• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    甘肃阿克塞余石山铌钽矿区二长花岗岩成因和形成环境:来自年代学及地球化学的证据

    廖风云 陈威 曹晓峰 陈广琛 何昆洋 杨文 吴义布 李通国

    麻艺超, 蔡永丰, 马莉燕, 周云, 赵锴, 2021. 滇西点苍山新元古代斜长角闪岩的成因:来自锆石U-Pb年龄和全岩地球化学的证据. 地球科学, 46(8): 2860-2872. doi: 10.3799/dqkx.2020.288
    引用本文: 廖风云, 陈威, 曹晓峰, 陈广琛, 何昆洋, 杨文, 吴义布, 李通国, 2020. 甘肃阿克塞余石山铌钽矿区二长花岗岩成因和形成环境:来自年代学及地球化学的证据. 地球科学, 45(12): 4589-4603. doi: 10.3799/dqkx.2019.260
    Ma Yichao, Cai Yongfeng, Ma Liyan, Zhou Yun, Zhao Kai, 2021. Genesis of Neoproterozoic Amphibolite in Diancangshan, West Yunnan: Evidence from Zircon U-Pb Age and Whole-Rock Geochemistry. Earth Science, 46(8): 2860-2872. doi: 10.3799/dqkx.2020.288
    Citation: Liao Fengyun, Chen Wei, Cao Xiaofeng, Chen Guangchen, He Kunyang, Yang Wen, Wu Yibu, Li Tongguo, 2020. Petrogenesis and Forming Environment of Monzonitic Granite in Yushishan Nb-Ta Mining Area, Akesai, Gansu Province:Evidences from Chronology and Geochemistry. Earth Science, 45(12): 4589-4603. doi: 10.3799/dqkx.2019.260

    甘肃阿克塞余石山铌钽矿区二长花岗岩成因和形成环境:来自年代学及地球化学的证据

    doi: 10.3799/dqkx.2019.260
    基金项目: 

    中祁连西段稀有金属矿产综合勘查示范项目 2017YFC0602404

    详细信息
      作者简介:

      廖风云(1995-), 男, 硕士研究生, 矿产普查与勘探专业.E-mail:2268437453@qq.com

      通讯作者:

      曹晓峰, E-mail:250204560@qq.com

    • 中图分类号: P581

    Petrogenesis and Forming Environment of Monzonitic Granite in Yushishan Nb-Ta Mining Area, Akesai, Gansu Province:Evidences from Chronology and Geochemistry

    • 摘要: 余石山铌钽矿区位于北阿尔金-柴北缘-祁连的交汇部位,该区域构造演化复杂.为了揭示矿区内二长花岗岩的成因和形成环境,运用岩石学、岩石地球化学、锆石U-Pb年代学、锆石Lu-Hf同位素等理论及技术方法对该二长花岗岩进行了系统的研究.该二长花岗岩的详细定名为中细粒似斑状黑云二长花岗岩,暗色矿物以黑云母、角闪石为主.地球化学特征表明,余石山的二长花岗岩属于钾玄质准铝质-弱过铝质系列,富集Rb、Th、K等大离子亲石元素,相对亏损Nb、Sr、P、Ti等高场强元素,稀土元素配分曲线具有明显的负Eu异常,δEu的平均值为0.57,(La/Yb)N的平均值为11.09,说明该二长花岗岩体岩浆部分熔融程度较高.根据岩石学及地球化学特征可判断该岩体为I型花岗岩.锆石LA-ICP-MS U-Pb定年显示,该二长花岗岩的结晶年龄为481.3±1.7 Ma,形成于早奥陶世.锆石Lu-Hf同位素分析表明,锆石εHft)的值为+0.4~+11.8,均为正值,二阶段模式年龄的范围为675~1 308 Ma,指示其源岩主要为元古代新生地壳物质.该二长花岗岩的形成与早奥陶世时期北阿尔金洋壳俯冲中南祁连陆壳密切相关,在中南祁连陆壳边缘的余石山地区(弧后),由于洋壳俯冲导致了陆壳的伸展从而产生了裂隙,俯冲产生的熔融岩浆通过裂隙上侵而形成了该二长花岗岩岩体.

       

    • 前寒武纪是地球形成和演化的重要时期,前寒武纪地质研究对正确认识地球的形成与演化起着关键作用.华南板块是中国大陆古老板块的组成之一,保留有丰富的前寒武纪地质信息.扬子地块是华南板块的重要组成部分,前人在扬子地块东南缘、北缘和西北缘相继识别出大量新元古代岩浆活动信息(Ling et al., 2003Zhao and Zhou, 2008Zhu et al., 2008张继彪等,2020),并提出了俯冲作用(Zhou et al., 2002Zhao et al., 2011)、地幔柱(Li et al., 2003)、板块-裂谷作用(Zheng et al., 2008)等不同成因模式. 近年来,在扬子地块西南缘报道了新元古代岩浆作用信息,如在云南哀牢山地区发现新元古代片麻状花岗岩、混合岩和少量变基性岩(877~750 Ma;李宝龙等,2012Qi et al., 2012Cai et al., 2014Wang et al., 2016). 然而,相对其他周缘地区,扬子地块西南缘新元古代岩浆作用的研究仍显薄弱,特别是在云南点苍山地区,目前报道有以花岗质岩浆活动为主的新元古代年龄信息(843~833 Ma;刘俊来等,2008),但是缺少基性-变基性岩的年龄信息,不利于正确认识扬子地块西南缘新元古代时期的构造演化特征,同时也不利于对比研究扬子地块周缘新元古代岩浆活动,从而制约对华南板块新元古代构造演化特征的完整认识. 本文报道了在点苍山地区新识别出的新元古代变基性岩(斜长角闪岩),锆石U-Pb年代学显示其形成于779~764 Ma,表明点苍山地区存在新元古代基性岩浆活动;对这些斜长角闪岩进行了全岩地球化学分析测试,探讨了其形成背景和地质意义,为深入理解扬子地块西南缘新元古代的构造格局提供了新的重要依据.

      研究区位于扬子地块西南缘的云南省大理市点苍山地区,属于点苍山-哀牢山构造带的最北段(图 1图 2).点苍山-哀牢山构造带呈北西-南东向展布,延伸长度大于500 km,宽度为20~30 km,分布总面积大于3 800 km2.该构造带具有双变质带特征,东侧为低压高温变质带,西侧为高压低温变质带,两者界线为哀牢山断裂(云南省地质矿产局,1990),东侧的低压高温变质带内分布有一套元古代地层,其边界为红河断裂和哀牢山断裂.前人从北西到南东将该套地层依次命名为苍山群、哀牢山群和瑶山群,其中,苍山群自下而上被划分为河底组和双鸯峰组,哀牢山群进一步被划分为小羊街组、阿龙组、凤港组和乌都坑组(云南省地质矿产局,1990).苍山群、哀牢山群和瑶山群主要由一套混合岩化强烈的深变质岩系组成,岩性主要有黑云斜长片麻岩、斜长角闪岩、片麻状花岗岩、变粒岩、混合花岗岩、片岩和大理岩等(云南省地质矿产局,1990图 3).

      图  1  滇西点苍山-哀牢山构造带及其邻区地质简图
      Fig.  1.  Simplified geological map showing the Diancangshan-Ailaoshan tectonic belt and surrounding areas
      图  2  点苍山地区地质简图
      Fig.  2.  Simplified geological map of the Diancangshan area
      图  3  点苍山-哀牢山构造带元古界地层柱状图
      Fig.  3.  Simplified stratigraphic column of Proterozoic stratum in the Diancangshan-Ailaoshan tectonic belt

      区内主要断裂构造自东向西为红河断裂和哀牢山断裂,这两条深大断裂控制了本构造带的分布和走向. 红河断裂和哀牢山断裂受到后期构造热事件的强烈影响而活化(Lyu et al., 2020),导致点苍山-哀牢山构造带内的元古代地层发生不同程度的变形和变质作用.点苍山地区主要由洱海断裂、西洱河断裂、大合江断裂、乔后-剑川断裂等围限,构成一个沿NNW方向延伸的构造杂岩体(云南省地质矿产局,1990图 2).本区元古代地层发育褶叠层、顺层掩卧褶皱、同斜倒转褶皱以及由各种混合岩形成的流褶皱和无根褶皱,局部存在代表上地壳层次的脆性断裂带或中下地壳层次的高温韧性剪切带(王义昭和丁俊,1996).

