Similarities and Differences of Main Controlling Factors of Natural High Iodine Groundwater between North China Plain and Datong Basin
-
摘要: 原生高碘地下水在我国有广泛分布,为查明不同区域地下水碘赋存机理的异同,通过选取我国大同盆地以及华北平原为代表性区域,完成区域地下水样品系统性采集及水化学、碘形态测试工作,对区域地下水水环境及其演化特征完成详细刻画.结果表明:大同盆地地下水总碘含量为2.86~1 286 μg/L,华北平原地下水总碘含量为2.40~1 106 μg/L,分别约有50.0%及49.5%地下水碘含量超过(GB19380- 2016)《水源性高碘地区和高碘病区的划定》中界定的100 μg/L国家标准.地下水水环境特征表明,在大同盆地,第四纪河湖相沉积所形成的,富含有机质、偏碱性、还原性、Na-HCO3型水环境,利于赋存于固相介质上的碘以碘离子的形式进入地下水中,沿地下水流向,富集于盆地中心排泄区;在华北平原,由第四纪6次海侵形成的冲湖积、海积松散沉积物中富含Na、Cl、I等元素,其偏碱性、还原性、Na-Cl型水环境及低水力坡度的平缓地形利于赋存在固相介质上的碘以碘离子的形式进入地下水,沿地下水流向富集于沿海排泄区.控制两个地区高碘地下水形成的相同因素是偏碱性及偏还原的地下水环境,且该环境下碘的主要赋存形态均为碘离子,但大同盆地高碘地下水形成主要受富有机质环境影响,而华北平原高碘地下水形成的主要受富碘的海相沉积控制.Abstract: Natural high iodine groundwater is widely distributed in China. In order to find out the similarities and differences of mechanism of iodine occurrence in groundwater,the Datong basin and the North China Plain (NCP) were selected as representative areas in this study.Groundwater sampling and the analysis of hydrochemistry and iodine species were performed to understand the groundwater environment and hydrochemical evolution.The results showed that total iodine concentration in groundwater from Datong basin was 2.86-1 286 μg/L,and that in NCP was 2.40-1 106 μg/L. Approximately 50.0% and 49.5% of groundwater iodine from Datong basin and North China Plain exceed the national standard of 100 μg/L(GB19380- 2016),respectively. At the Datong basin,the groundwater environment was characterized by organic matter-rich,alkaline,weak reducing and Na-HCO3 type water,which was formed by Quaternary fluvial and lacustrine deposits. Under this environment,the sediment iodine was prone to be released into groundwater in the form of iodide and further enrich in the discharge area along the groundwater flow direction.At the NCP,the six transgressions in the Quaternary leads to the alluvial-lacustrine and marine loose sediments rich in Na,Cl and I. At the coastal area,the alkaline and weak reducing conditions in combination with low hydraulic gradient were favorable for iodine release from aquifer matrix to groundwater.The main species of iodine in groundwater was also iodide.The differences between two areas was that high iodine groundwater at Datong basin was mainly influenced by enriched organic matter in groundwater system,while that at NCP was mainly controlled by iodine-rich marine sediments.
