The Validity of Ti-in-Zircon Thermometry in Low-Temperature/High-Pressure Eclogites
-
摘要: 为了探讨锆石的Ti温度计对于低温高压(超高压)榴辉岩的适用性,利用前人版本的温度计对北祁连和西天山4个典型低温高压(超高压)榴辉岩中的锆石进行了温度计算.结合其他地区高压/超高压榴辉岩锆石文献数据,发现对于低温变质锆石,Ti温度计得到的结果普遍高于其他温度计算方法,最高可达到58%.虽然温度是控制锆石中Ti含量的主要因素,但是其他因素(例如压力、SiO2和TiO2的活度,锆石中的晶格缺陷、其他微量元素替代、锆石的不平衡生长和变质流体活动)也会影响锆石Ti温度计的计算结果.研究认为,在锆石重结晶和再生长过程中,流体活动可能是造成锆石Ti温度计计算结果偏高的主要原因.
-
关键词:
- 锆石 /
- 锆石Ti温度计 /
- 低温高压(超高压)榴辉岩 /
- 变质流体 /
- 岩石学
Abstract: In order to investigate the applicability of Ti-in-zircon thermometry to low temperature and high pressure eclogites,we used the calibration of other scholars to estimate the metamorphic temperatures for four typical low-temperature and high (ultrahigh)-pressure eclogites from North Qilian and western Tianshan,China. Compiled different HP/UHP eclogite samples from the literature,the Ti-in-zircon temperatures are generally higher than the estimations by other thermometers (up to 58%),especially for low-temperature metamorphic zircon. Although temperature exerts the dominant control on Ti content in zircon,other factors (e.g. pressure,TiO2 and SiO2 activity,lattice defect,other trace element substitutions,disequilibrium zircon growth and metamorphic fluids) also influence the calculated temperature results. This study proposes the metamorphic fluids may have contributed to the overestimated Ti-in-zircon temperatures. -
0. 引言
俯冲带热结构对于我们理解地壳和地幔之间的物质循环机制具有重要意义(Zhang et al., 2010),目前已经有很多成熟的方法用来估算岩浆作用和变质作用的温度,其中锆石的Ti温度计在岩浆锆石的应用中往往会计算出较低的温度结果(Fu et al., 2008).而应用于部分榴辉岩锆石时会计算出偏高的温度结果(Page et al., 2007, 2014;Wu,2009;Zhang et al., 2009, 2016b;Bulle et al., 2010;Zhou et al., 2011, 2015;Liu et al., 2012).据此,本文运用锆石Ti温度计计算北祁连和西天山4个典型低温高压(超高压)榴辉岩样品的峰期变质温度(低温变质:温度 < 550 ℃;根据Carswell,1990分类),并结合其他地区已发表的榴辉岩样品锆石的微量元素数据和相应的温度计算结果,讨论锆石Ti温度计对于中低温高压(超高压)榴辉岩的适用性.
1. 样品描述
来自北祁连造山带的3例榴辉岩样品分别采自香子沟(QS45)和百经寺(2Q27和15BJS).QS45是具有粗粒结构的硬柱石榴辉岩(矿物组合为石榴石+绿辉石+多硅白云母+蓝闪石+绿帘石+硬柱石包体+金红石+石英+锆石).硬柱石榴辉岩2Q27(矿物组合为石榴石+绿辉石+黝帘石+蓝闪石+多硅白云母+硬柱石包体+金红石+石英+锆石)和绿帘石榴辉岩样品15BJS(矿物组合为石榴石+绿辉石+黝帘石/绿帘石+蓝闪石+多硅白云母+金红石+石英+锆石)都发生了强烈变形.前人利用石榴石-单斜辉石矿物对温度计和金红石Zr温度计得到该地区的峰期变质温压条件为2.2~2.6 GPa,460~510 ℃(Song et al., 2007;Zhang et al., 2010).
来自西天山的钠云母榴辉岩样品HB121呈透镜体产于哈布滕苏-科布尔特一带石榴石多硅白云母片岩中,其矿物组合为绿辉石+石榴石+钠云母+黝帘石+石英+金红石+磷灰石+锆石+方解石,前人用相平衡模拟得到其变质温压条件为2.4~2.7 GPa,550~570 ℃(Zhang, L.F. et al., 2013b;Zheng, L.J. et al., 2016c).
