• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    湖南锡田钨锡多金属矿田燕山期NE向断层演化历史及其成矿意义

    刘飚 吴堑虹 李欢 奚小双 孔华 曹荆亚 蒋江波 林智炜 吴经华 梁伟

    刘飚, 吴堑虹, 李欢, 奚小双, 孔华, 曹荆亚, 蒋江波, 林智炜, 吴经华, 梁伟, 2021. 湖南锡田钨锡多金属矿田燕山期NE向断层演化历史及其成矿意义. 地球科学, 46(1): 43-58. doi: 10.3799/dqkx.2019.263
    引用本文: 刘飚, 吴堑虹, 李欢, 奚小双, 孔华, 曹荆亚, 蒋江波, 林智炜, 吴经华, 梁伟, 2021. 湖南锡田钨锡多金属矿田燕山期NE向断层演化历史及其成矿意义. 地球科学, 46(1): 43-58. doi: 10.3799/dqkx.2019.263
    Liu Biao, Wu Qianhong, Li Huan, Xi Xiaoshuang, Kong Hua, Cao Jingya, Jiang Jiangbo, Lin Zhiwei, Wu Jinghua, Liang Wei, 2021. Yanshanian NE-Striking Fault Evolution and Its Implications on Mineralization in the Xitian W-Sn Polymetallic Ore Field, Hunan Province. Earth Science, 46(1): 43-58. doi: 10.3799/dqkx.2019.263
    Citation: Liu Biao, Wu Qianhong, Li Huan, Xi Xiaoshuang, Kong Hua, Cao Jingya, Jiang Jiangbo, Lin Zhiwei, Wu Jinghua, Liang Wei, 2021. Yanshanian NE-Striking Fault Evolution and Its Implications on Mineralization in the Xitian W-Sn Polymetallic Ore Field, Hunan Province. Earth Science, 46(1): 43-58. doi: 10.3799/dqkx.2019.263

    湖南锡田钨锡多金属矿田燕山期NE向断层演化历史及其成矿意义

    doi: 10.3799/dqkx.2019.263
    基金项目: 

    中国地质调查局整装勘查区 12120114052101

    详细信息
      作者简介:

      刘飚(1989-), 男, 博士研究生, 矿产普查与勘探专业.E-mail:Biaoliu@csu.edu.cn

      通讯作者:

      李欢, ORCID:0000-0001-5211-8324.E-mail:lihuan@csu.edu.cn

    • 中图分类号: P571

    Yanshanian NE-Striking Fault Evolution and Its Implications on Mineralization in the Xitian W-Sn Polymetallic Ore Field, Hunan Province

    • 摘要: 为了确定湖南锡田矿田燕山期NE向断层演化历史、蚀变特征及与钨锡成矿关系本文调查了矿田内燕山期断层野外宏观特征,对断层中充填石英脉进行了显微鉴定、阴极发光、含矿元素分析,结果显示:(1)断层以NE60°~70°平行分布于茶汉盆地南北两侧,均倾向茶汉盆地,断层的陡倾、棱角状角砾及梳状石英等指示了断层的张性性质;(2)断层经历了3期流体活动,第一期的石英脉中石英颗粒相对粗大(0.5~15.0 mm),局部发育破裂与变形纹,石英可为断层角砾;第二期与第三期沿断层中张性裂隙充填的石英脉,粒径较小(0.01~2.00 mm),第二期石英发育微裂隙,而第三期石英为自形长柱状,无变形;(3)第一期与第三期石英脉中不含云母,第二期则富含绢云母,其W、Sn元素含量高,并有少量白钨矿、黄铁矿等矿物,其组分演化特征与区内矿床热液组分演化趋势相似;(4)锡田地区燕山期钨锡矿化分布与NE向系列断层关系密切,显示了茶汉盆地两侧由南向北分带格局.作者认为在燕山期华南伸展背景控制下,地幔上隆及重熔岩浆上侵产生的综合伸展是NE向系列断层形成的可能机制,NE向系列断层的张性环境是岩浆热液聚集的有利因素,为成矿热液运移提供了通道.

