• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    华南陆块北缘大陆裂断带高温低压变质作用

    贺强 郑永飞

    贺强, 郑永飞, 2019. 华南陆块北缘大陆裂断带高温低压变质作用. 地球科学, 44(12): 4186-4194. doi: 10.3799/dqkx.2019.267
    引用本文: 贺强, 郑永飞, 2019. 华南陆块北缘大陆裂断带高温低压变质作用. 地球科学, 44(12): 4186-4194. doi: 10.3799/dqkx.2019.267
    He Qiang, Zheng Yongfei, 2019. High-Temperature/Low-Pressure Metamorphism in a Continental Rift in the Northern Margin of the South China Block. Earth Science, 44(12): 4186-4194. doi: 10.3799/dqkx.2019.267
    Citation: He Qiang, Zheng Yongfei, 2019. High-Temperature/Low-Pressure Metamorphism in a Continental Rift in the Northern Margin of the South China Block. Earth Science, 44(12): 4186-4194. doi: 10.3799/dqkx.2019.267

    华南陆块北缘大陆裂断带高温低压变质作用

    doi: 10.3799/dqkx.2019.267
    基金项目: 

    科技部“973”计划项目 2015CB856102

    详细信息
      作者简介:

      贺强(1988—), 男, 博士后, 地球化学专业, 主要从事变质岩石学研究

    • 中图分类号: P581

    High-Temperature/Low-Pressure Metamorphism in a Continental Rift in the Northern Margin of the South China Block

    • 摘要: 高温低压变质岩的形成要求高的热梯度(>30℃/km),所对应的构造环境一直受到地质学界的关注.本文总结了我们对华南陆块北缘新元古代Rodinia超大陆裂解(breakup)时期形成的变质花岗岩和变质玄武岩所进行的岩石学和地球化学研究成果,强调大陆裂断(rift)带是形成高温低压变质岩最可能的构造环境.高温低压变质作用主要记录在含铝硅酸盐矿物的变质花岗岩中,其中所含的红柱石和夕线石为变质成因,由白云母脱水反应产生.根据含铝硅酸盐矿物的峰期矿物组合和视剖面计算,得到变质温压条件为560~660℃/1.0~3.5 kbar.变质红柱石具有非常负的δ18O值,并且与岩浆锆石处于氧同位素不平衡状态,进一步证明它是岩浆结晶后变质作用的产物.变质榍石U-Pb定年得到高温低压变质作用的年龄为751±11 Ma,与Rodinia超大陆裂解峰期年龄一致.变质玄武岩显示岛弧型微量元素分布特征,指示其源区为受俯冲大洋地壳来源流体交代的地幔楔,因此地幔源区形成于格林威尔期Rodinia超大陆聚合过程中.由此可见,导致超大陆裂解的大陆裂断是在古俯冲带基础上发育的.通过对比形成变质峰期矿物组合所需的热流值和变质花岗岩中产热元素提供的热流值,得知大陆裂断带确实存在来自软流圈地幔的异常高热流,这使得超大陆裂解过程可以发育高温低压变质作用.

       

    • 图  1  汇聚板块边缘区域变质相系列与变质热梯度关系相图

      修改自Zheng and Chen (2017)

      Fig.  1.  Phase diagram for regional metamorphic rocks in three facies series at different thermal gradients

      图  2  变质花岗岩14BHY02、14BHY05和14BHY07的岩相结构

      And.红柱石;Bt.黑云母;Kfs.钾长石;Ms.白云母;Pl.斜长石;Sil.夕线石.引自He et al.(2018)

      Fig.  2.  Petrographic textures for metagranites 14BHY02, 14BHY05 and 14BHY08

      图  3  在MnNCKFMASH体系中用视剖面计算变质花岗岩14BHY07的P-T条件

      And.红柱石;Bt.黑云母;Crd.堇青石;Grt.石榴石;Kfs.钾长石;Ky.蓝晶石;Ms.白云母;Opx.斜方辉石;Pl.斜长石;Qz.石英;Sil.夕线石.引自He et al.(2018)

      Fig.  3.  Pseudosection calculatons of P-T conditions for metagranites 14BHY07 in the MnNCKFMASH system

      图  4  汇聚板块边缘变质作用类型与造山作用类型之间的对应关系

      修改自Zheng and Zhao(2017)

      Fig.  4.  The relationship between metamorphic and orogenic types at convergent plate boundaries