2. 分析方法和实验结果
样品经过粉碎和筛选并制成锆石靶,阴极发光图像照相,微量元素和U-Pb年龄分析测试均在北京大学造山带与陆壳演化重点实验室完成.
北祁连造山带的3个榴辉岩样品中大部分锆石颗粒在CL图像中呈现扇形分带或无分带(图 1a~1d),这被解释为锆石是在流体相存在下形成,或者是在强烈变化的生长环境中随着生长速率的波动而结晶形成的(Rubatto et al., 1999).样品QS45的锆石U含量为202×10-6~866×10-6,Th/U比值为0.19~0.48,Ti含量2.63×10-6~6.96×10-6,Y含量为250×10-6~846×10-6,具有中等程度的Eu负异常和中-重稀土配分模式.这些锆石的Y、U含量较高,表明它们可能在富流体环境中生长,锆石的206Pb/238U年龄为471±3 Ma(n=13).样品2Q27的锆石U含量为7.97×10-6~206×10-6,Th/U比值为0.02~0.21,Ti含量为16.2×10-6~19.7×10-6,Y含量较低(84.9×10-6~159×10-6),无Eu异常且具有平坦的中-重稀土配分模式.锆石的206Pb/238U年龄为468±13 Ma(年龄数据来自Song et al., 2004).样品15BJS的锆石可以根据206Pb/238U年龄分为两组,分别为472±11 Ma(n=4)和415±10 Ma(n=9),但是两组锆石微量元素特征没有明显差别,U含量为5.16×10-6~32.8×10-6,Th/U比值为0.01~0.18,Y含量为40.8×10-6~215×10-6,Ti含量2.03×10-6~10.9×10-6,无Eu异常且具有平坦的稀土配分模式.这3个锆石样品的形貌,CL图像和微量元素特征显示其变质成因,结合样品的岩相学特征和年代学数据(详见Lin et al., 2019),15BJS较老的一组锆石和其他两个样品都对应榴辉岩相变质事件.使用Ferry and Watson(2007)的锆石Ti温度计公式进行峰期变质温度计算,得到QS45的温度为634~713 ℃(平均温度为669 ℃),2Q27的温度为793~814 ℃(平均温度为806 ℃), 15BJS的温度为627~751 ℃(平均温度为685 ℃).
图 1 锆石阴极发光图像和Ti、U元素含量温度数据根据Ferry and Watson(2007)提出的锆石Ti温度计计算,空心圆圈代表激光剥蚀点.a和b.样品QS45;c.样品2Q27;d.样品15BJS;e~h.样品HB121;Ti, U的单位为10-6Fig. 1. Cathodoluminescene images of zircon samples with Ti and U contents西天山榴辉岩样品的锆石颗粒在CL图像中含有不规则形状的暗色核部和无环带结构的亮边(图 1e~1h).锆石核部Ti含量为2.40×10-6~39.7×10-6(多数 < 15×10-6),U含量为82×10-6~576×10-6,Th/U比值为0.20~0.86,具有中等程度的Eu负异常和中-重稀土配分模式,边部具有较核部较高的微量元素特征(Ti=4.0×10-6~25.0×10-6;U=87×10-6~802×10-6;Th/U=0.002~0.063)和平坦的稀土配分模式.锆石核部的206Pb/238U年龄为320.9±1.7 Ma,边部206Pb/238U年龄为307.6±4.3 Ma(来自张丽娟未发表数据).结合CL图像,微量元素特征和U-Pb年龄数据(详见Lin et al., 2019),锆石核部应该是在榴辉岩相变质事件中生长,边部代表后期的退变质事件.使用Ferry and Watson(2007)的锆石Ti温度计公式得到核部温度为666~840 ℃(平均温度为709 ℃),边部温度为627~894 ℃(平均温度为731 ℃).
