Palynological Record Revealed Anthropogenic Deforestation, Sea Level and Climate Changes since Marine Isotope Stage 5a in the Northeastern Coast of Fujian Province
-
摘要: 通过获取了位于福建省宁德市海岸带的两个钻孔,并使用孢粉分析的方法来重建古环境.光释光和放射性碳十四测年结果表明,钻孔中最老的沉积物来自于深海氧同位素(MIS5a)阶段.孢粉组合中,海相沟鞭藻出现在MIS5a,MIS3早期和早、中全新世阶段,反映了这些时段的海侵事件.MIS5a以来,孢粉组合受控于常绿栎(Quercus)和松属(Pinus),指示了周边地区一直被亚热带阔叶林和松林所覆盖,表现了偏暖的亚热带气候.因此,孢粉证据揭示了末次盛冰期时该地区不存在大幅度的降温.芒萁属孢子和草本花粉的剧增指示了晚全新世以来宁德地区人类活动对天然植被的破坏.Abstract: In this study, we analyzed pollen samples from two drilling cores located on the coast near Ningde city of Fujian Province for reconstruction paleoenvironment. Optical stimulated luminescence (OSL) and AMS 14C dating revealed that the oldest age in both cores was marine isotope stage (MIS5a). In pollen assemblages, marine dinoflagellate cysts occurred in MIS5a, early MIS3, early and middle Holocene, reflecting the transgression events in these phases. Since MIS5a, pollen assemblages were dominated by evergreen Quercus and Pinus, indicating that surrounding area was consistently covered by subtropical evergreen broadleaved forest and pine forest, which associated with warm subtropical climate. Therefore, this study confirmed that not obvious cooling occurred during the last glacial maximum (MIS2).Strong increase of Dicranopteris spores and non-arboreal pollen reflected that the human activity destroyed natural forest since the late Holocene in Ningde area.
-
Key words:
- Ningde city of Fujian province /
- pollen /
- human activity /
- sea level change /
- early last glaciation /
- marine geology
-
图 5 南海北部3个钻孔松属花粉百分比与区域海平面重建的对比
MD05-2906孔数来自Dai et al.(2015); MD05-2904孔数据来自常琳等(2013); STD235孔数据来自Yu et al.(2017); 海平面数据来自Geyh et al.(1979)和Hanebuth et al.(2011)
Fig. 5. Comparison between Pinus pollen percentages of three cores in the northern South China Sea and reconstruction of regional sea-level
图 6 全球平均相对海平面重建及福建沿海地区高海平面时段
黑色棒和虚线框长度对应于下部年代,分别指示了本研究和他人研究揭示的高海平面时段(王绍鸿等,1994; 马明明等,2016).全球平均相对海平面重建结果修改自文献Rohling et al.(2014)
Fig. 6. Reconstruction of global sea-level and high sea-level intervals in coasts of Fujian Province
表 1 NDGK2和NDQK5钻孔的AMS 14C测年结果
Table 1. AMS 14C and OSL dating samples and ages
样品号 深度(m) 样品 AMS 14C年代(a B.P.) 树轮校正后的年代范围2σ(95.4%)(a B.P.) NDGK2 14C-1 8.00 植物残体 580±20 641~589 NDGK2 14C-2 14.70 螺 4 580±20 5 323~5 284 NDGK2 14C-3 20.90 碳化植物残体 2 230±20 2 270~2 155 NDGK2 14C-4 24.90 片状贝壳碎片 8 195±25 9 258~9 032 NDGK2 14C-5 25.75 贝壳碎屑 8 225±25 9 290~9 090 NDGK2 14C-5-2 25.75 植物残体 7 995±25 8 999~8 770 NDGK2 14C-6 31.85 碳化植物残体 14 450±35 17 811~17 450 NDGK2 14C-7 33.10 碳化植物残体 36 320±230 41 485~40 408 NDGK2 14C-8 35.10 碳化植物残体 > 43 320 超过测试范围 NDGK2 14C-9 39.00 碳化植物残体 33 960±180 38 885~38 001 NDQK5 14C-1 7.35 螺 6 560±25 7 508~7 426 NDQK5 14C-2 12.47 螺 7 330±35 8 200~8 024 NDQK5 14C-3 13.40 螺 7 365±25 8 220~8 154 NDQK5 14C-4 18.90 双壳 8 120±35 9 134~8 993 NDQK5 14C-5 22.90 泥炭 22 280±70 26 852~26 206 NDQK5 14C-6 23.60 碳化植物残片 29 660±120 34 061~33 586 NDQK5 14C-7 30.10 碳化植物残体 41 500±300 45 541~44 376 NDQK5 14C-8 34.35 炭化木块 > 43 320 超过测试范围 NDQK5 14C-9 36.70 炭化植物根茎 > 43 320 超过测试范围 表 2 NDGK2和NDQK5钻孔的光释光测年结果