-
Key words:
- iodine /
- Datong basin /
- North China Plain /
- groundwater /
- controlling factors /
- environmental geology
-
图 2 大同盆地A⁃A’水文地质剖面(a)和华北平原B⁃B’水文地质剖面(b)
a.引自Guo and Wang(2005); b.张兆吉和费宇红(2009)
Fig. 2. Hydrogeological cross⁃section along the A⁃A' line of Datong basin (a) and B⁃B' line of NCP (b)
图 6 大同盆地与华北平原地下水pH (a)、Eh(b)、I-(c)含量与I总含量关系图; (d)大同盆地与华北平原地下水总碘与TOC及HCO3-含量关系图; (e)大同盆地三类地下水样总碘与TOC及HCO3-含量关系图
Fig. 6. The relationship between iodine and pH(a), Eh(b), I-(c) of groundwater from Datong basin and NCP; (d) variation of TOC with HCO3- with different iodine concentration; (e) relationships of total iodine with TOC and HCO3- contents in three kinds of groundwater samples in Datong basin
表 1 研究区地下水化学组分
Table 1. Chemical composition of groundwater samples from study area
参数 大同盆地(n=82) 华北平原(n=96) 最小值 最大值 中间值 均值 最小值 最大值 中间值 均值 TDS
(mg/L)373.2 8 533.0 1 337.0 2 383.0 370.9 7 590.0 1 060.0 1 240.0 TOC
(mg/L)< 0.01 92.14 5.45 2.65 0.13 37.90 0.86 2.23 Eh (mV) -189.0 224.0 112.0 83.06 -228.50 139.60 34.40 9.79 pH 6.90 9.73 7.82 7.91 6.46 8.79 8.00 7.89 K+(mg/L) 0.49 79.37 2.70 4.55 0.13 8.12 1.05 1.40 Na+(mg/L) 10.57 2
208.00259.20 506.70 8.57 1 953.00 282.80 344.30 Ca2+(mg/L) 3.86 442.80 38.34 56.77 < 0.01 393.90 17.85 42.47 Mg2+(mg/L) 13.26 498.90 42.10 92.35 0.83 522.40 14.75 34.35 HCO3-(mg/L) 181.3 1 842.0 519.8 615.1 142.7 916.8 366.0 387.5 Cl-(mg/L) 8.57 3
214.00155.90 509.40 9.16 1
874.00151.10 251.80 Br-(μg/L) 22.48 3
611.00423.00 801.00 16.46 4
035.00381.20 609.60 SO42-(mg/L) 3.63 2
395.00196.40 523.10 < 0.01 2
159.0084.45 178.50 Cl/Br(摩尔比) 171.30 3
725.001
042.001
230.00147.00 5
637.00937.00 1
143.00Fe总(mg/L) < 0.01 3.47 0.06 0.18 < 0.01 3.46 0.09 0.30 Fe2+(mg/L) < 0.01 0.45 0.05 0.08 < 0.01 0.56 0.01 0.02 I总(μg/L) 2.86 1
286.00105.60 230.40 2.40 1
106.0093.82 198.10 I-(μg/L) 1.28 1
157.0050.89 168.30 < 0.01 854.00 63.40 164.70 IO3-(μg/L) < 0.01 999.30 5.720 46.08 < 0.01 292.80 0.66 20.38 表 2 大同盆地与华北平原旋转因子载荷矩阵
Table 2. Matrix of rotated factor loadings of Datong basin and NCP
因子 大同盆地 华北平原 F1 F2 F3 F1 F2 F3 F4 F5 TDS 0.937 0.307 0.091 0.420 0.873 0.154 -0.018 0.129 Na+ 0.820 0.481 0.142 0.736 0.477 -0.178 -0.203 0.265 Ca2+ 0.793 -0.347 -0.214 -0.204 0.709 0.463 0.344 -0.144 Mg2+ 0.955 -0.079 -0.044 -0.149 0.829 0.373 0.180 -0.124 Cl- 0.958 0.149 -0.040 0.621 0.610 -0.133 -0.090 0.253 Br- 0.704 0.527 -0.205 0.569 0.605 -0.100 -0.337 0.108 Cl/Br摩尔比 0.696 -0.246 0.278 -0.042 -0.051 0.018 0.919 0.091 SO42- 0.921 0.139 0.090 0.008 0.926 0.063 0.009 -0.040 HCO3- 0.180 0.842 0.194 0.100 0.230 0.769 0.126 0.020 TOC 0.037 0.825 0.205 -0.041 0.045 0.858 0.020 -0.052 pH -0.449 0.546 -0.078 0.083 -0.386 -0.420 -0.640 0.114 I总 0.112 0.850 -0.294 0.891 0.004 -0.014 -0.029 0.166 I- 0.055 0.796 -0.415 0.913 -0.002 -0.021 -0.027 -0.038 Eh 0.047 -0.108 0.700 -0.738 -0.020 0.064 -0.070 0.371 Fe总 0.074 0.177 -0.814 0.620 -0.015 0.150 -0.048 -0.053 IO3- 0.085 0.225 0.615 -0.019 -0.015 -0.051 0.047 0.939 特征值 6.102 3.970 2.080 4.069 3.984 1.973 1.596 1.275 贡献率(%) 38.1 24.8 13.0 25.4 24.9 12.3 10.0 8.0 累计贡献率(%) 38.1 63.0 75.9 25.4 50.3 62.7 72.6 80.6 注:黑体数字表示较高因子载荷. -