3. 讨论
3.1 不同温度计结果比较
本文中4个典型低温高压(超高压)榴辉岩样品的年龄结果都与前人已发表的同地区榴辉岩SHRIMP U-Pb年龄结果一致,但是相应的锆石Ti温度计温度却明显高于前人用其他常规温度计得到的温度结果.为了验证这一对比结果,我们通过收集一系列已发表的不同变质条件下的榴辉岩锆石的微量元素数据,并运用Ferry and Watson(2007)锆石Ti温度计公式计算了这些榴辉岩的变质温度,与同地区同变质阶段其他温度计数据进行比较(包括矿物对温度计、金红石Zr温度计、石英-矿物氧同位素温度计和相平衡模拟等,数据来源详见Lin et al.(2019)一文中表 4).结果显示,除了用石榴石-单斜辉石矿物对温度计得到的少数数据外,锆石Ti温度计得到的温度结果普遍高于其他温度计,尤其是当样品温度小于650 ℃时(图 2和图 3).
3.2 影响锆石Ti温度计计算结果的因素
3.2.1 压力
理论计算和实验结果表明锆石Ti温度计中Ti元素的替代机制为(Ferry and Watson, 2007).
$$ \begin{aligned} \mathrm{TiO}_{2}+\mathrm{ZrSiO}_{4} =\mathrm{ZrTiO}_{4}+\mathrm{SiO}_{2}, \\ \text { Rutile }+\mathrm{Zircon} =\mathrm{Ti}^{\mathrm{IV}}-\mathrm{Zircon}+\text { Quartz/Coesite. } \end{aligned} $$ (1) Watson et al.(2006)的实验结果表明锆石中Ti的含量与压力相关;Page et al.(2007)的计算结果表明压力校正对高压岩石样品至关重要,尤其对于榴辉岩样品和地幔样品,锆石Ti温度计只能记录岩石最低的温度结果;Ferry and Watson(2007)建议在750 ℃压力校正为+5 ℃/kbar.Ferriss et al.(2008)根据量子力学计算结果认为高压样品(P>3.5 GPa)中Ti会替代锆石中Zr而非Si,从而导致温度低估,并提出比Ferry and Watson(2007)多出两倍的压力校正的观点.以上观点都证明了压力校正对锆石Ti温度计的正确计算至关重要,但是压力效应会导致温度结果低估,这与本文得到的温度结果偏高的现象不符.
3.2.2 SiO2和TiO2活度
研究表明SiO2和TiO2活度会影响锆石Ti温度计的有效计算,在方程(1)的元素替换过程中,Ti不饱和会导致偏低的温度计算结果,Si不饱和会导致偏高的温度计算结果,并且其活度的变化会导致在750 ℃产生60~70 ℃的温度差异(Ferry and Watson, 2007;Page et al., 2007;Fu et al., 2008).SiO2和TiO2的活度校正与锆石结晶时富Ti相和石英的存在有关,富Ti矿物的存在可能表明TiO2的活度相对较高.例如,钛铁矿或金红石的存在意味着αTiO2≥0.5和αTiO2≈1(Ferry and Watson, 2007).需要注意的是,文中4个榴辉岩样品以及相关文献中的样品的矿物组合几乎都包含金红石和石英,故认为SiO2和TiO2活度为1,所以不能解释锆石Ti温度计计算结果偏高的现象.
3.2.3 锆石晶格缺陷和其他微量元素替代
锆石的晶格缺陷会增强和改变替换方程(1)中Ti的替换程度,这可以用来解释西澳Jack Hills碎屑锆石中Ti的富集现象(Harrison and Schmidt, 2007).此外,除了Ti以外,锆石可以作为多种微量元素的寄主,其晶格中其他微量元素的加入有可能会促进Ti和Si的替换.离子半径近似Zr和Si的阳离子可以优先进入锆石结构中.M4+离子(如Hf4+)直接进入锆石与Zr4+交换.M2+/M3+/M5+离子(例如Y3+、REE3+和P5+)在锆石中也是高度兼容的,但需要耦合的替代机制,实现电荷平衡,详见Breiter et al.(2006).当Ti与其他微量元素耦合不仅替代锆石中的Si,也同时替代Zr时,有可能导致锆石中Ti含量过高.综上所述,其他微量元素的取代和晶格缺陷会导致锆石Ti温度计温度升高,但其具体机理和程度还有待进一步研究.