       

    • 图  1  湖南锡田矿田燕山期构造纲要图

      伍式崇等(2013)修改

      Fig.  1.  The structural map during Yanshanian in Xitian ore field, Hunan Province

      图  2  锡田矿田断层产状玫瑰图

      a.邓阜仙地区断层走向玫瑰花图;b.邓阜仙地区法向等密图; c.锡田地区断层走向玫瑰花图;d.锡田地区断层法向等密图; e.宁冈地区断层走向玫瑰花图;f.宁冈地区断层法向等密图;等密图均为下半球投影

      Fig.  2.  The rose diagram of joint of fault in the Xitian ore field

      图  3  NE向正断层野外宏观特征

      a.构造破碎带(鸡冠石断裂西段);b.构造破碎带及充填的石英脉(光明断裂西段);c.构造破碎带及充填的石英脉(茶汉断裂西段);d.硅化破碎带(宁冈断裂西段);e.构造破碎带, 断层泥, 充填的石英脉(光明断裂西段);f构造破碎带中的花岗岩角砾, 为硅质胶结(光明断裂西段);g.发育在厚层石英砂岩构造破碎带(上寨断裂西段);h.隐爆角砾岩(茶汉断裂西段);i.煌斑岩脉(茶汉断裂东段)

      Fig.  3.  The field photos of the NE normal fault

      图  4  断层角砾岩显微构造与热液活动

      a.断层两侧轻微破裂花岗岩;b.构造破碎带中的破裂岩;c.碎粉岩;d.断层泥砾岩;e.断层中充填石英脉(星高断裂);f.断层中充填煌斑岩脉(茶汉断裂东段);g.第二期石英脉穿切第一期石英脉与印支期花岗岩(锡湖断裂);h.第二期石英脉穿切第一期石英脉(茶汉断裂);i.第三期石英脉穿切第二期石英脉(狗打栏断裂);Qz.石英;Pl.长石

      Fig.  4.  The micro textures of the breccia in the NE-extending faults and fault fluid activity

      图  5  NE向断层中不同期次石英脉的显微照片与CL图

      a.第一期石英脉中破裂、碎粉状石英;b.第一期石英脉中的石英发育变形纹与强波状消光;c.第二期石英脉沿第一期石英脉的裂隙分布, 并富含云母;d.第二期石英脉中的粒状石英;e.第二期的石英脉中发育少量白钨矿;f.第三期长柱状并呈梳状排列石英;g.第一期石英的破裂特征;h.第二期石英只发育裂隙;i.第三期石英脉穿切第二期石英; a~c, e, g, h为锡湖断层, d, f, i为狗打栏断层;a~d与f为正交偏光照片, e为单偏光照片, g~i为CL照;Qz.石英;Sch.白钨矿