Table 2. NDGK2 and NDQK514C OSL dating results of the borehole
样品编号 深度(m) Th (10-6) error (10-6) U (10-6) error (10-6) 年龄(ka) 误差(ka) 粒径(µm) NDGK2-OSL-2 41.20~41.30 3.85 2.61 3.16 3.54 92.2 7.4 38~63 NDGK2-OSL-3 46.90~47.00 0.15 0.15 0.15 0.15 38~63 NDGK2-OSL-4 48.90~49.00 1.05 1.40 1.44 1.95 64.8 6.3 38~63 NDGK2-OSL-5 53.30~53.40 0.06 0.06 0.06 0.06 92.2 6.9 38~63 NDGK2-OSL-6 54.45~54.55 11.90 11.40 10.30 18.30 67.0 8.2 38~63 NDQK5-OSL-2 32.90~33.00 1.05 1.40 1.44 1.95 64.5 4.7 38~63 NDQK5-OSL-3 42.90~43.00 11.90 11.40 10.30 18.30 7.4 2.9 38~63 NDQK5-OSL-4 46.90~47.00 11.90 11.40 10.30 18.30 36.8 0.7 38~63 -
[1] Chang, L., Luo, Y.L, Sun, X.J., 2013. Paleoenvironmental Change Based on a Pollen Record from Deep Seacore MD05-2904 from the Northern South China Sea during the past 20 000 Years. Chinese Science Bulletin, 58(30):3079-3087 (in Chinese with English abstract). doi: 10.1360/972012-786 [2] Dai, L., Weng, C. Y., Lu, J., et al., 2014. Pollen Quantitative Distribution in Marine and Fluvial Surface Sediments from the Northern South China Sea:New Insights into Pollen Transportation and Deposition Mechanisms. Quaternary International, 325:136-149. https://doi.org/10.1016/j.quaint.2013.09.031 [3] Dai, L., Weng, C. Y., Mao, L. M., 2015. Patterns of Vegetation and Climate Change in the Northern South China Sea during the Last Glaciation Inferred from Marine Palynological Records. Palaeogeography, Palaeoclimatology, Palaeoecology, 440:249-258. https://doi.org/10.1016/j.palaeo.2015.08.041 [4] Deng, Z. H., Hung, H. C., Fan, X. C., et al., 2018. The Ancient Dispersal of Millets in Southern China:New Archaeological Evidence. The Holocene, 28(1):34-43. https://doi.org/10.1177/0959683617714603 [5] Geyh, M. A., Streif, H., Kudrass, H. R., 1979. Sea-Level Changes during the Late Pleistocene and Holocene in the Strait of Malacca. Nature, 278(5703):441-443. https://doi.org/10.1038/278441a0 [6] Dykoski, C., Edwards, R., Cheng, H., et al., 2005. A High-Resolution, Absolute-Dated Holocene and Deglacial Asian Monsoon Record from Dongge Cave, China. Earth and Planetary Science Letters, 233(1/2):71-86. https://doi.org/10.1016/j.epsl.2005.01.036 [7] Hanebuth, T. J. J., Voris, H. K., Yokoyama, Y., et al., 2011. Formation and Fate of Sedimentary Depocentres on Southeast Asia's Sunda Shelf over the Past Sea-Level Cycle and Biogeographic Implications. Earth-Science Reviews, 104(1/2/3):92-110. https://doi.org/10.1016/j.earscirev.2010.09.006 [8] Igarashi, Y., Oba, T., 2006. Fluctuations in the East Asian Monsoon over the Last 144 ka in the Northwest Pacific Based on a High-Resolution Pollen Analysis of IMAGES Core MD01-2421. Quaternary Science Reviews, 25(13/14):1447-1459. https://doi.org/10.1016/j.quascirev.2005.11.011 [9] Liew, P. M., Lee, C. Y., Kuo, C. M., 2006. Holocene Thermal Optimal and Climate Variability of East Asian Monsoon Inferred from Forest Reconstruction of a Subalpine Pollen