      点苍山-哀牢山构造带元古代岩浆岩(已发生不同程度变质)零散地分布在元古代地层中,岩性以片麻状花岗岩、变基性岩和混合岩为主(宋志杰,2008).前人研究认为其形成时代为中元古代,如金平龙脖河变火山岩和变粒岩的年龄分别为1 544±15 Ma和1 497±29 Ma(邹日等,1997),元江斜长角闪岩的年龄为1 367±46 Ma(翟明国和从柏林,1993),变钠质火山岩的Pb-Pb等时线年龄为1 330±80 Ma、Sm-Nd等时线年龄为1 596±85 Ma(朱炳泉等,2001),混合岩的锆石U-Pb年龄为1 571~1 737 Ma、K-Ar年龄为1 360~1 393 Ma(王义昭和丁俊,1996).

      本文用于定年的斜长角闪岩样品16MH33(经纬度为25°43′19″N、100°06′36″E,高程为2 521 m)和16MH35(经纬度为25°43′37″N、100°05′28″E,高程为2 777 m)采自苍山群(图 2),采样位置为大理市双阳村西北约2 km处,围岩为片麻状花岗岩. 斜长角闪岩呈似层状产于片麻状花岗岩中(图 4a),其厚度约0.2 m,产状241°∠26°,整体走向与点苍山-哀牢山构造带基本一致,围岩可见片麻理,局部可见混合岩化作用. 斜长角闪岩样品手标本呈灰黑色(图 4a4b),显微镜下呈纤状-鳞片粒状变晶结构,块状-片麻状构造. 主要矿物为角闪石(55%)、斜长石(40%)、石英(3%)和黑云母等(2%)(图 4c4d),副矿物主要有绿泥石、绿帘石、斜黝帘石、锆石、磷灰岩、榍石等;其中,角闪石具有角闪石式解理,多色性明显,呈现显著绿色或褐色,他形粒状或柱状,局部可见定向排列,将斜长石包围其中,可见绿泥石化、绿帘石化和绢云母化;黑云母呈褐色,局部蚀变为绿泥石、绿帘石(图 4c4d);斜长石呈他形粒状或柱状,粒径为1~5 mm,具有明显聚片双晶. 斜长角闪岩的上述野外产出特征和矿物组成特征显示其原岩为基性岩类,由基性岩类发生变质作用形成.

      图  4  斜长角闪岩的野外照片(a、b)和显微照片(c、d)
      Pl. 斜长石;Hbl. 角闪石;Bt. 黑云母;Qtz. 石英
      Fig.  4.  Field photos (a, b) and photomicrographs (c, d) of the representative amphibolite

      将野外采回的新鲜岩石样品洗净后手工粗碎至粒径3 mm以下.将粗碎后的样品置于超声波清洗仪中清洗,洗净后烘干,置于碳化钨粉末研磨仪上细碎至200目,然后将样品粉末放入烘干箱中以105 ℃的温度烘烤3 h以上,以除去样品的吸附水,放置在干燥皿中以备后续地球化学分析.

      全岩主量、微量元素的测试均在桂林理工大学广西隐伏金属矿产勘查重点实验室完成.主量元素的测试使用X射线荧光光谱法(X-ray fluorescence spectroscopy),测试仪器型号为ZSX Primus Ⅱ型X射线荧光光谱仪,分析精度优于5%,分析测试的详细步骤见李献华等(2002).微量元素测试采用的仪器为电感耦合等离子质谱-热电(Thermo Fisher)ICP-MS X2,分析精度优于5%,详细步骤见刘颖等(1996).全岩主量、微量元素的分析结果见附表 1.

      锆石制靶由重庆宇劲科技有限公司完成,锆石U-Pb定年、透反射照片和锆石阴极发光图像(CL)的拍摄均在桂林理工大学广西隐伏金属矿产勘查重点实验室完成.

      锆石U-Pb定年采用激光-电感耦合等离子质谱计(LA-ICP-MS)进行测试,测试所用激光剥蚀系统为NWR-193,输出波长为193 nm,烧蚀斑点为2~150 μm;ICP-MS为Agilent-7500cx.本次实验采用的激光束斑直径为32 μm,锆石年龄计算采用标准锆石TEM(其年龄为416.75±0.24 Ma)作为外标,元素含量采用美国国家标准物质局人工合成硅酸盐玻璃NIST610作为外标.对分析数据的处理及U-Th-Pb同位素比值和年龄计算等均使用ICPMSDataCal7.2软件,普通Pb的校正用Andersen进行.锆石的U-Pb年龄谐和图的绘制及平均权重的计算均采用国际标准程序Isoplot4.11,单个数据点误差均为1σ,年龄加权平均值具有95%的置信度.

      斜长角闪岩样品的锆石U-Pb定年结果见附表 2.用于定年的锆石呈半透明-透明状,以透明状为主,颜色以浅棕、浅褐及褐色为主.锆石绝大多数呈柱状,长度一般为80~250 μm,内部发育较宽的环带结构(图 5),其Th/U比值均较高,大部分大于0.2(附表 2),具有典型的岩浆成因锆石的特征.对样品16MH33进行了30个锆石点的分析,测得其U含量变化于179×10-6~1 630×10-6,Th含量为39×10-6~3 580×10-6,Th/U比值变化范围为0.20~2.21. 30个测试点均落在谐和线上或附近,并给出了764±6 Ma(MSWD = 4.8)的206Pb/238U加权平均年龄(图 6a),代表了其原岩形成年龄.

      图  5  点苍山地区斜长角闪岩代表性锆石CL图像
      Fig.  5.  CL images of representative zircons of the amphibolites in the Diancangshan area
      图  6  点苍山地区斜长角闪岩锆石U-Pb年龄谐和图及其加权平均年龄
      Fig.  6.  Zircon U-Pb concordia diagrams and weighted mean ages of the amphibolites in the Diancangshan area

      对样品16MH35进行了20个锆石点的分析,测得其U含量变化于513×10-6~3 261×10-6,Th含量为198×10-6~1 052×10-6,Th/U比值变化范围为0.19~1.49. 其中19个测试点落在谐和线上或附近,并给出了779±9 Ma(MSWD = 1.8)的206Pb/238U加权平均年龄(图 6b),代表了其原岩形成年龄;另外还有一个测试点明显偏离谐和线,推测与受后期构造事件影响而导致铅丢失有关.

      斜长角闪岩样品的稀土和微量元素测试结果列于附表 1,根据Nb/La比值可将其分为2组,第1组斜长角闪岩样品Nb/La比值为0.75~0.76,均大于0.5,其Nb含量较高,为14.6×10-6~15.1×10-6,Nb/Y比值为0.68~0.81,类似亚碱性玄武岩(图 7a);第2组样品Nb/La比值为0.20~0.21,均小于0.5,强烈亏损Nb、Ta,其Nb含量为5.5×10-6~5.8×10-6,Nb/Y比值为0.33~0.39,类似碱性玄武岩(图 7a).据Sajona et al.(1994)的定义,第1组样品具有类似富Nb玄武岩的特征(图 7b),其稀土和微量元素变化特征整体上与华夏地块云开地区的富Nb玄武岩相似(图 8);第2组样品表现出岛弧玄武岩的地球化学特征(图 7b).第1组样品的SiO2含量为52.4%~52.6%,MgO含量为4.1%~4.2%,Mg#在53左右,FeOt含量为8.7%~8.8%,TiO2含量为1.1%,Al2O3含量为19.0%~19.3%,全碱(K2O+Na2O)含量为7.1%,Na2O/K2O比值为3.1~3.2.第2组样品相对第1组样品具有较低的SiO2(47.4%~47.5%)、TiO2(0.8%~0.9%)和Al2O3(18.1%~18.2%)含量,以及较高的MgO(5.4%~5.5%)、FeOt(9.8%~9.9%)、全碱(7.3%~7.4%)含量和Mg#(57).

      图  7  点苍山地区斜长角闪岩Nb/Y-Zr/TiO2 (a)和MgO-Nb/La (b) 图解(底图据Sajona et al., 1994)
      Fig.  7.  Plots of Nb/Y vs. Zr/TiO2 (a) and MgO vs. Nb/La (b) for the amphibolites in the Diancangshan area (after Sajona et al., 1994)
      图  8  点苍山地区斜长角闪岩球粒陨石标准化稀土元素配分模式(a)和原始地幔标准化微量元素蛛网图(b)
      球粒陨石和原始地幔标准化值据Sun and McDonough(1989),云开富Nb玄武岩据Zhang et al.(2012)
      Fig.  8.  Chondrite-normalized REE pattern (a) and primitive mantle-normalized trace element spidergram (b) of the amphibolites in the Diancangshan area

      研究区2组斜长角闪岩样品球粒陨石标准化稀土元素配分图表现为轻稀土富集的右倾型(图 8a),第1组样品的稀土总量为144×10-6~149×10-6,第2组样品具有相对较低的稀土总量,为111×10-6~118×10-6,均远大于原始地幔(PM)的稀土总量(7.43×10-6),高于洋脊玄武岩(N-MORB=39.11×10-6、E-MORB=49.09×10-6)、低于洋岛玄武岩(OIB=198.96×10-6Sun and McDonough, 1989)的稀土总量. 样品的轻、重稀土元素分馏程度相对较强,第1组样品的(La/Yb)cn值为3.0~3.2,(Gd/Yb)cn为1.42~1.51,Eu显示出轻微负异常(δEu=0.75~0.76);第2组样品具有相对较高的(La/Yb)cn(14.0~14.3)和(Gd/Yb)cn(1.85~1.93)比值,没有明显的Eu异常(δEu=0.99~1.13).