      Fig.  5.  The photomicrograph and cathodoluminescence of quartz

      图  6  NE向系列断层大地构造背景图

      Fig.  6.  The tectonic background of normal faults in the Xitian ore field

      图  7  锡田矿田成矿模式

      Fig.  7.  The regional metallogenic model in the Xitian ore field

      表  1  主要断层带控制点与样品信息表

      Table  1.   The samples information of fault in Xitian ore field

      点号 坐标X 坐标Y 产状(°) 断层性质
      6D1115-4 2975161 474692 290∠60 正断层
      6D1115-7 2975436 475521 355∠75 正断层
      6D1115-8 2975007 474940 295∠55 正断层
      6D1115-13 2976547 474392 310∠65 正断层
      6D1118-3 2973279 476869 335∠86 正断层
      6D1118-10 2974756 477507 320∠70 正断层
      6D1119-1 2977036 475800 320∠70 正断层
      6D1119-9 2971921 479268 335∠70 正断层
      6D1115-6 2975314 475245 195∠60 正断层
      6D1115-12 2975408 474113 310∠70 正断层
      6D1115-14 2976392 474640 365∠60 正断层
      6D1115-16 2976332 474253 300∠70 正断层
      6D1116-2 2971860 479047 150∠80 正断层
      6D1118-5 2969648 476752 350∠75 正断层
      6D1119-3 2977745 475443 305∠60 正断层
      6D1119-7 2971676 478716 350∠75 正断层
      6D1119-8 2971798 479047 180∠77 正断层
      6D1119-12 2971889 479903 350∠50 正断层
      7D0927-1 2972018 477790 10∠75 正断层
      7D0927-2 2971800 479140 330∠60 正断层
      7D0927-3 2971897 479893 330∠75 正断层
      7D0927-6 2981366 480291 310∠75 正断层
      7D0927-7 2980671 477903 300∠80 正断层
      7D0927-8 2980627 477860 295∠70 正断层
      7D0927-10 2980195 477859 305∠66 正断层
      7D0927-11 2979837 477694 340∠80 正断层
      7D0929-21 2969228 477003 330∠75 正断层
      7D0929-27 2969031 476919 330∠70 正断层
      7D0924-10 2968216 469509 330∠72 正断层
      6D1205-4 2973909 470301 300∠78 正断层
      6D1208-1 2968779 480920 330∠78 正断层
      6D1208-2 2968656 480561 330∠72 正断层
      7D0927-2 2957282 489283 140∠85 正断层
      6D0823-18 2959120 487249 345∠80 正断层
      6D0822-8 2963644 490605 160∠57 正断层
      6D0822-10 2965590 487900 150∠81 正断层
      6D0823-16 2960202 486532 145∠70 正断层
      6D0823-14 2960830 487843 125∠70 正断层
      6D0816-12 2960721 483896 170∠60 正断层
      6D0816-13 2960744 484000 160∠61 正断层
      6D0817-10 2957170 482685 170∠86 正断层
      6D1206-1 2989525 480180 171∠72 正断层
      6D1206-5 2989495 479794 180∠40 正断层
      6D1206-7 2989589 478801 150∠50 正断层
      6D1207-1 2989872 475246 135∠72 正断层
      6D1207-3 2989870 476652 160∠73 正断层
      6D1207-6 2990054 476624 150∠75 正断层
      6D1207-7 2989899 477258 180∠90 正断层
      6D1207-10 2989899 477479 160∠72 正断层
      6D0430-3 2985021 464045 150∠70 正断层
      7D0430-4 2984610 464153 150∠70 正断层
      7D0502-5 2981859 460684 150∠75 正断层
      7D0502-6 2981762 460598 150∠75 正断层
      7D0503-1 2983476 460809 155∠70 正断层
      7D0503-2 2988424 463305 155∠71 正断层
      6D0811-2 2990355 468407 170∠68 正断层
      6D0811-3 2991283 468881 170∠70 正断层
      6D0811-4 2992344 470841 155∠70 正断层
      6D0811-5 2992218 471915 160∠72 正断层
      6D0811-8 2989416 472819 150∠55 正断层
      6D0605-1 2998308 474023 180∠69 正断层
      6D0605-2 2997662 474021 180∠69 正断层
      6D0602-2 2993281 465497 160∠60 正断层
      5D0616-6 2994480 476448 170∠80 正断层
      5D6-1 154∠45 正断层
      5D8-2 125∠79 正断层
      8D6-2 155∠30 正断层
      10D10-1 不清
      12D1-1 165∠20 正断层
      7D0925-17 2963196 474680 150∠85 正断层
      7D0926-12 2966227 480895 150∠75 正断层
      7D0926-12 2966233 480905 150∠76 正断层
      7D0926-12 2966240 480925 150∠78 正断层
      7D0927-1 2957307 489264 110∠60 正断层
      6D0816-14 2960661 484136 155∠62 正断层
      6D0817-1 2962312 476791 150∠60 正断层
      6D0817-2 2959665 481425 345∠54 正断层
      6D0817-04 2958172 480600 110∠70 正断层
      6D0817-05 2957469 480579 165∠80 正断层
      6D0817-08 2957382 482909 220∠70 正断层
      6D0817-06 2956976 482496 155∠84 正断层
      6D0817-11 2957044 482633 140∠86 正断层
      下载: 导出CSV

      表  2  锡田矿田断层蚀变岩成矿元素含量及特征值统计表

      Table  2.   The ore-forming elements content and statistical value of alteration rock in the Xitian ore field