Sequence, Taiwan. Earth and Planetary Science Letters, 250(3/4):596-605. https://doi.org/10.1016/j.epsl.2006.08.002 [10] Lin, P., Qiu, X., Wu, Z.Q., et al., 1990. Vegetations of Fujian. Fujian Science and Technology Publishing House, Fuzhou, 91-116(in Chinese with English abstract). [11] Liu, J., Saito, Y., Wang, H., et al., 2009. Stratigraphic Development during the Late Pleistocene and Holocene Offshore of the Yellow River Delta, Bohai Sea. Journal of Asian Earth Sciences, 36(4/5):318-331. https://doi.org/10.1016/j.jseaes.2009.06.007 [12] Liu, L. J., Li, C. A., Jie, D. M., et al., 2018. Paleoclimate Recorded by Phytolith in Anguli-Nuur Lake since Mid-Late Holocene. Earth Science, 43(11):4138-4148 (in Chinese with English abstract). http://www.researchgate.net/publication/330193463_Paleoclimate_Recorded_by_Phytolith_in_Anguli-Nuur_Lake_since_Mid-Late_Holocene [13] Liu, Y., Sun, Q. L., Fan, D. D., et al., 2018. Early to Middle Holocene Sea Level Fluctuation, Coastal Progradation and the Neolithic Occupation in the Yaojiang Valley of Southern Hangzhou Bay, Eastern China. Quaternary Science Reviews, 189:91-104. https://doi.org/10.1016/j.quascirev.2018.04.010 [14] Luo, C.W., Ma, Y.Z., Wang, K. et al., 2019. Vegetation and Climate Inferred from Pollen Record in East Asian Region During MIS 5:A Review. Advances in Earth Science, 34:540-551 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DXJZ201905012.htm [15] Ma, M.M., Liu, X.M., Zhou, G.H., et al. 2016. A Review of Late Quaternary Transgression Studies and Some Basic Questions in Fujian Coastal Area. Journal of Subtropical Resources and Environment, 11(3):9-19 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-FJDL201603003.htm [16] Ma, T., Zheng, Z., Rolett, B. V., et al., 2016. New Evidence for Neolithic Rice Cultivation and Holocene Environmental Change in the Fuzhou Basin, Southeast China. Vegetation History and Archaeobotany, 25(4):375-386. https://doi.org/10.1007/s00334-016-0556-0 [17] Oppo, D. W., Sun, Y. B., 2005. Amplitude and Timing of Sea-Surface Temperature Change in the Northern South China Sea:Dynamic Link to the East Asian Monsoon. Geology, 33(10):785. https://doi.org/10.1130/g21867.1 [18] Rohling, E. J., Foster, G. L., Grant, K. M., et al., 2014. Sea-Level and Deep-Sea-Temperature Variability over the Past 5.3 Million Years. Nature, 508(7497):477-482. https://doi.org/10.1038/nature13230 [19] Rolett, B. V., Zheng, Z., Yue, Y. F., 2011. Holocene Sea-Level Change and the Emergence of Neolithic Seafaring in the Fuzhou Basin (Fujian, China). Quaternary Science Reviews, 30(7/8):788-797. https://doi.org/10.1016/j.quascirev.2011.01.015 [20] Reimer, P. J., Bard, E., Bayliss, A., et al., 2013. IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0-50 000 Years Cal BP. Radiocarbon, 55(4):1869-1887. https://doi.org/10.2458/azu_js_rc.55.16947 [21] Ruddiman, W.F., 2008. Earth's Climate Past and Future, Second Edition. W.H. Freeman and Company, New York, 261-268. [22] Sun, X.J., Luo, Y.L., 2001. Records