[1] Burgi, H., 2010. Iodine Excess. Best Practice & Research Clinical Endocrinology & Metabolism, 24(1):107-115. https://doi.org/10.1016/j.beem.2009.08.010 [2] Cartwright, I., Weaver, T. R., Fifield, L. K., 2006. Cl/Br Ratios and Environmental Isotopes as Indicators of Recharge Variability and Groundwater Flow:An Example from the Southeast Murray Basin, Australia. Chemical Geology, 231(1-2):38-56. https://doi.org/10.1016/j.chemgeo.2005.12.009 [3] Cheng, S. P., Li, C. Y., Yang, G. Z., et al., 2004. Distinction Between Late Quaternary Fluvial Incision Induced by Faulting and by Climate:A Case Study of the Sanggan River. Seismology and Geology, 26(2):169-188(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZDZ200402000.htm [4] Guo, H. M., Wang, Y. X., 2005. Geochemical Characteristics of Shallow Groundwater in Datong Basin, Northwestern China. Journal of Geochemical Exploration, 87(3):109-120. https://doi.org/10.1016/j.gexplo.2005.08.002 [5] Guo, X. W., Qin, Q. L., Chen, Z. P., 2007a. Iodine Nutrition Status of Population in the Areas with Different Iodine Concentrations of Drinking Water. Acta Nutrimenta Sinica, 29(6):526-534 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YYXX200706004.htm [6] Guo, X. W., Qin, Q. L., Liu, C. J., et al., 2007b. Study on Iodine Nutritional Status of Target Population due to Different Iodine Concentrations in Drinking Water after Stopped Iodized Salt. Journal of Hygiene Research, 36(4):427-431 (in Chinese with English abstract). http://www.ncbi.nlm.nih.gov/pubmed/17953207 [7] Han, Y., Zhang, H. M., Zhang, Y. F., et al., 2017. Distribution Regularity, Origin and Quality Division of High Arsenic, Fluorine and Iodine Contents in Groundwater in Datong Basin. Geological Survey of China, 4(1):57-68 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZDC201701009.htm [8] Jia, Q. Z., Zhang, X. D., 2017. An Interpretation of the Newly Revised Standard on "Definition and Demarcation of Water-Borne Iodine-Excess Areas and Iodine-Excess Endemic Areas". Chinese Journal of Endemiology, 36(3):226-229 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_chinese-journal-endemiology_thesis/0201231293108.html [9] Li, J. X., Wang, Y. X., Guo, W., et al., 2013. Factors Controlling Spatial Variation of Iodine Species in Groundwater of the Datong Basin, Northern China. Procedia Earth and Planetary Science, 7:483-486. https://doi.org/10.1016/j.proeps.2013.03.054 [10] Li, J. X., Wang, Y. X., Guo, W., et al., 2014. Iodine Mobilization in Groundwater System at Datong Basin, China:Evidence from Hydrochemistry and Fluorescence Characteristics. Science of The Total Environment, 468-469:738-745. https://doi.org/10.1016/j.scitotenv.2013.08.092 [11] Li, J. X., Wang, Y. X., Xie, X. J., 