      样品编号 位置 样品 断裂名称 Ag Bi Cu Mo Pb Sn W Zn
      24D1 垄上村 断层泥 上寨断裂 24.50 108.00 919 0.5 300 1 560 150 846
      24D2 断层泥 上寨断裂 5.90 47.00 1 080 2.0 84 641 2 470 466
      24D3 断层泥 上寨断裂 0.50 0.15 75 14.0 21 143 446 141
      24D4 断层泥 上寨断裂 0.10 0.15 46 1.0 7 128 77 182
      24D11-2 断层泥 上寨断裂 0.10 0.15 19 1.0 36 125 178 91
      24D13-1 断层泥 上寨断裂 0.10 0.15 13 2.0 12 116 114 122
      24D9-1 断层泥 上寨断裂 0.10 0.15 6 2.0 44 43 290 24
      24D10-1 断层泥 上寨断裂 0.80 0.15 37 1.0 57 113 292 62
      24D15-1 断层泥 上寨断裂 0.10 0.15 42 2.0 18 36 284 72
      1D6-3 麦源村 硅化蚀变岩 鸡冠石断裂 0.25 1.00 94 5.0 58 12 11 66
      2D4-2 卧龙村 硅化蚀变岩 鸡冠石断裂 0.25 1.00 6 3.0 55 21 6 74
      2D5-3 沛江村 硅化蚀变岩 鸡冠石断裂 0.25 1.00 2 2.0 8 2 2 6
      3D6-1 攸县 硅化蚀变岩 鸡冠石断裂 0.25 1.00 102 0.5 54 12 21 101
      5D4-2 东坪村 硅化蚀变岩 茶汉断裂 0.25 1.00 2 1.0 9 18 3 19
      5D6-1 茶汉断裂 硅化蚀变岩 茶汉断裂 1.00 1.00 2 7.0 130 1 8 14
      5D8-2 湘东钨矿 硅化蚀变岩 茶汉断裂 1.40 1.00 409 2.0 34 163 28 1 570
      8D6-2 硅化蚀变岩 茶汉断裂 0.25 5.00 6 2.0 4 10 10 2
      10D10-1 断层泥 茶汉断裂 2.00 11.00 137 5.0 46 162 20 173
      12D1-1 断层泥 茶汉断裂 2.60 36.00 127 5.0 53 143 25 320
      克拉克值 0.07 0.17 26 0.5 15 1.4 0.6 76
      平均值 2.00 11.00 164 3 54 181 233 229
      标准差 5.60 27.00 310 3 67 363 557 383
      变异系数 3.5 3.0 1.9 1.0 1.2 2.0 2.4 1.7
      富集系数 31 67 6 6 4 130 389 3
      注:①中国东部大陆地壳, 单位:10-6;富集系数为元素平均含量与克拉克值的比值, 变异系数为标准差与平均值的比值.
      下载: 导出CSV
    • [1] Bai, D.Y., Huang, J.Z., Li, J.D., et al., 2007.Multiple Geological Elements Constraint on the Mesozoic Tectonic Evolution of South China: Apocalypse of the Mesozoic Geological Evolution in Southeastern Hunan and the Hunan-Guangdong-Jiangxi Border Area. Geotectonica et Metallogenia, 31(1):1-13 (in Chinese with English abstract). http://www.cqvip.com/QK/90781X/200701/23819387.html
      [2] Bai, D.Y., Li, Y.M., Zhong, X., et al., 2018.Geological Features, Activity History and Tectonic Attribute of NW-Trending Changde-Anren Fault in Hunan. Earth Science, 43(7):2496-2514 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201807022.htm
      [3] Bai, D.Y., Liu, B., Ni, Y.J., et al., 2010.Characteristics of Basin-Controlling Faults, Basin Type and Dynamic Mechanisms of the Xiangyin Sag in Northeastern Hunan. Resources Survey & Environment, 31(3):157-168 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HSDZ201003000.htm
      [4] Bai, D.Y., Ma, T.Q., Wang, X.H., et al., 2008.Progress in the Study of Mesozoic Tectono- Magmatism and Mineralization in the Central Segment of the Nanling Mountains-Summary of Major Achievements of the 1:250, 000 Geological Survey in Southeastern Hunan. Geology in China, 35(3):436-455 (in Chines with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_geology-in-china_thesis/0201252107431.html
      [5] Cai, Y., Lu, J.J., Ma, D.S., et al., 2013.Chronology and Geochemical Characteristics of Late Indosinian Dengfuxian Two-mica Granite in Eastern Hunan Province, China, and its Significance. Acta Petrologica Sinica, 29(12):4215-4231 (in Chinese with English abstract). http://www.researchgate.net/publication/285966516_Chronology_and_geochemical_characteristics_of_Late_Indosinian_Dengfuxian_two-mica_granite_in_eastern_Hunan_Province_China_and_its_significance
      [6] Cai, Y., Ma, D.S., Lu, J.J., et al., 2013.Re-Os Geochronology and S Isotope Geochemistry of Dengfuxian Tungsten Deposit, Hunan Province, China. Acta Petrologica Sinica, 28(12):3798-3808 (in Chinese with English abstract).
      [7] Cao, J. Y., Wu, Q. H., Yang, X. Y., et al., 2018. Geochronology and Genesis of the Xitian W-Sn Polymetallic Deposit in Eastern Hunan Province, South China: Evidence from Zircon U-Pb and Muscovite Ar-Ar Dating, Petrochemistry, and Wolframite Sr-Nd-Pb Isotopes. Minerals, 8(3): 111. https://doi.org/10.3390/min8030111