    • [1] Bosch, D., 2004.Deep and High⁃Temperature Hydrothermal Circulation in the Oman Ophiolite: Petrological and Isotopic Evidence.Journal of Petrology, 45(6): 1181-1208. https://doi.org/10.1093/petrology/egh010
      [2] Brown, M., 1993.PTt Evolution of Orogenic Belts and the Causes of Regional Metamorphism.Journal of the Geological Society, 150(2): 227-241. https://doi.org/10.1144/gsjgs.150.2.0227
      [3] Brown, M., 2006.Duality of Thermal Regimes is the Distinctive Characteristic of Plate Tectonics since the Neoarchean.Geology, 34(11): 961. https://doi.org/10.1130/g22853a.1
      [4] Bucher, K., Grapes, R., 2011.Metamorphic Rocks.Petrogenesis of Metamorphic Rocks.Springer, Berlin Heidelberg, 21-56.
      [5] Cawood, P.A., Kröner, A., Collins, W.J., et al., 2009.Accretionary Orogens through Earth History.Geological Society, London, Special Publications, 318(1): 1-36. https://doi.org/10.1144/sp318.1
      [6] Clark, C., Fitzsimons, I.C.W., Healy, D., et al., 2011.How does the Continental Crust Get Really Hot? Elements, 7(4): 235-240. https://doi.org/10.2113/gselements.7.4.235
      [7] Collins, W.J., 2002.Hot Orogens, Tectonic Switching, and Creation of Continental Crust.Geology, 30(6): 535. doi: 10.1130/0091-7613(2002)030<0535:HOTSAC>2.0.CO;2
      [8] de Yoreo, J.J., Lux, D.R., Guidotti, C.V., 1991.Thermal Modelling in Low⁃Pressure/High⁃Temperature Metamorphic Belts.Tectonophysics, 188(3-4): 209-238. https://doi.org/10.1016/0040⁃1951(91)90457⁃4
      [9] Dewey, J.F., 1988.Extensional Collapse of Orogens.Tectonics, 7(6): 1123-1139. https://doi.org/10.1029/tc007i006p01123
      [10] Ernst, W.G., Tsujimori, T., Zhang, R., et al., 2007.Permo⁃Triassic Collision, Subduction⁃Zone Metamorphism, and Tectonic Exhumation along the East Asian Continental Margin.Annual Review of Earth and Planetary Sciences, 35(1): 73-110. https://doi.org/10.1146/annurev.earth.35.031306.140146
      [11] Essex, R.M., Gromet, L.P., 2000.U⁃Pb Dating of Prograde and Retrograde Titanite Growth during the Scandian Orogeny.Geology, 28(5): 419-422. doi: 10.1130/0091-7613(2000)28<419:UDOPAR>2.0.CO;2
      [12] Hacker, B.R., Ratschbacher, L., Webb, L., et al., 1998.U/Pb Zircon Ages Constrain the Architecture of the Ultrahigh⁃Pressure Qinling⁃Dabie Orogen, China.Earth and Planetary Science Letters, 161(1-4): 215-230. https://doi.org/10.1016/s0012⁃821x(98)00152⁃6
      [13] He, Q., Zhang, S.B., Zheng, Y.F., 2016.High Temperature Glacial Meltwater⁃Rock Reaction in the Neoproterozoic: Evidence from Zircon In⁃Situ Oxygen Isotopes in Granitic Gneiss from the Sulu Orogen.Precambrian Research, 284: 1-13. https://doi.org/10.1016/j.precamres.2016.07.012
      [14] He, Q., Zhang, S.B., Zheng, Y.F., 2018.Evidence for Regional Metamorphism in a Continental Rift during the Rodinia Breakup.Precambrian Research, 314: 414-427. https://doi.org/10.1016/j.precamres.2018.06.009
      [15] Li, Z., 2003.Geochronology of Neoproterozoic Syn⁃Rift Magmatism in the Yangtze Craton, South China and Correlations with Other Continents: Evidence for a Mantle Superplume that Broke up Rodinia.Precambrian Research, 122(1-4): 85-109. https://doi.org/10.1016/s0301⁃9268(02)00208⁃5
      [16] Li, Z.X., Bogdanova, S., Collins, A., et al., 2008.Assembly, Configuration, and Break⁃up History of Rodinia: A Synthesis.Precambrian Research 160(1-2): 179-210. https://doi.org/10.1016/j.precamres.2007.04.021