      本文研究的斜长角闪岩由基性岩类发生变质作用而形成,不稳定元素(如K、Na、Rb、Sr等)在蚀变和变质过程中容易发生迁移,而高场强元素(如Zr、Hf、Nb、Ta、Ti、Y等)和稀土元素在蚀变和变质过程中能够保持稳定,因而常常被用来讨论岩石成因和构造背景等(Pearce and Peate, 1995). 本文主要选择稳定性强的元素进行成因背景讨论.

      第1组斜长角闪岩样品表现出富铌玄武岩(Nb-enriched basalt,NEB)的地球化学特征,第2组样品具有岛弧玄武岩的特征(图 7b图 8),结合近年来在哀牢山地区报道有同时期的具有岛弧地球化学特征的基性-变基性岩、富铌玄武岩(Cai et al., 2014)和埃达克质花岗闪长岩(Qi et al., 2012),这样一种岩石组合类型往往被认为与俯冲作用事件有关(Shimoda et al., 1998代作文等,2018王保弟等,2018),据此推测本文研究的斜长角闪岩与新元古代时期的俯冲作用有关.

      研究表明,产于岛弧环境中的玄武岩比弧后盆地玄武岩具有更低的Nb、V、Ti、Zr含量,其Nb含量一般低于2×10-6Pearce and Peate, 1995). 第2组斜长角闪岩样品的Nb含量均大于2×10-6,表明岩石并不是直接形成于岛弧环境,因为Nb元素的主要赋存矿物是金红石等副矿物,在弧后盆地环境或洋中脊环境下,由于处于拉伸环境,岩浆源区的熔融程度往往较高,因而金红石等副矿物易于进入熔体相,导致其形成的岩浆具有高Nb含量的特征;而岛弧环境下岩浆源区由于熔融程度相对较低,易残留金红石等副矿物,导致其形成的岩浆具有低Nb含量的特征.

      本文2组斜长角闪岩样品的Ti/V比值为16.6~38.9,平均值为26.4,高于平均MORB的Ti/V比值(Woodhead et al., 1993).较高的Ti/V比值可能由熔融程度较低导致,这种比MORB还要低的熔融程度可能与低的拉张程度有关,暗示其构造背景可能是弧后盆地环境,因为洋中脊的拉张程度相对强于弧后盆地.产于弧后盆地的玄武岩不同于洋中脊玄武岩(MORB)单纯的减压熔融,也不同于岛弧玄武岩(IAB)具有大量流体加入的熔融(Taylor and Martinez, 2003),而是在减压和俯冲流体加入的共同作用下发生不同程度熔融而形成(Pearce and Peate, 1995),因而弧后盆地玄武岩往往兼具MORB和IAB两种玄武岩的地球化学特征.从球粒陨石标准化稀土元素配分模式和原始地幔标准化微量元素蛛网图中可以看出(图 8),第2组斜长角闪岩样品的重稀土(HREE)变化特征与E型洋中脊玄武岩(E-MORB)相似;轻稀土(LREE)则明显富集,同时还明显富集Th、U,具有强烈的Nb、Ta负异常,这些地球化学特征又与岛弧玄武岩(IAB)相似,暗示这些斜长角闪岩同时具有洋中脊玄武岩和岛弧玄武岩的地球化学特征,与弧后盆地玄武岩的地球化学特征相似.在Hf/3-Th-Ta构造环境判别图解中,所有的样品点落在了钙碱性弧火山岩和E-MORB交界部位(图 9a);在Y/15-La/10-Nb/8图解中,第1组样品点落入了弧后盆地大陆玄武岩区域,第2组样品点落入了火山弧钙碱性玄武岩区域(图 9b),亦显示样品兼具洋中脊玄武岩和岛弧玄武岩的地球化学特征.

      图  9  点苍山地区斜长角闪岩Hf/3-Th-Ta (a)和Y/15-La/10-Nb/8 (b)图解
      底图据Campbell and Griffiths(1990). A.N-MORB;B.E-MORB-板内拉斑玄武岩;C.板内碱性玄武岩;D.钙碱性弧火山岩.1区为火山弧玄武岩,2区为大陆玄武岩,3区为大洋玄武岩;1A.钙碱性玄武岩,1B.板内火山弧拉斑玄武岩,1C.板内碱性火山弧玄武岩,2A.大陆玄武岩,2B.弧后盆地大陆玄武岩,3A.大陆裂谷碱性玄武岩,3B、3C.富集型洋脊玄武岩,3D.正常洋脊玄武岩
      Fig.  9.  Plots of Hf/3-Th-Ta (a) and Y/15-La/10-Nb/8 (b) for the amphibolites in the Diancangshan area

      此外,Pearce et al.(2005)通过对Mariana玄武岩的研究提出了识别岛弧和弧后盆地玄武岩的Ba/Yb-Nb/Yb和Ba/Nb-Th/Yb图解(图 10),并认为产于弧后盆地扩张中心的玄武岩会投入MORB阵列,若弧后扩张中捕获了弧物质或者来自于受俯冲影响的地幔,样品则会投入到弧玄武岩区域.第1组样品点落入了Mariana BABB(弧后盆地玄武岩)范围内,第2组样品落入了Mariana岛弧玄武岩范围内,表明本文斜长角闪岩的地球化学特征与Mariana玄武岩相似,均兼具洋中脊玄武岩和岛弧玄武岩的地球化学特征,暗示两者的形成环境可能具有一定的相似性.综上所述,本文的斜长角闪岩形成于弧后盆地环境,与弧后拉张作用有关.

      图  10  点苍山地区斜长角闪岩Ba/Yb-Nb/Yb (a)及Ba/Nb-Th/Yb (b)图解(据Pearce et al., 2005)
      Fig.  10.  Plots of Ba/Yb vs. Nb/Yb (a) and Ba/Nb vs. Th/Yb (b) for the amphibolites in the Diancangshan area (after Pearce et al., 2005)

      华南板块的形成被认为与新元古代时期扬子地块和华夏地块沿江南造山带发生的俯冲碰撞拼贴作用有关(Zhao and Cawood, 2012Cai et al., 2014).现有的研究资料显示,扬子地块北缘、东缘、东南缘、西缘和西北缘等地区新元古代岩浆作用格外强烈(张继彪等,2020;附表 3),形成了大量产于中-新元古界变质基底岩系中的新元古代基性岩、酸性岩和少量中性岩,并多被南华系或震旦系不整合覆盖(Cai et al., 2014). 比如在扬子地块西缘的盐边群和康定杂岩中均识别出了大量新元古代岩浆岩,前者主要由花岗岩、闪长岩、基性-超基性岩、变质火山岩和片岩等组成,其时代多集中在825~738 Ma(Zhu et al., 2008),后者主要由花岗岩、英云闪长岩、花岗闪长岩、花岗片麻岩和混合花岗岩等组成,其形成时代主要为864~751 Ma(Zhao and Zhou, 2008).扬子地块西北缘的碧口群主要形成于857~776 Ma(Zhao and Cawood, 2012),主要岩石类型有花岗岩、闪长岩、辉长岩、花岗片麻岩、中基性熔岩和火山碎屑岩等. 扬子地块北缘的西乡群和汉南杂岩记录有大量新元古代岩浆作用信息,前者的岩性主要有流纹岩、英安岩、玄武安山岩、玄武岩和变沉积岩等,其形成时代主要集中在845~706 Ma(Ling et al., 2003),后者主要由花岗岩、石英闪长岩、辉长岩和辉石岩等组成,其形成时代主要为870~700 Ma(Dong et al., 2012).扬子地块东缘和东南缘新元古代时期的岩浆作用广泛存在于江南造山带,该造山带主要由新元古代早期的变火山-沉积岩、新元古代中期的岩浆岩和新元古代晚期的未变质震旦纪盖层组成(Zhao and Cawood, 2012),从东北往西南依次包含安徽南部的上溪群、江西西北部的双桥山群、湖南中部的冷家溪群、广西北部的四堡群和贵州东北部的梵净山群等地层单元,分布在这些地层单元中的侵入岩和火山岩的形成时代主要为850~800 Ma(Zhao and Cawood, 2012唐增才等,2020).