      [8] Chen, G.D., Yang, X.Y., Liang, X.Q., et al., 2003. Some Cruxes of Dynamics Study on Activated Region. Chinese Journal of Geology, 37(3):320-331 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKX200203008.htm
      [9] Chen, Y.C., Wang, D.H., Xu, Z.G., et al., 2014. Outline of Regional Metallogeny of Ore Deposits Associated with the Mesozoic Magmatism in South China. Geotectonica et Metallogenia, 38(2):219-229 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DGYK201402002.htm
      [10] Deng, X.T., Cao, J.Y., Wu, Q.H., et al., 2017.Difference of sources of the Yanshanian Xitian and Dengfuxian Granites in Hunan Province and Their Implication. Journal of Central South University (Science and Technology), 48(1):212-222 (in Chinese with English abstract).
      [11] Dong, C.G., Yu, Y.C., Liang, X.Q., et al., 2018. Re-Os Dating of Molybdenite from the Ore-Bearing Quartz Veins in the Xiangdong Tungsten Deposit (Hunan Province) and Its Geological Significance. Geotectonica et Metallogenia, 42(1):84-95 (in Chinese with English abstract).
      [12] He, M., Liu, Q., Hou, Q.L., et al., 2018.Petrogenesis of the Dengfuxian Granite, Eastern Hunan Province and Constraints on Mineralization: Evidences from Zircon and Cassiterite U-Pb Geochronology, Zircon Hf-O Isotopes and Whole-Rock Geochemistry. Acta Petrologica Sinica, 34(3):637-655 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201803007.htm
      [13] Huang, H.X., Chen, Z.H., Lu, Y.F., et al., 2014. Zircon U-Pb Dating for Xiangdong Tungsten Mineralization Rocks and Its Geological Significance. Journal of East China Institute of Technology, 37(1):26-36 (in Chinese with English abstract). doi: 10.1080/02533839.2012.751331
      [14] Jiang, Y. H., Jiang, S. Y., Dai, B. Z., et al., 2009. Middle to Late Jurassic Felsic and Mafic Magmatism in Southern Hunan Province, Southeast China: Implications for a Continental Arc to Rifting. Lithos, 107(3/4): 185-204. https://doi.org/10.1016/j.lithos.2008.10.006
      [15] Lapierre, H., Jahn, B. M., Charvet, J., et al., 1997. Mesozoic Felsic Arc Magmatism and Continental Olivine Tholeiites in Zhejiang Province and Their Relationship with the Tectonic Activity in Southeastern China. Tectonophysics, 274(4): 321-338. https://doi.org/10.1016/s0040-1951(97)00009-7
      [16] Liang, X. Q., Dong, C. G., Jiang, Y., et al., 2016. Zircon U-Pb, Molybdenite Re-Os and Muscovite Ar-Ar Isotopic Dating of the Xitian W-Sn Polymetallic Deposit, Eastern Hunan Province, South China and its Geological Significance. Ore Geology Reviews, 78: 85-100. https://doi.org/10.1016/j.oregeorev.2016.0.018
      [17] Liu, B., Wu, Q.H., Xi, X.S., et al., 2018. Mineralization Zone Styles and Mechanism of Xitian Tin-Tungsten Polymetallic Orefield, Hunan Province. Journal of Central South University (Science and Technology), 49(3):633-641 (in Chinese with English abstract). http://www.researchgate.net/publication/327302150_Mineralization_zone_styles_and_mechanism_of_Xitian_Tin-Tungsten_Polymetallic_orefield_Hunan_Province
      [18] Liu, Y.H., Fu, J.M., Long, B.L., et al., 2006.He and Ar Isotopic Components of Main Tin Deposits from Central Nanling Region and Its Signification. Journal of Jilin University(Earth Science Edition), 36(5):774-780 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ200605018.htm
      [19] Mao, J., 1997. Metallogenic Speciality of Super Giant Polymetallic Tungsten Deposit: Taking the Shizhuyuan Deposit as Example. Scientia Geologica Sinica, 32(3):351-363 (in Chines with English abstract). http://www.researchgate.net/publication/287565205_Metallogenic_speciality_of_super_giant_polymetallic_tungsten_deposit_Taking_the_Shizhuyuan_deposit_as_an_example