      [17] Li, Z.X., Li, X.H., Zhou, H.W., et al., 2002.Grenvillian Continental Collision in South China: New SHRIMP U⁃Pb Zircon Results and Implications for the Configuration of Rodinia.Geology, 30(2): 163-166. doi: 10.1130/0091-7613(2002)030<0163:GCCISC>2.0.CO;2
      [18] Lux, D.R., de Yoreo, J.J., Guldotti, C.V., et al., 1986.Role of Plutonism in Low⁃Pressure Metamorphic Belt Formation.Nature, 323: 794-797. https://doi.org/10.1038/323794a0
      [19] Manning, C.E., Weston, P.E., Mahon, K.I., 1996.Rapid High⁃Temperature Metamorphism of East Pacific Rise Gabbros from Hess Deep.Earth and Planetary Science Letters, 144(1-2): 123-132. https://doi.org/10.1016/0012⁃821x(96)00153⁃7
      [20] McLaren, S., Sandiford, M., Hand, M., 1999.High Radiogenic Heat⁃Producing Granites and Metamorphism: An Example from the Western Mount Isa Inlier, Australia.Geology, 27(8): 679-682. doi: 10.1130/0091-7613(1999)027<0679:HRHPGA>2.3.CO;2
      [21] Nicolas, A., 2003.High⁃Temperature Seawater Circulation Throughout Crust of Oceanic Ridges: A Model Derived from the Oman Ophiolites.Journal of Geophysical Research Atmospheres, 108(B8): 2371. https://doi.org/10.1029/2002jb002094
      [22] Olsen, K.H., Morgan, P., 2006.Chapter 1 Introduction: Progress in Understanding Continental Rifts.Developments in Geotectonics, 25: 3-26. https://doi.org/10.1016/s0419⁃0254(06)80005⁃4
      [23] Platt, J.P., England, P.C., 1994.Convective Removal of Lithosphere beneath Mountain Belts; Thermal and Mechanical Consequences.American Journal of Science, 294(3): 307-336. https://doi.org/10.2475/ajs.294.3.307
      [24] Pownall, J.M., Hall, R., Armstrong, R.A., et al., 2014.Earth's Youngest Known Ultrahigh⁃Temperature Granulites Discovered on Seram, Eastern Indonesia.Geology, 42(4): 279-282. https://doi.org/10.1130/g35230.1
      [25] Rasmussen, B., Fletcher, I.R., Muhling, J.R., 2013.Dating Deposition and Low⁃Grade Metamorphism by In Situ U⁃Pb Geochronology of Titanite in the Paleoproterozoic Timeball Hill Formation, Southern Africa.Chemical Geology, 351: 29-39. https://doi.org/10.1016/j.chemgeo.2013.04.015
      [26] Sandiford, M., Powell, R., 1986.Deep Crustal Metamorphism during Continental Extension: Modern and Ancient Examples.Earth and Planetary Science Letters, 79(1-2): 151-158. https://doi.org/10.1016/0012⁃821x(86)90048⁃8
      [27] Sengör, A.M.C., Burke, K., 1978.Relative Timing of Rifting and Volcanism on Earth and Its Tectonic Implications.Geophysical Research Letters, 5(6): 419-421. https://doi.org/10.1029/gl005i006p00419
      [28] Sisson, T.W., Grove, T.L., 1993.Experimental Investigations of the Role of H2O in Calc⁃Alkaline Differentiation and Subduction Zone Magmatism.Contributions to Mineralogy and Petrology, 113(2): 143-166. https://doi.org/10.1007/bf00283225
      [29] Sisson, V.B., Hollister, L.S., 1988.Low⁃Pressure Facies Series Metamorphism in an Accretionary Sedimentary Prism, Southern Alaska.Geology, 16(4): 358-361. doi: 10.1130/0091-7613(1988)016<0358:LPFSMI>2.3.CO;2
      [30] Spear, F.S., Kohn, M.J., 1996.Trace Element Zoning in Garnet as a Monitor of Crustal Melting.Geology, 24(12): 1099-1102. doi: 10.1130/0091-7613(1996)024<1099:TEZIGA>2.3.CO;2
      [31] Tang, J., Zheng, Y.F., Gong, B., et al., 2008.Extreme Oxygen Isotope Signature of Meteoric Water in Magmatic Zircon from Metagranite in the Sulu Orogen, China: Implications for Neoproterozoic Rift Magmatism.Geochimica et Cosmochimica Acta, 72(13): 3139-3169. https://doi.org/10.1016/j.gca.2008.04.017