      近年来在扬子地块西南缘的点苍山-哀牢山构造带获得了一些新元古代岩浆作用信息,该构造带内分布的新元古代岩浆岩发生了不同程度的变质,它们主要呈透镜状、似层状或碎片状出露在河口-金平-元阳-新平-大理一带,岩石类型以花岗片麻岩、片麻状花岗岩、黑云斜长片麻岩、变基性岩(如斜长角闪岩)、混合岩为主,同时出露有少量基性岩(如辉长岩)和中性岩(如闪长岩)(Cai et al., 2014, 2015蔡永丰等,2014). 比如,点苍山杂岩中出露有843~833 Ma(SHRIMP锆石U-Pb年龄)的混合岩(刘俊来等,2008);哀牢山地区小羊街组斜长角闪岩的形成时代为814±20 Ma(Sm-Nd等时线年龄;朱炳泉等,2001);元阳姚家寨角闪辉长岩和花岗闪长岩的形成时代分别为769±7 Ma和761±11 Ma(LA-ICP-MS锆石U-Pb年龄;Qi et al., 2012)、闪长岩的形成时代为800±7 Ma(LA-ICP-MS锆石U-Pb年龄;Cai et al., 2015);金平斜长角闪岩的形成时代为810~800 Ma(LA-ICP-MS/SIMS锆石U-Pb年龄;Cai et al., 2014)、片麻状花岗岩形成于828~748 Ma(LA-ICP-MS锆石U-Pb年龄;李宝龙等,2012).

      本文对点苍山地区2个代表性变基性岩(斜长角闪岩)样品的年代学研究得到764±6 Ma、779±9 Ma的形成年龄,说明点苍山地区存在新元古代基性岩浆活动. 综合上述数据资料,表明与扬子地块其他边缘地区相似,扬子地块西南缘的点苍山-哀牢山构造带亦存在广泛的新元古代岩浆活动,其活动时代主要集中在新元古代中期(843~748 Ma)(附表 3).

      Zhao et al.(2011)对扬子地块西缘和西北缘新元古岩浆岩开展了研究,认为这些岩石普遍具有典型的岛弧地球化学特征,提出在攀西-汉南一带分布有长达1 000 km的新元古代弧岩浆岩.扬子地块东缘和东南缘新元古代时期的岩浆活动普遍被认为与扬子地块和华夏地块沿江南造山带发生的俯冲碰撞事件有关(Zhao et al., 2011蒙麟鑫等,2020).根据岩石组合、地球化学特征等证据,本文认为点苍山地区的斜长角闪岩形成于弧后盆地环境,暗示扬子地块西南缘的新元古代岩浆活动亦与俯冲作用相关.此外,点苍山-哀牢山构造带新元古代岩浆活动的时代主要集中在843~748 Ma(附表 3),岩浆活动持续时间近100 Ma,如此长时间的岩浆作用通常与俯冲事件有关(Béguelin et al., 2017),由此推测新元古代时期,扬子地块可能为一孤立陆块,其周缘相继有不同的地块/板块与其发生俯冲碰撞,从而在扬子地块周缘地区形成了持续时间长达100 Ma的新元古代岩浆作用.

      滇西点苍山地区变基性岩(斜长角闪岩)的锆石U-Pb年龄为764±6 Ma、779±9 Ma,形成于新元古代,表明本区存在新元古代基性岩浆活动. 岩石形成于弧后盆地环境,其形成与新元古代时期扬子地块西南缘发生的洋壳俯冲作用有关.

      附表见本刊官网(www.earth-science.net).

      致谢: 感谢蒙麟鑫、李亭昕、刘风雷和实验室余红霞、李政林、袁永海、刘奕志老师在实验分析测试等方面的帮助与指导.感谢审稿专家提出的宝贵意见和编辑部老师的辛勤付出.
    • 图  1  余石山铌钽矿区大地构造位置图

      1.第四系;2.石炭.二叠系杨虎沟组;3.寒武.奥陶系拉配泉群;4.奥陶纪辉长岩体;5.蓟县.青白口系冰沟南组;6.长城系熬油沟组二段;7.长城系熬油沟组五段;8.长城系熬油沟组六段;9.二长花岗岩;10.石英闪长岩;11.断层及产状;12.余石山铌钽矿床位置;13.采样位置;图据杨再朝等(2014)修改

      Fig.  1.  Yushishan Nb-Ta mining area geotectonic location map

      图  2  矿区中细粒似斑状黑云二长花岗岩标本(a、b)和镜下显微特征(c、d)

      Pl.斜长石;Kfs.钾长石;Bt.黑云母;Hb.角闪石;QZ.石英

      Fig.  2.  Medium-fine-grained porphyritic biotite monzonitic granite specimens (a, b) and microscopic characteristics (c, d) in the mining area

      图  3  余石山二长花岗岩K2O-Na2O(a)、A/NK-A/CNK图解(b)

      Maniar and Piccoli(1989)

      Fig.  3.  K2O-Na2O (a), A/NK-A/CNK (b) diagrams of Yushishan monzonitic granite

      图  4  余石山二长花岗岩原始地幔标准化微量元素蛛网图(a)稀土元素球粒陨石标准化曲线图(b)

      a据Sun and Macdonough(1989); b据Taylor and Mclennan(1985)

      Fig.  4.  Primitive mantle-normalized trace element spider map of the original mantle (a) and rare earth element chondrite standardization curve (b) of Yushishan monzonitic granite

      图  5  余石山二长花岗岩锆石LA-ICP-MS激光点位及年龄

      Fig.  5.  Zircon LA-ICP-MS laser point and age of Yushishan monzonitic granite

      图  6  余石山二长花岗岩锆石U-Pb年龄谐和曲线(a)和平均年龄计算图(b)

      Fig.  6.  Zircon U-Pb age harmonic curve (a) and average age calculation (b) of Yushishan monzonitic granite

      图  7  余石山二长花岗岩锆石Hf同位素t-εHf(t)(a)、t-176Hf/177Hf图解(b)

      吴福元等(2007)

      Fig.  7.  Zircon Hf isotope t-εHf(t) (a), t-176Hf/177Hf (b) diagrams of Yushishan monzonitic granite

      图  8  余石山二长花岗岩K2O-Na2O(a)、Zr-TiO2图解(b)

      Collins et al.(1982)

      Fig.  8.  K2O-Na2O (a) and Zr-TiO2 (b) diagrams of Yushishan monzonitic granite

      图  9  余石山二长花岗岩Y-Nb(a)、Yb-Ta构造环境判别图(b)

      WPG.板内花岗岩;VAG.火山弧花岗岩;ORG.洋脊花岗岩;syn-COLG.同造山期碰撞花岗岩;据Pearce et al.(1984)

      Fig.  9.  Judging diagram of Y-Nb(a) and Yb-Ta tectonic environment (b) of Yushishan monzonitic granite

      表  1  余石山二长花岗岩主量元素含量(%)

      Table  1.   Contents of main elements in Yushishan monzonitic granite(%)

      样品号 YT3-01 YT3-02 YT3-03 YT3-04 YT3-05 YT3-06 YT3-07
      Al2O3 16.78 16.66 17.28 17.20 17.29 17.44 17.43
      As2O3 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
      BaO 0.15 0.12 0.18 0.17 0.17 0.20 0.13
      CaO 3.38 3.15 3.10 3.31 3.26 3.25 3.85
      Cl <0.01 <0.01 0.01 <0.01 0.01 <0.01 0.01
      CoO <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
      Cr2O3 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
      CuO <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
      TFe2O3 5.12 5.33 6.16 6.74 6.31 6.06 7.65
      K2O 4.02 3.42 3.92 3.65 3.56 4.00 2.89
      MgO 1.86 2.04 2.26 2.49 2.31 2.27 3.07
      MnO 0.07 0.07 0.08 0.08 0.08 0.08 0.10
      Na2O 4.83 5.14 4.30 4.34 4.74 4.42 4.67
      NiO <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
      P2O5 0.20 0.21 0.27 0.30 0.27 0.25 0.39
      PbO 0.01 0.01 0.01 0.01 0.01 0.01 0.01
      SiO2 60.26 60.48 59.22 58.74 59.09 59.17 56.05
      SnO2 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
      SO3 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
      SrO 0.03 0.02 0.04 0.04 0.04 0.05 0.04
      TiO2 0.74 0.74 0.92 1.02 0.95 0.90 1.04
      V2O5 0.01 0.01 0.01 0.02 0.01 0.01 0.02
      ZnO 0.01 0.01 0.01 0.01 0.01 0.01 0.01
      ZrO2 0.05 0.04 0.05 0.06 0.06 0.05 0.05
      LOI 2.06 2.08 1.55 1.58 1.56 1.49 2.10
      下载: 导出CSV

