-439. https://doi.org/10.1007/s00410-009-0486-2
      [33] Zhang, L., Chen, R.X., Zheng, Y.F., et al., 2016b.Geochemical Constraints on the Protoliths of Eclogites and Blueschists from North Qilian, Northern Tibet.Chemical Geology, 421:26-43. https://doi.org/10.1016/j.chemgeo.2015.11.026
      [34] Zhang, L.F., Du, J.X., Lü, Z., et al., 2013b.A Huge Oceanic-Type UHP Metamorphic Belt in Southwestern Tianshan, China:Peak Metamorphic Age and P-T Path.Chinese Science Bulletin, 58(35):4378-4383. https://doi.org/10.1007/s11434-013-6074-x
      [35] Zhang, L.J., Zhang, L.F., Lü, Z., et al., 2016c.Nb-Ta Mobility and Fractionation during Exhumation of UHP Eclogite from Southwestern Tianshan, China.Journal of Asian Earth Sciences, 122:136-157. https://doi.org/10.1016/j.jseaes.2016.03.013
      [36] Zheng, Y.F., 2009.Fluid Regime in Continental Subduction Zones:Petrological Insights from Ultrahigh-Pressure Metamorphic Rocks.Journal of the Geological Society, 166(4):763-782. https://doi.org/10.1144/0016-76492008-016r
      [37] Zhou, L.G., Xia, Q.X., Zheng, Y.F., et al., 2011.Multistage Growth of Garnet in Ultrahigh-Pressure Eclogite during Continental Collision in the Dabie Orogen:Constrained by Trace Elements and U-Pb Ages.Lithos, 127(1-2):101-127. https://doi.org/10.1016/j.lithos.2011.08.010
      [38] Zhou, L.G., Xia, Q.X., Zheng, Y.F., et al., 2015.Tectonic Evolution from Oceanic Subduction to Continental Collision during the Closure of Paleotethyan Ocean:Geochronological and Geochemical Constraints from Metamorphic Rocks in the Hong'an Orogen.Gondwana Research, 28(1):348-370. https://doi.org/10.1016/j.gr.2014.03.009
    • 加载中
    图(4)
    计量
    • 文章访问数:  3823
    • HTML全文浏览量:  1368
    • PDF下载量:  89
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-09-02
    • 刊出日期:  2019-12-15

    目录

      /

      返回文章
      返回