3.2.4 变质流体
在变质过程中,锆石会发生重结晶和变质生长(Rubatto and Hermann, 2007;Xia et al., 2009, 2010;Chen et al., 2010).岩浆锆石会经历3种变质重结晶作用:固态重结晶、交代重结晶和溶解重结晶.3种机制对原岩锆石的改造程度逐渐增加,变质生长锆石则是在变质过程中生长形成.不同的锆石成因具有不同的微量元素特征,并根据锆石的结晶度和流体性质,对微量元素和同位素体系产生不同程度的影响,有可能导致Ti的浓度变化范围很广.因此,必须要考虑锆石的生长环境和变质阶段才能更有效的利用锆石Ti温度计.样品QS45、2Q27、15BJS和HB121的CL图像,微量元素特征和U-Pb年龄数据都表明其成因是在流体相存在的条件下经历了交代重结晶(保留了一定程度的原岩稀土配分模式)或者变质生长过程,这两种过程都有流体的参与,可能是导致锆石Ti温度计得到的温度结果偏高的一个重要原因.
在俯冲带变质作用中,流体作用对锆石的生长和重结晶起到至关重要的作用.铀作为一种广泛出现的水溶性元素,可以指示锆石变质生长和重结晶过程中的流体活动,它在本文的样品中是最丰富的微量元素之一,这意味着锆石可能是从富U流体中生长或发生重结晶形成的.本文和参考文献中的榴辉岩样品的U含量变化范围高达两个数量级,并且与Ti呈现正相关(图 4).在我们所收集的文献数据中,大洋俯冲型榴辉岩中锆石的Ti-U相关性比大陆俯冲型榴辉岩更明显(图 4),Ti与U的这种相关性可能表明Ti在锆石重结晶或者变质生长过程中受到变质流体活动的影响.通常情况下,流体在俯冲带环境下溶解Ti的能力很低,然而近期研究结果表明很多造山带都记录了高压脉体中富Ti相的存在(大多为金红石),这表明Ti在俯冲流体中可以发生溶解和迁移(Castelli et al., 1998;Rubatto and Hermann, 2003;Münker et al., 2004;Spandler and Hermann, 2006;Gao et al., 2007;Beinlich et al., 2010;Spandler et al., 2011).Ti在高压/超高压流体中的溶解度和迁移能力可以通过与溶液中的Na-Al硅酸盐络合来提高;此外也有实验表明,变质流体中F-和Cl-的存在也可以增加Ti的溶解度(Gao et al., 2007;Antignano and Manning, 2008;Rapp et al., 2010;Beinlich et al., 2010).
俯冲板片在俯冲和折返过程中,含水矿物的分解和名义上不含水矿物的结构羟基及分子间水的释放可以形成大量的变质流体,这些变质流体与寄主岩石发生反应,导致原岩锆石发生重结晶和再生长(Zheng,2009).低温高压(超高压)榴辉岩是洋壳俯冲带一种典型的岩石类型,其岩石组合中的特征含水矿物硬柱石(11.2%)、绿泥石(12.5%)、钠云母(4.6%)、蓝闪石(2.2%)等在俯冲及折返过程中发生脱水反应并释放大量的水(Schmidt and Poli, 2003),其流体含量比陆壳俯冲型岩石组合更为丰富,这可以解释大洋型榴辉岩的Ti-U相关性较大陆型榴辉岩更强的现象.在大洋型俯冲带榴辉岩相变过程中,大量的易溶于水元素发生迁移并参与锆石的重结晶和再生长,更多的Ti元素和其他水溶性元素(特别是U)在此过程中进入锆石晶格,这可能是低温高压(超高压)榴辉岩锆石Ti温度计温度结果偏高的主要原因.
4. 结论
结合本文中4个典型低温高压(超高压)榴辉岩样品和收集的参考文献中不同类型榴辉岩数据,我们发现与其他温度计相比,锆石的Ti温度计得到的温度结果更高,尤其是对低温高压(超高压)榴辉岩样品.影响锆石Ti温度计计算的因素很多,包括压力、SiO2和TiO2活度、锆石晶格缺陷、其他微量元素替代、锆石的重结晶和再生长过程以及变质流体.根据Ti和U的相关性研究,我们认为在锆石重结晶和再生长过程中,流体活动可能是造成锆石Ti温度计温度结果过高的主要原因.