      [20] Mao, J. W., Cheng, Y. B., Chen, M. H., et al., 2013. Major Types and Time-Space Distribution of Mesozoic Ore Deposits in South China and their Geodynamic Settings. Mineralium Deposita, 48(3): 267-294. https://doi.org/10.1007/s00126-012-0446-z
      [21] Mao, J.W., Xie, G.Q., Li, X.F., et al., 2004.Mesozic Large Scale Minerallzation and Multiple Lithospheric Extension in South China. Earth Science Frontiers, 38(2):46-55 (in Chinese with English abstract).
      [22] Ni, Y.J., Shan, Y.H., Wu, S.C., et al., 2015. Determination of Slip Sense of the Laoshan'ao Fault in the Xiangdong Tungsten Deposit (Southeast Hunan) and Its Implications for Mineral Exploration. Geotectonica et Metallogenia, 39(3):436-445 (in Chinese with English abstract). http://www.researchgate.net/publication/282683837_Determination_of_slip_sense_of_the_Laoshan'ao_Fault_in_the_Xiangdong_tungsten_deposit_Southeast_Hunan_and_its_implications_for_mineral_exploration
      [23] Quan, T.J., Xi, X.S., Kong, H., et al., 2013. Yanshanian Triple Junction Tectonic Pattern and Metallogenesis in Southern Hunan, China. The Chinese Journal of Nonferrous Metals, 23(9):2613-2620 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZYXZ201309033.htm
      [24] Ren, J. Y., Tamaki, K., Li, S. T., et al., 2003. Late Mesozoic and Cenozoic Rifting and Its Dynamic Setting in Eastern China and Adjacent Areas. Tectonophysics, 344(3/4): 175-205. https://doi.org/10.1016/s0040-1951(1)00271-2
      [25] Shu, L.S., Yu, J.H., Dong, J., et al., 2008.Early Paleozoic Orogenic Belt in the Eastern Segment of South China. Geological Bulletin of China, 27(10):1581-1593 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200810002.htm
      [26] Song, C., Wei, W., Hou, Q.L., et al., 2016.Geological Characteristics of the Laoshan'ao Shear Zone and Its Relationship with the Xiangdong Tungsten Deposit, Chaling, Eastern Hunan Province. Acta Petrologica Sinica, 32(5):1571-1580 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201605021.htm
      [27] Wan, Q.F., Zhu, H., 2003. Tectonics and Environment Change of Meso-Cenozoic in China Continent and Its Adjacent Areas.Geoscience, 16(2):107-118 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ200202000.htm
      [28] Wang, Z., Chen, B., Ma, X., 2014.Petrogenesis of the Late Mesozoic Guposhan Composite Plutons from the Nanling Range, South China: Implications for W-Sn Mineralization. American Journal of Science, 314(1):235-277 (in Chinese with English abstract). doi: 10.2475/01.2014.07
      [29] Wei, N., Huang, F., Wang, Y., et al., 2018. Genesis of Yuanlingzhai Large Porphyry Molybdenum Deposits in East Section of Nanling: Evidence from Fluid Inclusions and Stable Isotope. Earth Science, 43(Suppl.2):135-148 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX2018S2011.htm
      [30] Wei, W., Song, C., Hou, Q.L., et al., 2017. The Late Jurassic Extensional Event in the Central Part of the South China Block: Evidence from the Laoshan'ao Shear Zone and Xiangdong Tungsten Deposit (Hunan, SE China). International Geology Review, 60(11/12/13/14): 1644-1664. https://doi.org/10.1080/00206814.2017.1395714
      [31] Wu, Q. H., Cao, J. Y., Kong, H., et al., 2016. Petrogenesis and Tectonic Setting of the Early Mesozoic Xitian Granitic Pluton in the Middle Qin-Hang Belt, South China: Constraints from Zircon U-Pb Ages and Bulk-Rock Trace Element and Sr-Nd-Pb Isotopic Compositions. Journal of Asian Earth Sciences, 128: 130-148. https://doi.org/10.1016/j.jseaes.2016.07.002
      [32] Wu, S.C., Long, Z.Q., Xu, H.H., et al., 2013. Structural Characteristics and Prospecting Significance of the Xitian Tin-Tungsten Polymetallic Deposit, Hunan Province, China. Geotectonica et Metallogenia, 36(2):217-226 (in Chinese with English abstract). http://www.researchgate.net/publication/303165271_Structural_characteristics_and_prospecting_significance_of_the_Xitian_tin-tungsten_polymetallic_deposit_Hunan_Province_China?ev=auth_pub