      [32] Vauchez, A., Barruol, G., Tommasi, A., 1997.Why do Continents Break⁃up Parallel to Ancient Orogenic Belts? Terra Nova, 9(2): 62-66. https://doi.org/10.1111/j.1365⁃3121.1997.tb00003.x
      [33] Wickham, S.M., Oxburgh, E.R., 1985.Continental Rifts as a Setting for Regional Metamorphism.Nature, 318: 330-333. https://doi.org/10.1038/318330a0
      [34] Wilson, J.T., 1966.Did the Atlantic Close and then Re⁃Open? Nature, 211: 676-681. https://doi.org/10.1038/211676a0
      [35] Wu, Y.B., Zheng, Y.F., Tang, J., et al., 2007.Zircon U⁃Pb Dating of Water⁃Rock Interaction during Neoproterozoic Rift Magmatism in South China.Chemical Geology, 246(1-2): 65-86. https://doi.org/10.1016/j.chemgeo.2007.09.004
      [36] Zheng, Y.F., Chen, R.X., 2017.Regional Metamorphism at Extreme Conditions: Implications for Orogeny at Convergent Plate Margins.Journal of Asian Earth Sciences, 145: 46-73. https://doi.org/10.1016/j.jseaes.2017.03.009
      [37] Zheng, Y.F., Chen, R.X., Zhao, Z.F., 2009.Chemical Geodynamics of Continental Subduction⁃Zone Metamorphism: Insights from Studies of the Chinese Continental Scientific Drilling (CCSD) Core Samples.Tectonophysics, 475(2): 327-358. https://doi.org/10.1016/j.tecto.2008.09.014
      [38] Zheng, Y.F., Chen, Y.X., 2016.Continental versus Oceanic Subduction Zones.National Science Review, 3(4): 495-519. https://doi.org/10.1093/nsr/nww049
      [39] Zheng, Y.F., Fu, B., 1998.Estimation of Oxygen Diffusivity from Anion Porosity in Minerals.Geochemical Journal, 32(2): 71-89. https://doi.org/10.2343/geochemj.32.71
      [40] Zheng, Y.F., Wu, Y.B., Chen, F.K., et al., 2004.Zircon U⁃Pb and Oxygen Isotope Evidence for a Large⁃Scale 18O Depletion Event in Igneous Rocks during the Neoproterozoic.Geochimica et Cosmochimica Acta, 68(20): 4145-4165. https://doi.org/10.1016/j.gca.2004.01.007
      [41] Zheng, Y.F., Wu, Y.B., Gong, B., et al., 2007.Tectonic Driving of Neoproterozoic Glaciations: Evidence from Extreme Oxygen Isotope Signature of Meteoric Water in Granite.Earth and Planetary Science Letters, 256(1-2): 196-210. https://doi.org/10.1016/j.epsl.2007.01.026
      [42] Zheng, Y.F., Xiao, W.J., Zhao, G.C., 2013.Introduction to Tectonics of China.Gondwana Research, 23(4): 1189-1206. https://doi.org/10.1016/j.gr.2012.10.001
      [43] Zheng, Y.F., Zhao, Z.F., 2017.Introduction to the Structures and Processes of Subduction Zones.Journal of Asian Earth Sciences, 145: 1-15. https://doi.org/10.1016/j.jseaes.2017.06.034
      [44] Zheng, Y.F., Zhao, Z.F., Wu, Y.B., et al., 2006.Zircon U⁃Pb Age, Hf and O Isotope Constraints on Protolith Origin of Ultrahigh⁃Pressure Eclogite and Gneiss in the Dabie Orogen.Chemical Geology, 231(1-2): 135-158. https://doi.org/10.1016/j.chemgeo.2006.01.005
      [45] Zheng, Y.F., Zhou, J.B., Wu, Y.B., et al., 2005.Low⁃Grade Metamorphic Rocks in the Dabie⁃Sulu Orogenic Belt: A Passive⁃Margin Accretionary Wedge Deformed during Continent Subduction.International Geology Review, 47(8): 851-871. https://doi.org/10.2747/0020⁃6814.47.8.851
    • 加载中
    图(4)
    计量
    • 文章访问数:  4291
    • HTML全文浏览量:  1353
    • PDF下载量:  96
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-09-24
    • 刊出日期:  2019-12-15

    目录

      /

      返回文章
      返回