-
图 1 锆石阴极发光图像和Ti、U元素含量
温度数据根据Ferry and Watson(2007)提出的锆石Ti温度计计算,空心圆圈代表激光剥蚀点.a和b.样品QS45;c.样品2Q27;d.样品15BJS;e~h.样品HB121;Ti, U的单位为10-6
Fig. 1. Cathodoluminescene images of zircon samples with Ti and U contents
-
[1] Antignano, A., Manning, C.E., 2008.Rutile Solubility in H2O, H2O-SiO2, and H2O-NaAlSi3O8 Fluids at 0.7-2.0 GPa and 700-1 000 ℃:Implications for Mobility of Nominally Insoluble Elements.Chemical Geology, 255(1-2):283-293. https://doi.org/10.1016/j.chemgeo.2008.07.001 [2] Beinlich, A., Klemd, R., John, T., et al., 2010.Trace-Element Mobilization during Ca-Metasomatism along a Major Fluid Conduit:Eclogitization of Blueschist as a Consequence of Fluid-Rock Interaction.Geochimica et Cosmochimica Acta, 74(6):1892-1922. https://doi.org/10.1016/j.gca.2009.12.011 [3] Breiter, K., Förster, H.J., Škoda, R., 2006.Extreme P-, Bi-, Nb-, Sc-, U- and F-Rich Zircon from Fractionated Perphosphorous Granites:The Peraluminous Podlesí Granite System, Czech Republic.Lithos, 88(1-4):15-34. https://doi.org/10.1016/j.lithos.2005.08.011 [4] Bulle, F., Bröcker, M., Gärtner, C., et al., 2010.Geochemistry and Geochronology of HP Mélanges from Tinos and Andros, Cycladic Blueschist Belt, Greece.Lithos, 117(1-4):61-81. https://doi.org/10.1016/j.lithos.2010.02.004 [5] Carswell, D.A., 1990.Eclogite Facies Rocks.Blackie, Glasgow, London. [6] Castelli, D., Rolfo, F., Compagnoni, R., et al., 1998.Metamorphic Veins with Kyanite, Zoisite and Quartz in the Zhu-Jia-Chong Eclogite, Dabie Shan, China.The Island Arc, 7(1-2):159-173. https://doi.org/10.1046/j.1440-1738.1998.00185.x [7] Chen, R.X., Zheng, Y.F., Xie, L.W., 2010.Metamorphic Growth and Recrystallization of Zircon:Distinction by Simultaneous In-Situ Analyses of Trace Elements, U-Th-Pb and Lu-Hf Isotopes in Zircons from Eclogite-Facies Rocks in the Sulu Orogen.Lithos, 114(1-2):132-154. https://doi.org/10.1016/j.lithos.2009.08.006 [8] Ferriss, E.D.A., Essene, E, J., Becker, U., 2008.Computational Study of the Effect of Pressure on the Ti-in-Zircon Geothermometer.European Journal of Mineralogy, 20(5):745-755. https://doi.org/10.1127/0935-1221/2008/0020-1860 [9] Ferry, J.M., Watson, E.B., 2007.New Thermodynamic Models and Revised Calibrations for the Ti-in-Zircon and Zr-in-Rutile Thermometers.Contributions to Mineralogy and Petrology, 154(4):429-437. https://doi.org/10.1007/s00410-007-0201-0 [10] Fu, B., Page, F.Z., Cavosie, A.J., et al., 2008.Ti-in-Zircon Thermometry:Applications and Limitations.Contributions to Mineralogy and Petrology, 156(2):197-215. https://doi.org/10.1007/s00410-008-0281-5 [11] Gao, J., John, T., Klemd, R., et al., 2007.Mobilization of Ti-Nb-Ta during Subduction:Evidence from Rutile-Bearing Dehydration Segregations and Veins Hosted in Eclogite, Tianshan, NW China.Geochimica et Cosmochimica Acta, 71(20):4974-4996. https://doi.org/10.1016/j.gca.2007.07.027 [12] Harrison, T.M., Schmitt, A.K., 2007.High Sensitivity Mapping of Ti Distributions in Hadean Zircons.Earth and Planetary Science Letters, 261(1-2):9-19. https://doi.org/10.1016/j.epsl.2007.05.016 [13] Lin, M., Zhang, G.B., Song, S.G., et al., 2019.The Validity of Ti-in-Zircon Thermometry in Low Temperature Eclogites.Geological