      [33] Xiong, Y.Q., 2016. Spatiotemporal Structure and Ore-forming Process of Hydrothermal Metallogenic System in Dengfuxian Orefield, Eastern Hunan(Dissertation). Central South University, Hunan (in Chinese with English abstract).
      [34] Xiong, Y. Q., Shao, Y. J., Zhou, H. D., et al., 2017. Ore-Forming Mechanism of Quartz-Vein-Type W-Sn Deposits of the Xitian District in SE China: Implications from the Trace Element Analysis of Wolframite and Investigation of Fluid Inclusions. Ore Geology Reviews, 83: 152-17. https://doi.org/10.1016/j.oregeorev.2016.1.007
      [35] Xu, D.R., Zou, F.H, Ning, J.T., et al., 2017.Discussion on Geological and Structural Characteristics and Associated Metallogeny in Northeastern Hunan Province, South China. Acta Petrologica Sinica, 33(3):695-715 (in Chinese with English abstract).
      [36] Yao, Y., Chen, J., Lu, J.J., et al., 2013.Geochronology, Hf Isotopic Compositions and Geochemical Characteristics of Xitian A-Type Granite and its Geological Significance. Mineral Deposit, 32(3):467-488 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201303002.htm
      [37] Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1): 211-280. https://doi.org/10.1146/annurev.earth.28.1.211
      [38] Zhang, J.J., Huang, T.L., 2019. An Overview on Continental Extensional Tectonics. Earth Science, 44(5): 1705-1715 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201905022.htm
      [39] Zhang, Y.Q., Xu, X.B., Jia, D., et al., 2009. Deformation Record of the Change from Indosinian Collision-related Tectonic System of Yanshanian Subduction-Related Tectonic Systemin South China During the Early Mesozoic. Earth Science Frontiers, 16(1):234-247 (in Chinese with English abstract). http://www.researchgate.net/publication/284573329_Deformation_record_of_the_change_from_Indosinian_collision-related_tectonic_system_to_Yanshanian_subduction-related_tectonic_system_in_South_China_during_the_Early_Mesozoic
      [40] Zheng, M.H., Shao, Y.J., Liu, Z.F., et al., 2016.Rb-Sr Isotope and Main Trace Element Composition Characteristics of Sulfide and Deposit Genesis Investigation of Dalong Pb-Zn Deposit. Journal of Central South University (Science and Technology), 47(11):3792-3799 (in Chinese with English abstract). http://www.researchgate.net/publication/312126919_Rb-Sr_isotope_and_main_trace_element_composition_characteristics_of_sulfide_and_deposit_genesis_investigation_of_Dalong_Pb-Zn_deposit
      [41] Zheng, M.H., Shao, Y.J., Wei, H.T., et al., 2015.Petrogenesis of Batuan Intrusion: Constraints from Petro-Geochemistry, Zircon U-Pb Dating and Hf Isotope. The Chinese Journal of Nonferrous Metals, 25(11):3171-3181 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZYXZ201511028.htm
      [42] Zhou, Y., Liang, X.Q., Cai, Y.F., et al., 2017. Petrogenesis and Mineralization of Xitian Tin-Tungsten Polymetallic Deposit: Constraints from Mineral Chemistry of Biotite from Xitian A-Type Granite, Eastern Hunan Province. Earth Science, 2(10): 1647-1657 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201710001.htm
      [43] 柏道远, 黄建中, 李金冬, 等, 2007.华南中生代构造演化过程的多地质要素约束——湘东南及湘粤赣边区中生代地质研究的启示.大地构造与成矿学, 31(1):1-10. doi: 10.3969/j.issn.1001-1552.2007.01.001
      [44] 柏道远, 李银敏, 钟响, 等, 2018.湖南NW向常德-安仁断裂的地质特征、活动历史及构造性质.地球科学, 43(7):2496-2514. doi: 10.3799/dqkx.2018.571
      [45] 柏道远, 刘波, 倪艳军, 等, 2010.湘东北湘阴凹陷控盆断裂特征、盆地性质及动力机制研究.资源调查与环境, 31(3):157-168. doi: 10.3969/j.issn.1671-4814.2010.03.001
      [46] 柏道远, 马铁球, 王先辉, 等, 2008.南岭中段中生代构造-岩浆活动与成矿作用研究进展.中国地质, 35(3):436-455. doi: 10.3969/j.issn.1000-3657.2008.03.008