      表  2  余石山二长花岗岩微量元素含量(10-6)

      Table  2.   Trace element contents (10-6) of Yushishan monzonitic granite

      样品号 YT3-01 YT3-02 YT3-03 YT3-04 YT3-05 YT3-06 YT3-07
      Ba 1 445 1 200 1 785 1 645 1 685 1 835 1 230
      Ce 183 210 223 228 219 194 185
      Cr 20 20 20 20 20 10 10
      Cs 0.72 0.61 2.95 3.58 2.58 2.83 2.40
      Dy 10.10 9.94 11.70 12.95 11.80 10.05 9.73
      Er 5.71 5.54 6.78 7.16 6.98 5.86 5.59
      Eu 2.46 2.47 2.85 3.07 2.92 2.59 2.53
      Ga 19.8 19.8 21.6 22.9 21.8 20.9 23.6
      Gd 11.35 11.35 13.50 14.65 13.85 12.20 11.85
      Hf 10.3 8.9 11.8 13.9 11.9 11.5 9.4
      Ho 2.02 1.95 2.34 2.56 2.44 2.11 2.06
      La 79.1 104.0 100.5 90.7 92.6 83.7 76.7
      Lu 0.76 0.73 0.91 0.96 0.89 0.84 0.79
      Nb 47.7 47.7 54.9 60.0 55.8 49.7 48.3
      Nd 74.0 77.8 86.9 93.1 88.0 77.0 73.5
      Pr 20.7 22.2 24.6 26.2 24.8 22.1 20.6
      Rb 116.0 97.6 139.5 132.5 125.0 125.5 106.0
      Sm 14.20 14.00 16.60 17.90 16.70 14.80 14.05
      Sn 4 4 5 5 5 4 4
      Sr 220 195 418 418 360 380 352
      Ta 3.7 3.6 4.0 4.5 4.1 3.7 3.5
      Tb 1.72 1.78 2.06 2.21 2.11 1.80 1.77
      Th 12.40 16.30 21.00 19.80 15.95 16.25 13.35
      Tm 0.85 0.84 1.02 1.13 1.03 0.90 0.82
      U 2.63 2.47 4.18 4.66 3.80 3.52 3.57
      V 86 90 98 108 99 90 115
      W <1 35 <1 1 1 1 1
      Y 59.6 59.9 69.7 77.4 71.1 62.0 59.2
      Yb 5.45 5.30 6.31 6.92 6.59 5.77 5.61
      Zr 423 376 511 583 500 483 396
      下载: 导出CSV
    • [1] Amelin, Y., Lee, D.C., Halliday, A.N., et al., 1999.Nature of the Earth's Earliest Crust from Hafnium Isotopes in Single Detrital Zircons.Nature, 399:252-255. https://www.researchgate.net/publication/30863322_Nature_of_the_Earth's_earliest_crust_from_hafnium_isotopes_in_single_detrital_zircons
      [2] Andersen, T., 2002.Correction of Common Lead in U-Pb Analyses That do not Report 204Pb.Chemical Geology, 192(1-2):59-79. https://www.sciencedirect.com/science/article/pii/S000925410200195X
      [3] Andersson, J., Miller, C., Johansson, L., 2002.Zircon Geochronology of Migmatite Gneisses along the Mylonite Zone (Sweden):A Major Sveconorwegian Terrane Boundary in the Baltic Shield.Precambrian Research, 114(1-2):121-147.
      [4] Bonin, B., 2007.A-Type Granites and Related Rocks:Evolution of a Concept, Prospects.Lithos, 97(1-2):1-29. https://www.sciencedirect.com/science/article/abs/pii/S0024493706003252
      [5] Bouvier, A., Vervoort, J.D., Patchett, P.J., 2008.The Lu-Hf and Sm-Nd Isotopic Composition of CHUR:Constraints from Unepuilibrated Chondrites and Implications for the Bulk Composition of Terrestrial Planets.Earth and Planetary Science Letters, 273(1-2):48-57. https://www.sciencedirect.com/science/article/pii/S0012821X08003828
      [6] Chen, B.L., Li, S.B., Jiang, R.B., et al., 2016.Zircon SHRIMP U-Pb Dating of Intermediate-Felsic Volcanic Rocks from the Kaladawan Area, Altun Mountains and Its Tectonic Environment.Acta Geologica Sinica, 90 (4):708-727(in Chinese with English abstract).
      [7] Chen, D.L., Liu, L., Sun, Y., et al., 2009.Geochemistry and Zircon U-Pb Dating and Its Implications of the Yukahe HP/UHP Terrane, the North Qaidam, NW China.Journal of Asian Earth Sciences, 35(1-4):259-272. https://www.sciencedirect.com/science/article/pii/S1367912008001946
      [8] Chen, H.J., Wu, C.L., Lei, M., et al., 2018.Genesis and Geological Significance of the Neoproterozoic Granite in the Kekesayi, Nanerjin Block.Earth Science, 43(4):1278-1295(in Chinese with English abstract).
      [9] Chen, J.L., Li, H.B., Wang, H.L., et al., 2007.LA-ICPMS Zircon U-Pb Dating of a Quartz Diorite Pluton from Wangjiacha, the Junction Area between the Qinling and Qilian Orogenic Belts and Its Tectonic Significance.Journal of Jilin University (Earth Science Edition), 37(3):423-431(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ200703001.htm
      [10] Chen, J.L., Xu, X.Y., Zeng, Z.X., et al., 2008.Geochemical Characters and LA-ICPMS Zircon U-Pb Dating Constraints on the Petrogenesis and Tectonic Setting of the Shichuan Intrusion, East Segment of the Cental Qilian, NW China.Acta Petrologica Sinica, 24(4):841-854(in Chinese with English abstract). https://www.researchgate.net/profile/Jl-Chen
      [11] Chen, X.H., Gehrels, G., Wang, X.F., et al., 2003.Discussion on the Formation Age of Granite in the Northern Margin of the Altun Mountains and Its Tectonic Setting.Bulletin of Mineralogy, Petrology and Geochemistry, 22(4):294-298(in Chinese with English abstract).
      [12] Claesson, S., Vetrin, V., Bayanova, T., et al., 2008.U-Pb Zircon Ages from a Devonian Carbonatite Dyke, Kols Peninsula, Russia:A Record of Geological Evolution from the Archaean to the Palaeozoic Lithos.Journal of Metamorphic Geology, 32(1-2):95-108. https://www.sciencedirect.com/science/article/abs/pii/S0024493799000766
      [13] Collins, W.J., Beams, S.D., White, A.J.R., et al., 1982.Nature and Origin of A-Type Granites with Particular Reference to Southeastern Australia.Contributions to Mineralogy and Petrology, 80(2):189-200. doi: 10.1007/BF00374895
      [14] Defant, M.J., Xu, J.F., Kepezhinskas, P., et al., 2002.Adakites:Some Variations on a Theme.Acta Petrologica Sinica, 18 (2):129-142. https://www.researchgate.net/publication/298585840_Adakites_Some_variations_on_a_theme
      [15] Diwu, C.R., Sun, Y., Lin, C.L., et al., 2007.Zircon U-Pb Ages and Hf Isotopes and Their Geological Significance of Yiyang TTG Gneisses from Henan Province, China.Acta Petrologica Sinica, 23(2):253-262(in Chinese with English abstract). https://www.researchgate.net/publication/280015308_Zircon_U-Pb_ages_and_Hf_isotopes_and_their_geological_significance_of_Yiyang_TTG_gneisses_from_Henan_province_China
      [16] Gao, D., Wu, C.L., Gao, Y.H., et al., 2019.Zircon U-Pb Geochronology, Geochemical Characteristics and Geological Significance of the Yusupuleke Granite Pluton in South Altyn and Its Geological Implications.Earth Science, 44(11):3812-3828(in Chinese with English abstract).
      [17] Ge, X.H., Liu, J.L., 1999.Formation and Tectonic Background of the Northern Qilian Orogenic Belt.Earth Science Frontiers, , 6(4):223-230(in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S1342937X12000445
      [18] Hoskin, P.W.O., Black, L.P., 2000.Metamorphic Zircon Formation by Solid-State Recrystallization of Protolith Igneous Zircon.Journal of Metamorphic Geology, 18(4):423-439. doi: 10.1046/j.1525-1314.2000.00266.x
      [19] Hoskin, P.W.O., Schaltegger, U., 2003.The Composition of Zircon and Igneous and Metamorphic Petrogenesis.Zircon, 53(1):27-62. https://pubs.geoscienceworld.org/msa/rimg/article-abstract/53/1/27/87468/The-Composition-of-Zircon-and-Igneous-and
      [20] Hou, K.J., Li, Y.H., Zou, T.R., et al., 2007.Laser Ablation-MC-ICP-MS Technique for Hf Isotope Microanalysis of Zircon and Its Geological Applications.Acta Petrologica Sinica, 23(10):2595-2604(in Chinese with English abstract).