Society, London, Special Publications, 474(1):69-87. https://doi.org/10.1144/sp474.13 [14] Liu, X., Wu, Y., Gao, S., et al., 2012.First Record and Timing of UHP Metamorphism from Zircon in the Xitieshan Terrane:Implications for the Evolution of the Entire North Qaidam Metamorphic Belt.American Mineralogist, 97(7):1083-1093. https://doi.org/10.2138/am.2012.4048 [15] Münker, C., Wörner, G., Yogodzinski, G., et al., 2004.Behaviour of High Field Strength Elements in Subduction Zones:Constraints from Kamchatka-Aleutian Arc Lavas.Earth and Planetary Science Letters, 224(3-4):275-293. https://doi.org/10.1016/j.epsl.2004.05.030 [16] Page, F.Z., Essene, E.J., Mukasa, S.B., et al., 2014.A Garnet-Zircon Oxygen Isotope Record of Subduction and Exhumation Fluids from the Franciscan Complex, California.Journal of Petrology, 55(1):103-131. https://doi.org/10.1093/petrology/egt062 [17] Page, F.Z., Fu, B., Kita, N.T., et al., 2007.Zircons from Kimberlite:New Insights from Oxygen Isotopes, Trace Elements, and Ti in Zircon Thermometry.Geochimica et Cosmochimica Acta, 71(15):3887-3903. https://doi.org/10.1016/j.gca.2007.04.031 [18] Rapp, J.F., Klemme, S., Butler, I.B., et al., 2010.Extremely High Solubility of Rutile in Chloride and Fluoride-Bearing Metamorphic Fluids:An Experimental Investigation.Geology, 38(4):323-326. https://doi.org/10.1130/g30753.1 [19] Rubatto, D., Gebauer, D., Compagnoni, R., 1999.Dating of Eclogite-Facies Zircons:The Age of Alpine Metamorphism in the Sesia-Lanzo Zone (Western Alps). Earth and Planetary Science Letters, 167(3-4):141-158. https://doi.org/10.1016/s0012-821x(99)00031-x [20] Rubatto, D., Hermann, J., 2003.Zircon Formation during Fluid Circulation in Eclogites (Monviso, Western Alps):Implications for Zr and Hf Budget in Subduction Zones.Geochimica et Cosmochimica Acta, 67(12):2173-2187. https://doi.org/10.1016/s0016-7037(02)01321-2 [21] Rubatto, D., Hermann, J., 2007.Zircon Behaviour in Deeply Subducted Rocks.Elements, 3(1):31-35. https://doi.org/10.2113/gselements.3.1.31 [22] Schmidt, M.W., Poli, S., 2003.Generation of Mobile Components during Subduction of Oceanic Crust.Treatise on Geochemistry, 3:567-591. https://doi.org/10.1016/b0-08-043751-6/03034-6 [23] Song, S.G., Zhang, L.F., Niu, Y.L., et al., 2004.Zircon U-Pb SHRIMP Ages of Eclogites from the North Qilian Mountains in NW China and Their Tectonic Implication.Chinese Science Bulletin, 49(8):848-852. https://doi.org/10.1007/bf02889759 [24] Song, S.G., Zhang, L.F., Niu, Y., et al., 2007.Eclogite and Carpholite-Bearing Metasedimentary Rocks in the North Qilian Suture Zone, NW China:Implications for Early Palaeozoic Cold Oceanic Subduction and Water Transport into Mantle.Journal of Metamorphic Geology, 25(5):547-563. https://doi.org/10.1111/j.1525-1314.2007.00713.x [25] Spandler, C., Hermann, J., 2006.High-Pressure Veins in Eclogite from New Caledonia and Their Significance for Fluid Migration in Subduction Zones.Lithos, 89(1-2):135-153. https://doi.org/10.1016/j.lithos.2005.12.003 [26] Spandler, C., Pettke, T., Rubatto, D., 2011.Internal and External Fluid Sources for Eclogite-Facies Veins in the Monviso Meta-Ophiolite, Western Alps:Implications for Fluid Flow in