2016. Cl/Br Ratios and Chlorine Isotope Evidences for Groundwater Salinization and its Impact on Groundwater Arsenic, Fluoride and Iodine Enrichment in the Datong Basin, China. Science of The Total Environment, 544:158-167. https://doi.org/10.1016/j.scitotenv.2015.08.144 [12] Li, J. X., Zhou, H. L., Qian, K., et al., 2017. Fluoride and Iodine Enrichment in Groundwater of North China Plain:Evidences from Speciation Analysis and Geochemical Modeling. Science of The Total Environment, 598:239-248. https://doi.org/10.1016/j.scitotenv.2017.04.158 [13] Liu, P., Liu, L. X., Shen, H. M., et al., 2014. The Standard, Intervention Measures and Health Risk for High Water Iodine Areas. PLoS ONE, 9(2):e89608. https://doi.org/10.1371/journal.pone.0089608 [14] Niu, X. G., Wang, Y. X., 1991. Genetic Analysis of Shallow High Iodine Groundwater in the Eastern Plain of Handan. Groundwater, (2):108-110 (in Chinese with English abstract). http://www.researchgate.net/publication/285784147_Formation_and_origin_of_high_iodine_groundwater_in_the_shallow_aquifers_of_the_eastern_Handan_Plain [15] Qian, K., Li, J. X., Xie, X. J., et al., 2017. Organic and Inorganic Colloids Impacting Total Iodine Behavior in Groundwater from the Datong Basin, China. Science of The Total Environment, 601-602:380-390. https://doi.org/10.1016/j.scitotenv.2017.05.127 [16] Robinove, C. J., Langford, R. H., Brookhart, J.W., 1958. Saline-Water Resourcesof North Dakota. U. S. Government Printing Office, Washington, D.C. 1428. https://doi.org/ 10.3133/wsp1428 [17] Shen, H. M., 2015. Progress and Prospect of Iodine Deficiency Disease Prevention and Control in 20 Years of Popularizing Salt Iodization in China. Chinese Journal of Endemiology, 34(9):628-631 (in Chinese with English abstract). [18] Shen, H. M., Zhang, S. B., Liu, S. J., et al., 2007. Study on the Geographic Distribution of National High Water Iodine Areas and the Contours of Water Iodine in High Iodine Areas. Chinese Journal of Endemiology, 26(6):658-661 (in Chinese with English abstract). http://www.researchgate.net/publication/285798967_Study_on_the_geographic_distribution_of_national_high_water_iodine_areas_and_the_contours_of_water_iodine_in_high_iodine_areas [19] Sheppard, M. I., Thibault, D. H., 1992. Chemical Behaviour of Iodine in Organic and Mineral Soils. Applied Geochemistry, 7(3):265-272. https://doi.org/10.1016/0883-2927(92)90042-2 [20] Su, C. L., Wang, Y. X., 2008. A Study of Zonalityof Hydrochemistry of Groundwater in Unconsolidated Sediments in Datong Basin. Hydrogeology and Engineering Geology, 35(1):83-89. https://doi.org/10.3969/j.issn.1000-3665.2008.01.019 [21] Wang, P. H., Zhang, Q. L., Zhou, Y. L., et al., 2009. Investigation of Water-Borne Iodine-Excess Areas and Identification of Iodine-Excess Areas in Jiangsu Province. Chinese Journal of Endemiology, 28(6):697 (in Chinese with English abstract). [22] Wu, F., Wang, Z. Q., Tong, X. J., et al., 2017. The