      [21] Hou, R.N., Wang, S.H., Zhang, X., et al., 2015.Geochemical Characteristics and Tectonic Significance of the Granotoids in the Western Section of the Mid-Qilian.Advances in Earth Science, 30(9):1034-1049(in Chinese with English abstract).
      [22] Huang, Z.B., Zhen, J.P., Li, B.H., et al., 2015.Geochronology and Geochemistry of Yemashan Batholiths in Western Central Qilian and Its Tectonic Implications.Geology in China, 45(2):406-420(in Chinese with English abstract).
      [23] Jia, Q.Z., Yang, Z.T., Xiao, C.Y., et al., 2007.The Metallogenic Regularity and Metallogenic Prognosis of the Copper, Gold, Tungsten, Lead, Zinc Deposits in Qilian Mountains.Geological Publishing House, Beijing(in Chinese).
      [24] Jia, Z.L., 2016.Geological and Metallogenic Characteristics of Nb-Ta-Rb Deposits South Qilian-Beishan, Gansu Province (Dissertation).Lanzhou University, Lanzhou (in Chinese with English abstract).
      [25] Jia, Z.L., Dou, X.Y., Wang, J.R., et al., 2016.Protolith Reconstruction of Leptynite in Yushishan Area, South Qilian, Gansu.Gansu Geology, 25(2):9-14(in Chinese with English abstract).
      [26] Li, H.K., Zhu, S.X., Xiang, Z.Q., et al., 2010.Zircon U-Pb Dating on Tuff Bed from Gaoyuzhuang Formation in Yanqing, Beijing:Further Constraints on the New Subdivision of the Mesoproterozoic Stratigraphy in the Northern North China.Acta Petrologica Sinica, 26(8):2131-2140(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201007016.htm
      [27] Li, J.F., Zhang, Z.C., Han, B.F., 2010.Geochronolgy and Geochemistry of Early Paleozoic Plutons from Subei and Shibaocheng Areas, the Western Segment of Central Qilian and Their Geological Implications.Acta Petrologica Sinica, 26(8):2431-2444(in Chinese with English abstract).
      [28] Li, Q., Zeng, Z.C., Chen, N., et al., 2015.Zircon U-Pb Ages, Geochemical Characteristics and Tectonic Implications of Neoproterozoic Gailike Gneiss in the South Altyn Tagh.Geoscience, 29(6):1271-1283(in Chinese with English abstract).
      [29] Liu, J.H., Liu, L., Gai, Y.S., et al., 2017.Zircon U-Pb Dating and Hf Isotopic Compositions of the Baijianshan Granodiorite in North Altyn Tagh and Its Geological Significance.Acta Geologica Sinica, 91(5):1022-1038(in Chinese with English abstract).
      [30] Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008.In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard.Chemical Geology, 257(1-2):34-43. https://www.researchgate.net/publication/222034389_In_situ_analysis_of_major_and_trace_elements_of_anhydrous_minerals_by_LA-ICP-MSLA-ICP-MS_without_applying_an_internal_standard
      [31] Liu, Z.W., Wang, C.L., 2007.Granitoid Geochemistry and Gold-Copper Mineralization in the Danghenanshan Area, Southern Qilian Mountains.Geology and Prospecting, 43(1):64-73(in Chinese with English abstract).
      [32] Liu, Z.W., Wang, C.L., Shi, X.H., 2006.Granitoids Characteristics and Tectonic Setting of Danghenanshan Area in South Qilian Mountains.Geoscience, 20(4):545-554(in Chinese with English abstract).
      [33] Ludwig, K.R., 2003.User's Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel.Berkeley Geochronology Center, Berkeley.
      [34] Maniar, P.D., Piccoli, P.M., 1989.Tectonic Discrimination of Granitoids.Geological Society of America Bulletin, 101(5):635-643. https://pubs.geoscienceworld.org/gsa/gsabulletin/article-abstract/101/5/635/182281/Tectonic-discrimination-of-granitoids
      [35] Mcdonough, W.F., 2003.Compositional Model for the Earth's Core.Treatise on Geochemistry, 2:547-568. https://www.researchgate.net/publication/234489093_Compositional_Model_for_the_Earth's_Core
      [36] Miller, C.F., 1985.Are Strongly Petaluminous Magmas Derived from Politic Sedimentary Sources?The Journal of Geology, 93(6):673-689. doi: 10.1086/628995
      [37] Pan, X.F., Jiao, J.G., Wu, C.L., et al., 2019.Zircon U-Pb Dating and Hf Isotope Characteristics of the Aketishan Granite in the Southern Margin of Altun and Their Tectonics Implications.Acta Geologica Sinica, 93(3):633-646(in Chinese with English abstract).
      [38] Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984.Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks.Journal of Petrology, 25(4):956-983. https://www.researchgate.net/profile/Julian_Pearce2/publication/31497296_Trace_Element_Discrimination_Diagrams_for_the_Tectonic_Interpretation_of_Granitic_Rocks/links/00b495369517451efc000000/Trace-Element-Discrimination-Diagrams-for-the-Tectonic-Interpretation-of-Granitic-Rocks.pdf
      [39] Peng, Y.B., Yu, S.Y., Zhang, J.X., et al., 2018.Timing of Early Paleozoic Oceanic Crust Subduction in North Altun:Evidence from Plagiogranite and Granodiorite.Geology in China, 45(2):334-350(in Chinese with English abstract). https://www.researchgate.net/publication/328852228_Timing_of_Early_Paleozoic_oceanic_crust_subduction_in_North_Altun_Evidence_from_plagiogranite_and_granodiorite
      [40] Qi, R.R., 2012.LA-ICP-MS Zircon U-Pb Ages and Geological Implications for the Bagadeerji Granitic Plutons in the Central Qilian Mountains, Gansu.Sedimentary Geology and Tethyan Geology, 32(4):86-93(in Chinese with English abstract).
      [41] Qin, X.F., Xia, B., Li, C.Q., et al., 2008.Geochemical Characteristics and Tectonic Setting of Precambrian Granitic Gneiss in the Western Segment of Altyn Tagh Tectonic Belt. Geoscience, 22(1):34-44(in Chinese with English abstract).
      [42] Sang, L.K., Ma, C.Q., Wang, G.Q., et al., 2001.Petrology (Second Edition).Geological Publishing House, Beijing, 188(in Chinese).
      [43] Söderlund, U., Patchett, P.J., Vervoort, J.D., et al., 2004.The 176Lu Decay Constant Determined by Lu-Hf and U-Pb Isotope Systematics of Precambrian Mafic Intrusions.Earth and Planetary Science Letters, 219(3-4):311-324.
      [44] Su, J.P., Hu, N.G., Zhang, H.F., et al., 2004.U-Pb Zircon Dating and Genesis of Heigouliangzi Granitic Intrusion in the West Segment of the Middle Qilian Mountains.Geoscience, 18(1):70-75(in Chinese with English abstract).
      [45] Su, J.P., Zhang, X.H., Hu, N.G., et al., 2004.Geochemical Characteristics and Genesis of Adakite-Like Granites at Yema Nanshan in the Western Segment of the Central Qilian Mountains.Geology in China, 31(4):365-371(in Chinese with English abstract).
      [46] Sun, S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345. https://www.researchgate.net/publication/231575101_Chemical_and_isotopic_systematics_of_oceanic_basalts_Implications_for_mantle_composition_and_processes
      [47] Taylor, S.R., McLennan, S.M., 1985.The Continental Crust:Its Composition and Evolution.Geological Magazine, 122(6):673-674. doi: 10.1002/gj.3350210116
      [48] Taylor, S.R., McLennan, S.M., 1995.The Geochemical Evolution of the Continental Crust.Reviews of Geophysics, 33(2):241-265. doi: 10.1029/95RG00262