Subduction Zones.Journal of Petrology, 52(6):1207-1236. https://doi.org/10.1093/petrology/egr025 [27] Watson, E.B., Wark, D.A., Thomas, J.B., 2006.Crystallization Thermometers for Zircon and Rutile.Contributions to Mineralogy and Petrology, 151(4):413-433. https://doi.org/10.1007/s00410-006-0068-5 [28] Wu, Y.B., 2009.Multistage Evolution of Continental Collision Orogen:A Case Study for Western Dabie Orogen.Chinese Science Bulletin, 54(15):2568-2579. [29] Xia, Q.X., Zheng, Y.F., Hu, Z.C., 2010.Trace Elements in Zircon and Coexisting Minerals from Low-T/UHP Metagranite in the Dabie Orogen:Implications for Action of Supercritical Fluid during Continental Subduction-Zone Metamorphism.Lithos, 114(3-4):385-412. https://doi.org/10.1016/j.lithos.2009.09.013 [30] Xia, Q.X., Zheng, Y.F., Yuan, H.L., et al., 2009.Contrasting Lu-Hf and U-Th-Pb Isotope Systematics between Metamorphic Growth and Recrystallization of Zircon from Eclogite-Facies Metagranites in the Dabie Orogen, China.Lithos, 112(3-4):477-496. https://doi.org/10.1016/j.lithos.2009.04.015 [31] Zhang, G.B., Zhang, L.F., Song, S.G., et al., 2009.UHP Metamorphic Evolution and SHRIMP Geochronology of a Coesite-Bearing Meta-Ophiolitic Gabbro in the North Qaidam, NW China.Journal of Asian Earth Sciences, 35(3-4):310-322. https://doi.org/10.1016/j.jseaes.2008.11.013 [32] Zhang, G.B., Ellis, D.J., Christy, A.G., et al., 2010.Zr-in-Rutile Thermometry in HP/UHP Eclogites from Western China.Contributions to Mineralogy and Petrology, 160(3):427-439. https://doi.org/10.1007/s00410-009-0486-2 [33] Zhang, L., Chen, R.X., Zheng, Y.F., et al., 2016b.Geochemical Constraints on the Protoliths of Eclogites and Blueschists from North Qilian, Northern Tibet.Chemical Geology, 421:26-43. https://doi.org/10.1016/j.chemgeo.2015.11.026 [34] Zhang, L.F., Du, J.X., Lü, Z., et al., 2013b.A Huge Oceanic-Type UHP Metamorphic Belt in Southwestern Tianshan, China:Peak Metamorphic Age and P-T Path.Chinese Science Bulletin, 58(35):4378-4383. https://doi.org/10.1007/s11434-013-6074-x [35] Zhang, L.J., Zhang, L.F., Lü, Z., et al., 2016c.Nb-Ta Mobility and Fractionation during Exhumation of UHP Eclogite from Southwestern Tianshan, China.Journal of Asian Earth Sciences, 122:136-157. https://doi.org/10.1016/j.jseaes.2016.03.013 [36] Zheng, Y.F., 2009.Fluid Regime in Continental Subduction Zones:Petrological Insights from Ultrahigh-Pressure Metamorphic Rocks.Journal of the Geological Society, 166(4):763-782. https://doi.org/10.1144/0016-76492008-016r [37] Zhou, L.G., Xia, Q.X., Zheng, Y.F., et al., 2011.Multistage Growth of Garnet in Ultrahigh-Pressure Eclogite during Continental Collision in the Dabie Orogen:Constrained by Trace Elements and U-Pb Ages.Lithos, 127(1-2):101-127. https://doi.org/10.1016/j.lithos.2011.08.010 [38] Zhou, L.G., Xia, Q.X., Zheng, Y.F., et al., 2015.Tectonic Evolution from Oceanic Subduction to Continental Collision during the Closure of Paleotethyan Ocean:Geochronological and Geochemical Constraints from Metamorphic Rocks in the Hong'an Orogen.Gondwana Research, 28(1):348-370. https://doi.org/10.1016/j.gr.2014.03.009 期刊类型引用(1)
1. 李小犁. 电子探针分析锆石Hf和Ti含量的结果意义与技术优势. 岩矿测试. 2023(01): 89-101 . 百度学术
其他类型引用(1)
-