Distribution Characteristics and Storage Environments of Rich Iodine in Shallow Groundwater of Typical Areas in China. Journal of Water Resources and Water Engineering, 28(2):99-104 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XBSZ201702017.htm [23] Xing, L. N., Guo, H. M., Wei, L., et al., 2012. Evolution Feature and Gensis of Fluoride Groundwater in Shallow Aquifer from North China Plain.Journal of Earch Sciences and Environment, 34(4):57-67 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-XAGX201204010.htm [24] Xing, L. N., Guo, H. M., Zhan, Y. H., 2013. Groundwater Hydrochemical Characteristics and Processes along Flow Paths in the North China Plain. Journal of Asian Earth Sciences, 70-71:250-264. https://doi.org/10.1016/j.jseaes.2013.03.017 [25] Xu, F., Ma, T., Shi, L., et al., 2012. Hydrogeochemical Characteristics of High Iodine Groundwater in the Hetao Plain, Inner Mongolia. Hydrogeology and Engineering Geology, 39(5):8-15 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S1878522013002646 [26] Xu, Q. Q., Lin, H. M., 1993. An Astroclimatological Explanation of Six Marine Transgressions in Eastern China Since Middle Pleistocene. Marine Geology & Quaternary Geology, 13(1):11-20 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ199301001.htm [27] Xue, X. B., Li, J. X., Qian, K., et al., 2018. Spatial Distribution and Mobilization of Iodine in Groundwater System of North China Plain:Taking Hydrogeological Section from Shijiazhuang, Hengshui to Cangzhou as an Example. Earth Science, 43(3):910-921 (in Chinese with English abstract). http://www.researchgate.net/publication/325083892_Spatial_Distribution_and_Mobilization_of_Iodine_in_Groundwater_System_of_North_China_Plain_Taking_Hydrogeological_Section_from_Shijiazhuang_Hengshui_to_Cangzhou_as_an_Example [28] Xue, X. B., Li, J. X., Xie, X. J., et al., 2019. Effects of Depositional Environment and Organic Matter Degradation on the Enrichment and Mobilization of Iodine in the Groundwater of the North China Plain. Science of The Total Environment, 686:50-62. https://doi.org/10.1016/j.scitotenv.2019.05.391 [29] Yang, J. C., 1961. Geomorphology and Quaternary Geology in the Eastern Datong Basin. Acta ScientiarumNaturalium Universitatis Pekinensis, (1):87-100 (in Chinese with English abstract). http://www.researchgate.net/publication/285162757_Quaternary_geology_and_geomorphology_of_Eastern_Datong_basin [30] Zeng, Z. H., 1999. The Formation of Iand Its Control Factors. Jilin Geology, 18(2):30-33 (in Chinese with English abstract). http://www.researchgate.net/publication/285871966_The_formation_of_I_and_its_control_factors [31] Zhang, C. S., Zhang, Y. C., Hu, J. J., 1995. Evolution of Geological Environment in North Huabei Plain in Historic Times. Journal of Geological Hazards and Environment Preservation, 6(2):12-19 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZHB502.001.htm [32] Zhang, Z. H., Shen, Z. L., Xue, Y. Q., et