      [49] Vervoort, J.D., Patchett, P.J., Gehrels, G.E., et al., 1996.Constraints on Early Earth Differentiation from Hafnium and Neodymium Isotopes.Nature, 379:624-627. https://ui.adsabs.harvard.edu/abs/1996Natur.379..624V
      [50] Wang, L.S., Zhang, W., Duan, X.X., et al., 2015.Isotopic Age and Genesis of the Monzogranitic Gneiss at the Huanxingshan in Middle Altyn Tagh.Acta Petrologica Sinica, 31(1):119-132(in Chinese with English abstract). https://core.ac.uk/display/71731772
      [51] Wang, M.J., Song, S.G., Niu, Y.L., et al., 2014.Post-Collisional Magmatism:Consequences of UHPM Terrane Exhumation and Orogen Collapse, N.Qaidam UHPM Belt, NW China.Lithos, (210-211):181-198. https://www.sciencedirect.com/science/article/pii/S0024493714003727
      [52] Wang, X.F., Chen, X.H., Chen, Z.L., et al., 2002.Long-Term Prediction of Geological Conditions in the Altun Mineralization.Geological Publishing House, Beijing, 135-159(in Chinese with English abstract).
      [53] Wu, C.L., Gao, Y.H., Wu, S.P., et al., 2008.Zircon SHRIMP U-Pb Dating of the Western Segment of the Northern Margin of the Qaibei Margin and Its Petrochemical Characteristics.Science in China (Ser.D), 38(8):930-949(in Chinese).
      [54] Wu, C.L., Yang, J.S., Irland, T., et al., 2001.Zircon SHRIMP Ages of Aolaoshan Granite from the South Margin of Qilianshan and Its Geological Significance.Acta Petrologica Sinica, 17(2):215-221(in Chinese with English abstract).
      [55] Wu, C.L., Yang, J.S., Xu, Z.Q., et al., 2004.Granitic Magmatism on the Early Paleozoic UHP Belt of Northern Qaidam, NW China. Acta Geologica Sinica, 78(5):658-674(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200405009.htm
      [56] Wu, F.Y., Li, X.H., Zheng, Y.F., et al., 2007.Lu-Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 23(2):185-220(in Chinese with English abstract). https://www.researchgate.net/publication/279910636_Lu-Hf_isotopic_systematics_and_their_application_in_petrology
      [57] Wu, Y., Chen, Z.L., Chen, B.L., et al., 2019.Early Paleozoic Tectonic Deformation in Qiashenkansayigou Area, North Altun, and Implication for Tectonic Evolution.Journal of Geomechanics, 25(3):301-312(in Chinese with English abstract).
      [58] Wu, Y.B., Zheng, Y.F., 2004.Zircon Genesis Mineralogical Study and Its Constraints on U-Pb Age Interpretation.Chinese Science Bulletin, 49(16):1589-1604(in Chinese). doi: 10.1007/BF03184122
      [59] Xin, H.T., Wang, H.C., Zhou, S.J., 2006.Geological Events and Tectonic Evolution of the North Margin of the Qaidam Basin.Geological Survey and Research, 29(4):311-320(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-QHWJ200604010.htm
      [60] Xiong, Q., Zheng, J.P., Griffin, W.L., et al., 2011.Zircons in the Shenglikou Ultrahigh-Pressure Garnet Peridotite Massif and Its Country Rocks from the North Qaidam Terrane (Western China):Meso-Neoproterozoic Crust-Mantle Coupling and Early Paleozoic Convergent Plate-Margin Processes.Precambrian Research, 187 (1-2):33-57. https://www.sciencedirect.com/science/article/pii/S0301926811000416
      [61] Xiong, Q., Zheng, J.P., Griffin, W.L., et al., 2012.Decoupling of U-Pb and Lu-Hf Isotopes and Trace Elements in Zircon from the UHP North Qaidam Orogeny, NE Tibet (China):Tracing the Deep Subduction of Continental Blocks.Lithos, 155:125-145.
      [62] Xu, Z.Q., Yang, J.S., Zhang, J.X., et al., 1999.Comparison between the Tectonic Units on the Two Sides of the Altun Sinistral Strike-Slip Fault and the Mechanism of Lithospheric Shearing.Acta Geologica Sinica, 73(3):193-205(in Chinese with English abstract).
      [63] Yang, Y., Chen, X.H., Gehrels, G., et al., 2004.Early Paleozoic Magmatism and Gold Metallogenesis in Altun Mountains, Northwest China.Mineral Deposits, 23(4):464-472(in Chinese with English abstract).
      [64] Yang, Z.C., Xiao, P.X., Gao, X.F., et al., 2014.LA-ICP-MS Dating of the Aegirine-Augite Syenite of Yushishan Nb-Ta Deposit in Eastern Altun and Its Constraints on the Metallogenetic Age.Northwestern Geology, 47(4):187-197(in Chinese with English abstract).
      [65] Yin, H.F., Zhang, K.X., 1998.Evolution and Characteristics of the Central Orogenic Belt.Earth Science, 23(5):438-442(in Chinese with English abstract).
      [66] Yong, Y., Xiao, W.J., Yuan, C., et al., 2008.Geochronology and Geochemistry of Paleozoic Granitic Plutons from the Eastern Central Qilian and Their Tectonic Implications.Acta Petrologica Sinica, 24(4):855-866(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200804025.htm
      [67] Yu, J.P., Wu, Y.B., Liang, M.H., et al., 2015.New Progress of the Southern Altyn Tagh Geological Mapping and Guide the Prospecting Support:According to 1:50 000 Mobeier and other Five Regional Geological Maps in Gansu Province. Geological Survey of China, 2(2):40-47(in Chinese with English abstract).
      [68] Yu, S.Y., Zhang, J.X., Mattinson, C.G., et al., 2014.Paleozoic HP Granulite-Facies Metamorphism and Anatexis in the Dulan Area of the North Qaidam UHP Terrane, Western China:Constraints from Petrology, Zircon U-Pb and Amphibole Ar-Ar Geochronology.Lithos, 198-199:58-76. https://www.sciencedirect.com/science/article/pii/S0024493714000991
      [69] Zhang, C., Roermund, H., Zhang, L.F., et al., 2012.A Polyphase Metamorphic Evolution for the Xitieshan Paragneiss of the North Qaidam UHP Metamorphic Belt, Western China:In Situ EMP Monazite and U-Pb Zircon SHRIMP Dating.Lithos, 136-139:27-45. https://www.sciencedirect.com/science/article/pii/S0024493711002192
      [70] Zhang, G.B., Zhang, L.F., Christy, A.G., 2013.From Oceanic Subduction to Continental Collision:An Overview of HP-UHP Metamorphic Rocks in the North Qaidam UHP Belt, NW China.Journal of Asian Earth Sciences, 63:98-111. https://www.sciencedirect.com/science/article/pii/S1367912012003185
      [71] Zhang, J.X., Mattinson, C.G., Yu, S.Y., 2010.U-Pb Geochronology of Coesite-Bearing Eclogites from the Southern Dulan Area of the North Qaidam UHP Terrane, Northwestern China:Spatially and Temporally Extensive UHP Metamorphism during Continental Subduction.Journal of Metamorphic Geology, 28(9):955-978. https://www.researchgate.net/publication/258370920_U-Pb_zircon_geochronology_of_coesite-bearing_eclogites_from_the_southern_Dulan_area_of_the_North_Qaidam_UHP_terrane_northwestern_China_Spatially_and_temporally_extensive_UHP_metamorphism_during_contin
      [72] Zhang, J.X., Meng, F.C., Yu, S.Y., et al., 2007.39Ar-40Ar Geochronology of High-Pressure/Low-Temperature Blueschist and Eclogite in the North Altyn Tagh and Their Tectonic Implications.Geology in China, 34(4):558-564(in Chinese with English abstract).
      [73] Zhang, J.X., Yu, S.Y., Li, Y.S., et al., 2015.Subduction, Accretion and Closure of Proto-Tethyan Ocean:Early Paleozoic Accretion/Collision Orogeny in the Altun-Qilian-North Qaidam Orogenic System.Acta Petrologica Sinica, 31(12):3531-3554(in Chinese with English abstract). https://www.researchgate.net/publication/292476172_Subduction_accretion_and_closure_of_Proto-Tethyan_Ocean_Early_Paleozoic_accretioncollision_orogeny_in_the_Altun-Qilian-North_Qaidam_orogenic_system