of Deep-Sea Pollen since 280 ka in Northern South China Sea. Science China Series D:Earth Sciences, 31(10):846-853 (in Chinese with English abstract). [23] Wang, P. X., Clemens, S., Beaufort, L., et al., 2005. Evolution and Variability of the Asian Monsoon System:State of the Art and Outstanding Issues. Quaternary Science Reviews, 24(5/6):595-629. https://doi.org/10.1016/j.quascirev.2004.10.002 [24] Wang, S.H., Yang, J.M., Zeng, C.S., et al., 1994. Sea Level Changes since Late Pleistocene along Fujian Coast. Taiwan Strait, 13(2):166-175 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TWHX199402009.htm [25] Wang, Y. J., 2001. A High-Resolution Absolute-Dated Late Pleistocene Monsoon Record from Hulu Cave, China. Science, 294(5550):2345-2348. https://doi.org/10.1126/science.1064618 [26] Wang, Z. H., Jones, B. G., Chen, T., et al., 2013. A Raised OIS 3 Sea Level Recorded in Coastal Sediments, Southern Changjiang Delta Plain, China. Quaternary Research, 79(3):424-438. https://doi.org/10.1016/j.yqres.2013.03.002 [27] Wright, J. D., Sheridan, R. E., Miller, K. G., et al., 2009. Late Pleistocene Sea Level on the New Jersey Margin:Implications to Eustasy and Deep-Sea Temperature. Global and Planetary Change, 66(1/2):93-99. https://doi.org/10.1016/j.gloplacha.2008.03.013 [28] Wu, G.X., Sun, X.J., 2000. Distribution of Dinoflagellate Cysts in Surface Sediments from South China Sea. Tropic Oceanology, 19(1):8-16(in Chinese with English abstract). [29] Wu, W., 2018. New Thinking on the Transmission Route of Rice Agriculture in Southeast Coast of China During Neolithic Age. Agricultural Archaeology, (4):61-65 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-NOSE201804010.htm [30] Wu, Z.Y., 1980. Vegetation Atlas of China. Science Press, Beijing, 1-1375 (in Chinese). [31] Xiao, J.Y., Lv, H.B., Zhou, W.J., 2007. Palynological Vegetation and Environmental Evolution of Taihu Lake in Jiangxi Province since the Last Glacial Maximum. Science China Series D:Earth Sciences, 37(6):789-797 (in Chinese with English abstract). [32] Xu, D., Lu, H., Wu, N., et al., 2013. Asynchronous Marine-Terrestrial Signals of the last Deglacial Warming in East Asia Associated with Low-And High-Latitude Climate Changes. Proceedings of the National Academy of Sciences, 110(24):9657-9662. https://doi.org/10.1073/pnas.1300025110 [33] Yang, X. Y., Chen, Q. H., Ma, Y. C., et al., 2018. New Radiocarbon and Archaeobotanical Evidence Reveal the Timing and Route of Southward Dispersal of Rice Farming in South China. Science Bulletin, 63(22):1495-1501. https://doi.org/10.1016/j.scib.2018.10.011 [34] Yin, H.F., Yu, J.X., Luo, G.M., et al., 2018. Biotic Influence on the Formation of Icehouse Climates in Geologic History. Earth Science, 43(11):3809-3822 (in Chinese with English abstract). [35] Yu, S. H., Zheng, Z., Chen, F., et al., 2017. A last Glacial and Deglacial Pollen Record from the Northern South China Sea:New Insight into Coastal-Shelf Paleoenvironment. Quaternary Science Reviews, 