      [47] 蔡杨, 陆建军, 马东升, 等, 2013a.湖南邓阜仙印支晚期二云母花岗岩年代学、地球化学特征及其意义.岩石学报, 29(12):4215-4231. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201312011.htm
      [48] 蔡杨, 马东升, 陆建军, 等, 2013b.湖南邓阜仙钨矿辉钼矿铼-锇同位素定年及硫同位素地球化学研究.岩石学报, 28(12):3798-3808. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201212002.htm
      [49] 陈国达, 杨心宜, 梁新权, 2003.关于活化区动力学研究的几个问题.地质科学, 37(3):320-331. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200203008.htm
      [50] 陈毓川, 王登红, 徐志刚, 等, 2014.华南区域成矿和中生代岩浆成矿规律概要.大地构造与成矿学, 38(2):219-229. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201402002.htm
      [51] 邓渲桐, 曹荆亚, 吴堑虹, 等, 2017.湖南锡田和邓阜仙燕山期花岗岩的源区差异及其意义.中南大学学报(自然科学版), 48(1):212-222. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201701029.htm
      [52] 董超阁, 余阳春, 梁新权, 等, 2018.湖南湘东钨矿含矿石英脉辉钼矿Re-Os定年及地质意义.大地构造与成矿学, 42(1):84-95. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201801008.htm
      [53] 何苗, 刘庆, 侯泉林, 等, 2018.湘东邓阜仙花岗岩成因及对成矿的制约:锆石/锡石U-Pb年代学、锆石Hf-O同位素及全岩地球化学特征.岩石学报, 34(3):637-655. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201803007.htm
      [54] 黄鸿新, 陈郑辉, 路远发, 等, 2014.湘东钨矿成矿岩体锆石U-Pb定年及地质意义.东华理工大学学报(自然科学版), 37(1):26-36. doi: 10.3969/j.issn.1674-3504.2014.01.005
      [55] 刘飚, 吴堑虹, 奚小双, 等, 2018.湖南锡田钨锡多金属矿田成矿分带样式及机理.中南大学学报(自然科学版), 49(3):633-641. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201803017.htm
      [56] 刘云华, 付建明, 龙宝林, 等, 2006.南岭中段主要锡矿床He、Ar同位素组成及其意义.吉林大学学报(地球科学版), 36(5):774-780. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200605018.htm
      [57] 毛景文, 1997.超大型钨多金属矿床成矿特殊性-以湖南柿竹园矿床为例.地球科学, 32(3):351-363. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX703.012.htm
      [58] 毛景文, 谢桂青, 李晓峰, 等, 2004.华南地区中生代大规模成矿作用与岩石圈多阶段伸展.地学前缘, 38(2):46-55. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200401002.htm
      [59] 倪永进, 单业华, 伍式崇, 等, 2015.湖南东南部湘东钨矿区老山坳断层性质的厘定及其对找矿的启示.大地构造与成矿学, 39(3):436-445. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201503008.htm
      [60] 全铁军, 奚小双, 孔华, 等, 2013.湘南燕山期区域三叉断裂构造型式及成矿作用.中国有色金属学报, 23(9):2613-2620. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201309033.htm
      [61] 宋超, 卫巍, 侯泉林, 等, 2016.湘东茶陵地区老山坳剪切带特征及其与湘东钨矿的关系, 32(5): 1571-1580.
      [62] 万天丰, 朱鸿, 2003.中国大陆及邻区中生代-新生代大地构造与环境变迁.现代地质, 16(2):107-118. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ200202000.htm
      [63] 魏娜, 黄凡, 王岩, 等, 2018.南岭东段园岭寨斑岩型钼矿成因——流体包裹体和稳定同位素证据.地球科学, 43(Suppl.2):135-148. doi: 10.3799/dqkx.2018.194
      [64] 伍式崇, 龙自强, 徐辉煌, 等, 2013.湖南锡田锡钨多金属矿床成矿构造特征及其找矿意义.大地构造与成矿学, 36(2):217-226. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201202011.htm
      [65] 熊伊曲, 2016.湘东邓阜仙矿田热液成矿系统的时空结构与成矿过程(博士学位论文).湖南: 中南大学, 108-111.
      [66] 许德如, 邹凤辉, 宁钧陶, 等, 2017.湘东北地区地质构造演化与成矿响应探讨.岩石学报, 33(3):695-715. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201703003.htm
      [67] 姚远, 陈骏, 陆建军, 等, 2013.湘东锡田A型花岗岩的年代学、Hf同位素、地球化学特征及其地质意义.矿床地质, 32(3):467-488. doi: 10.3969/j.issn.0258-7106.2013.03.002
      [68] 张进江, 黄天立, 2019.大陆伸展构造综述.地球科学, 44(5): 1705-1715. doi: 10.3799/dqkx.2019.009
      [69] 张岳桥, 徐先兵, 贾东, 等, 2009.华南早中生代从印支期碰撞构造体系向燕山期俯冲构造体系转换的形变记录.地学前缘, 16(1):234-247. doi: 10.3321/j.issn:1005-2321.2009.01.026
      [70] 郑明泓, 邵拥军, 刘忠法, 等, 2016.大垅铅锌矿床硫化物Rb-Sr同位素和主微量成分特征及矿床成因.中南大学学报(自然科学版), 47(11):3792-3799. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201611024.htm
      [71] 郑明泓, 邵拥军, 隗含涛, 等, 2015.湘东八团岩体的成因:地球化学、锆石U-Pb年代学以及Hf同位素的制约.中国有色金属学报, 25(11):3171-3181. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201511028.htm
      [72] 周云, 梁新权, 蔡永丰, 等, 2017.湘东锡田燕山期A型花岗岩黑云母矿物化学特征及其成岩成矿意义.地球科学, 2(10):1647-1657. doi: 10.3799/dqkx.2017.557
    • 加载中
    图(7) / 表(2)
    计量
    • 文章访问数:  1050
    • HTML全文浏览量:  217
    • PDF下载量:  50
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-10-21
    • 刊出日期:  2021-01-15

    目录

      /

      返回文章
      返回