al., 2000. The Environment Evolution of Groundwater in the North China Plain. Geological Publishing House, Beijing (in Chinese with English abstract). [33] Zhang, Z. J., Fei, Y. H., 2009. Atlas of Groundwater Sustainable Utilization in North China Plain. China Cartographic Publishing House, Beijing (in Chinese with English abstract). [34] Zhou, H. L., Su, C. L., Li, J. X., et al., 2017. Characteristics of Rare Earth Elements in the Sediments of the Datong Basin and Its Indication to the Iodine Enrichment. Earth Science, 42(2):298-306 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201702011.htm [35] 程绍平, 李传友, 杨桂枝, 等, 2004.区分晚第四纪断层作用驱动的和气候引起的流水下切-以桑干河大同盆地河段为例.地震地质, 26(2):169-188. doi: 10.3969/j.issn.0253-4967.2004.02.001 [36] 郭晓尉, 秦启亮, 陈祖培, 2007a.不同地区饮用水碘水平居民碘营养状况调查研究.营养学报, 29(6):526-534. https://www.cnki.com.cn/Article/CJFDTOTAL-YYXX200706004.htm [37] 郭晓尉, 秦启亮, 刘传蛟, 等.2007b.不同水碘地区重点人群碘营养水平及其干预效果研究.卫生研究, 36(4):427-431. https://www.cnki.com.cn/Article/CJFDTOTAL-WSYJ200704009.htm [38] 韩颖, 张宏民, 张永峰, 等, 2017.大同盆地地下水高砷、氟、碘分布规律与成因分析及质量区划.中国地质调查, 4(1):57-68. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDC201701009.htm [39] 贾清珍, 张向东, 2017.对新修订的《水源性高碘地区和高碘病区的划定》标准的解读.中华地方病学杂志, 36(3):226-229. doi: 10.3760/cma.j.issn.2095-4255.2017.03.017 [40] 牛喜贵, 王荫兴, 1991.邯郸东部平原浅层高碘地下水成因分析.地下水, (2):108-110. https://www.cnki.com.cn/Article/CJFDTOTAL-DXSU199102014.htm [41] 申红梅, 2015.中国普及食盐加碘20年后碘缺乏病防治历程及展望.中华地方病学杂志, 34(9):628-631. [42] 申红梅, 张树彬, 刘守军, 等, 2007.全国高水碘地区地理分布及高碘地区水碘等值线研究.中华地方病学杂志, 26(6):658-661. doi: 10.3760/cma.j.issn.1000-4955.2007.06.021 [43] 苏春利, 王焰新, 2008.大同盆地孔隙地下水化学场的分带规律性研究.水文地质工程地质, (1):83-89. doi: 10.3969/j.issn.1000-3665.2008.01.019 [44] 王培桦, 张庆兰, 周永林, 等, 2009.江苏省水源性高碘地区调查和高碘病区确认.中华地方病学杂志, 28(6):697. [45] 吴飞, 王曾祺, 童秀娟, 等, 2017.我国典型地区浅层高碘地下水分布特征及其赋存环境.水资源与水工程学报, 28(2):99-104. https://www.cnki.com.cn/Article/CJFDTOTAL-XBSZ201702017.htm [46] 邢丽娜, 郭华明, 魏亮, 等, 2012.华北平原浅层含氟地下水演化特点及成因.地球科学与环境学报, 34(4):57-67. doi: 10.3969/j.issn.1672-6561.2012.04.008 [47] 徐芬, 马腾, 石柳, 等, 2012.内蒙古河套平原高碘地下水的水文地球化学特征.水文地质工程地质, 39(5):8-15. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201205001.htm [48] 徐钦琦, 林和茂, 1993.中更新世以来中国东部六次海侵及其天文气候学的解释.海洋地质与第四纪地质, 13(1):11-20. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ199301001.htm [49] 薛肖斌, 李俊霞, 钱坤, 等, 2018.华北平原原生富碘地下水系统中碘的迁移富集规律:以石家庄-衡水-沧州剖面为例.地球科学, 43(3):910-921. doi: 10.3799/dqkx.2017.564 [50] 杨景春, 1961.大同盆地东部地貌与第四纪地质.北京大学学报(自然科学), (1):87-100. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ196101010.htm [51] 曾昭华, 1999.地下水中碘的形成及其控制因素.吉林地质, 18(2):30-33. https://www.cnki.com.cn/Article/CJFDTOTAL-JLDZ902.004.htm [52] 张春山, 张业成, 胡景江, 1995.华北平原北部历史时期地质环境演化.地质灾害与环境保护, 6(2):12-19. https://www.cnki.com.cn/Article/CJFDTOTAL-DZHB502.001.htm [53] 张宗祜, 沈照理, 薛禹群, 等, 2000.华北平原地下水环境演化.北京:地质出版社. [54] 张兆吉, 费宇红, 2009.华北平原地下水可持续利用图集.北京:中国地图出版社. [55] 周海玲, 苏春利, 李俊霞, 等, 2017.大同盆地沉积物REE分布特征及其对碘富集的指示.地球科学, 42(2):298-306. doi: 10.3799/dqkx.2017.022