157:114-128. https://doi.org/10.1016/j.quascirev.2016.12.012 [36] Yue, Y. F., Zheng, Z., Huang, K. Y., et al., 2012. A Continuous Record of Vegetation and Climate Change over the Past 50, 000 Years in the Fujian Province of Eastern Subtropical China. Palaeogeography, Palaeoclimatology, Palaeoecology, 365-366:115-123. https://doi.org/10.1016/j.palaeo.2012.09.018 [37] Yue, Y.F., Zheng, Z. Rolett, B.V., et al. 2016. Vegetation and Environmental Changes Inferred from a Holocene Pollen Spectrum in the Lower Reaches of Min River. Tropical Geography, 36(3):417-426 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-RDDD201603011.htm [38] Zheng, Z., Huang, K.Y., Deng, Y., et al., 2013. Palynological Records of 200 ka of Okinawa trough and Paleoenvironmental Reconstruction of Glacial-Interglacial Cycle. Science China Series D:Earth Sciences, 43(8):1231-1248 (in Chinese with English abstract). doi: 10.1007/s11430-013-4619-0 [39] Zheng, Z., Li, Q. Y., 2000. Vegetation, Climate, and Sea Level in the Past 55, 000 Years, Hanjiang Delta, Southeastern China. Quaternary Research, 53(3):330-340. https://doi.org/10.1006/qres.1999.2126 [40] Zheng, Z., Yang, S. X., Deng, Y., et al., 2011. Pollen Record of the Past 60 ka BP in the Middle Okinawa Trough:Terrestrial Provenance and Reconstruction of the Paleoenvironment. Palaeogeography, Palaeoclimatology, Palaeoecology, 307(1/2/3/4):285-300. https://doi.org/10.1016/j.palaeo.2011.05.026 [41] 常琳, 罗运利, 孙湘君, 2013.南海北部MD05-2904站位2万年以来孢粉记录的古环境变.科学通报, 58(30):3079-3087. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201330010.htm [42] 林鹏, 丘喜昭, 吴志强, 等, 1990.福建植被.福州:福建科学技术出版社, 91-116. [43] 刘林敬, 李长安, 介冬梅, 等, 2018.中-晚全新世以来安固里淖气候演变的植硅体记录.地球科学, 43(11): 4138-4148. doi: 10.3799/dqkx.2018.614 [44] 雒聪文, 马玉贞, 王凯, 等, 2019.东亚地区MIS 5时期孢粉记录的植被与气候研究进展.地球科学进展, 34:540-551. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201905012.htm [45] 马明明, 刘秀铭, 周国华, 等, 2016.福建沿海地区晚第四纪海侵研究进展及存在的问题.亚热带资源与环境学报, 11(3):9-19. doi: 10.3969/j.issn.1673-7105.2016.03.002 [46] 孙湘君, 罗运利, 2001.南海北部280 ka以来深海花粉记录.中国科学D辑, 31(10):846-853. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200110007.htm [47] 王绍鸿, 杨建明, 曾从盛, 等, 1994.福建沿海晚更新世以来的海平面变化.台湾海峡, 13(2):166-175. https://www.cnki.com.cn/Article/CJFDTOTAL-TWHX199402009.htm [48] 吴国瑄, 孙湘君, 2000.南海表层沉积沟鞭藻囊孢的分布特征.热带海洋, 19(1):8-16. doi: 10.3969/j.issn.1009-5470.2000.01.002 [49] 吴卫, 2018.新石器时代稻作农业在中国东南沿海传播路径的新思考.农业考古, (4):61-65. https://www.cnki.com.cn/Article/CJFDTOTAL-NOSE201804010.htm [50] 吴征镒, 1980.中国植被.北京:科学技术出版社, 1-1375. [51] 萧家仪, 吕海波, 周卫健, 2007.末次盛冰期以来江西大湖孢粉植被与环境演变.中国科学D辑:地球科学, 37(6):789-797. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200706009.htm [52] 殷鸿福, 喻建新, 罗根明, 等, 2018.地史时期生物对冰室气候形成的作用.地球科学, 43(11):3809-3822. doi: 10.3799/dqkx.2018.117 [53] 乐远福, 郑卓, Rolett, B.V., 等, 2016.闽江下游全新世孢粉记录的植被与环境变化.热带地理, 36(3):417-426. https://www.cnki.com.cn/Article/CJFDTOTAL-RDDD201603011.htm [54] 郑卓, 黄康有, 邓韫, 等, 2013.冲绳海槽200 ka的孢粉记录及冰期-间冰期旋回古环境重建.中国科学:地球科学, 43(8):1231-1248. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201308002.htm