      [74] Zhang, Q., Wang, Y., Li, C.D., et al., 2006.Granite Classification on the Basis of Sr and Yb Contents and Its Implications.Acta Petrologica Sinica, 22(9):2249-2269(in Chinese with English abstract). https://www.researchgate.net/publication/279655758_Granite_classification_on_the_basis_of_Sr_and_Yb_contents_and_its_implications
      [75] Zhang, Z.W., Li, W.Y., Gao, Y.B., et al., 2012.ID-TIMS Zircon U-Pb Age of Yulonggou Intrusive Rocks in Southern Qilian Mountain and Its Geological Significance.Geological Bulletin of China, 31(2):455-462(in Chinese with English abstract).
      [76] Zhao, G.X., Mao, D.B., Zhang, Y., et al., 2007.Main Metallogenic Systems of the Alytn Metallogenic Belt in Caledonian.Geological Survey and Research, 30(2):90-97(in Chinese with English abstract).
      [77] Zhao, Z.X., 2011.Geochronology and Tectonic Significance of Paleozoie Granites in the Eastern Altun-North Qaidam Western China (Dissertation).Lanzhou University, Lanzhou (in Chinese with English abstract).
      [78] 陈柏林, 李松彬, 蒋荣宝, 等, 2016.阿尔金喀腊大湾地区中酸性火山岩SHRIMP年龄及其构造环境.地质学报, 90(4):708-727. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201604008.htm
      [79] 陈红杰, 吴才来, 雷敏, 等, 2018.南阿尔金陆块科克萨依新元古代花岗岩成因及地质意义.地球科学, 43(4):1278-1295. doi: 10.3799/dqkx.2018.720
      [80] 陈隽璐, 李好斌, 王洪亮, 等, 2007.秦祁结合部位王家岔石英闪长岩体锆石LA-ICPMS定年及地质意义.吉林大学学报(地球科学版), 37(3):423-431. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200703001.htm
      [81] 陈隽璐, 徐学义, 曾佐勋, 等, 2008.中祁连东段什川杂岩基的岩石化学特征及年代学研究.岩石学报, 24 (4):841-854. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200804024.htm
      [82] 陈宣华, Gehrels, G., 王小凤, 等, 2003.阿尔金山北缘花岗岩的形成时代及其构造环境探讨.矿物岩石地球化学通报, 22(4):294-298. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH200304002.htm
      [83] 第五春荣, 孙勇, 林慈銮, 等, 2007.豫西宜阳地区TTG质片麻岩锆石U-Pb定年和Hf同位素地质学.岩石学报, 23(2):253-262. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702007.htm
      [84] 高栋, 吴才来, 郜源红, 等, 2019.南阿尔金玉苏普阿勒克塔格花岗岩体锆石U-Pb年代学、地球化学特征及地质意义.地球科学, 44(11):3812-3828. doi: 10.3799/dqkx.2018.279
      [85] 葛肖虹, 刘俊来, 1999.北祁连造山带的形成与背景.地学前缘, 6(4):223-230. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY199904005.htm
      [86] 侯可军, 李延河, 邹天人, 等, 2007.LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用.岩石学报, 23(10):2595-2604. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200710026.htm
      [87] 侯荣娜, 王淑华, 张翔, 等, 2015.中祁连西段花岗岩类的地球化学特征及构造意义.地球科学进展, 30(9):1034-1049. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201509010.htm
      [88] 黄增保, 郑建平, 李葆华, 等, 2015.中祁连西段野马山岩基年代学、地球化学特征及地质意义.中国地质, 45(2):406-420. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201502004.htm
      [89] 贾群子, 杨忠堂, 肖朝阳, 等.2007.祁连山铜金钨铅锌矿床成矿规律和成矿预测.北京:地质出版社.
      [90] 贾志磊, 2016.甘肃南祁连-北山铌钽铷等稀有金属成矿地质特征与成矿规律的研究(博士学位论文).兰州: 兰州大学.
      [91] 贾志磊, 窦小雨, 王金荣, 等, 2016.甘肃南祁连余石山地区变粒岩原岩恢复.甘肃地质, 25(2):9-14. https://www.cnki.com.cn/Article/CJFDTOTAL-GSDZ201602002.htm
      [92] 李怀坤, 朱士兴, 相振群, 等, 2010.北京延庆高于庄组凝灰岩的锆石U-Pb定年研究及其对华北北部中元古界划分新方案的进一步约束.岩石学报, 26(7):2131-2140. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201007016.htm
      [93] 李建锋, 张志诚, 韩宝福, 2010.中祁连西段肃北、石包城地区早古生代花岗岩年代学、地球化学特征及其地质意义.岩石学报, 26(8):2431-2444. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201008017.htm
      [94] 李琦, 曾忠诚, 陈宁, 等, 2015.阿尔金南缘新元古代盖里克片麻岩年代学、地球化学特征及其构造意义.现代地质, 29(6):1271-1283. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201506002.htm
      [95] 刘锦宏, 刘良, 盖永升, 等, 2017.北阿尔金白尖山地区花岗闪长岩锆石U-Pb定年、Hf同位素组成及其地质意义.地质学报, 91(5):1022-1038. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201705005.htm
      [96] 刘志武, 王崇礼, 2007.南祁连党河南山花岗岩类地球化学及其金铜矿化.地质与勘探, 43(1):64-73. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT200701013.htm
      [97] 刘志武, 王崇礼, 石小虎, 2006.南祁连党河南山花岗岩类特征及其构造环境.现代地质, 20(4):545-554. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ200604003.htm
      [98] 潘雪峰, 焦建刚, 吴才来, 等, 2019.阿尔金南缘阿克提山岩体锆石U-Pb定年、Hf同位素特征及构造意义.地质学报, 93(3):633-646. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201903009.htm
      [99] 彭银彪, 于胜尧, 张建新, 等, 2018.北阿尔金地区早古生代洋壳俯冲时限:来自斜长花岗岩和花岗闪长岩的证据.中国地质, 45(2):334-350. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201802010.htm
      [100] 齐瑞荣, 2012.中祁连西段巴嘎德尔基岩体LA-ICP-MS锆石U-Pb年龄及地质意义.沉积与特提斯地质, 32 (4):86-93. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD201204013.htm
      [101] 覃小锋, 夏斌, 黎春泉, 等, 2008.阿尔金构造带西段前寒武纪花岗质片麻岩的地球化学特征及其构造背景.现代地质, 22(1):34-44. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ200801006.htm
      [102] 桑隆康, 马昌前, 王国庆, 等, 2001.岩石学(第二版), 北京:地质出版社, 188.
      [103] 苏建平, 胡能高, 张海峰, 等, 2004a.中祁连西段黑沟梁子花岗岩的锆石U-Pb同位素年龄及成因.现代地质, 18(1):70-74. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ200401010.htm
      [104] 苏建平, 张新虎, 胡能高, 等.2004b.中祁连西段野马南山埃达克质花岗岩的地球化学特征及成因.中国地质, 31(4):365-371. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200404003.htm
      [105] 王立社, 张巍, 段星星, 等, 2015.阿尔金环形山花岗片麻岩同位素年龄及成因研究.岩石学报, 31(1):119-132. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201501009.htm
      [106] 王小凤, 陈宣华, 陈正乐, 等, 2002.阿尔金成矿地质条件远景预测.北京:地质出版社, 135-159.
      [107] 辛后田, 王惠初, 周世军, 2006.柴北缘的大地构造演化及其地质事件群.地质调查与研究, 29(4):311-323. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ200604010.htm
      [108] 吴才来, 郜源红, 吴锁平, 等, 2008.柴北缘西段花岗岩锆石SHRIMP U-Pb定年及其岩石地球化学特征.中国科学(D辑), 38(8):930-949. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200808002.htm
      [109] 吴才来, 杨经绥, Irland, T., 等, 2001.祁连南缘嗷唠山花岗岩SHRIMP锆石年龄及其地质意义.岩石学报, 17(2):215-221. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200102004.htm
      [110] 吴才来, 杨经绥, 许志琴, 等, 2004.柴达木盆地北缘古生代超高压带中花岗质岩浆作用.地质学报, 78(5):658-674. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200405009.htm
      [111] 吴福元, 李献华, 郑永飞, 等, 2007.Lu-Hf同位素体系及其岩石学应用.岩石学报, 23(2):185-220. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm
      [112] 吴玉, 陈正乐, 陈柏林, 等, 2019.北阿尔金恰什坎萨依沟地区早古生代构造变形特征及构造演化启示.地质力学学报, 25(3):301-312. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201903016.htm
      [113] 吴元保, 郑永飞, 2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报, 49(16):1589-1604. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200416001.htm
      [114] 许志琴, 杨经绥, 张建新, 等, 1999.阿尔金断裂两侧构造单元的对比及岩石圈剪切机制.地质学报, 73(3):193-205. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199903000.htm
      [115] 杨屹, 陈宣华, Griffin, W.L., 等, 2004.阿尔金山早古生代岩浆活动与金成矿作用.矿床地质, 23(4):464-472. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200404005.htm
      [116] 杨再朝, 校培喜, 高晓峰, 等, 2014.阿尔金山东端余石山铌钽矿区霓辉正长岩的LA-ICP-MS定年及对成矿时代的制约.西北地质, 47(4):187-197. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI201404022.htm
      [117] 殷鸿福, 张克信, 1998.中央造山带的演化及其特点.地球科学, 23(5):438-442. http://www.earth-science.net/article/id/696
      [118] 雍拥, 肖文交, 袁超, 等, 2008.中祁连东段古生代花岗岩的年代学、地球化学特征及其大地构造意义.岩石学报, 24(4):855-866. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200804025.htm
      [119] 余君鹏, 吴义布, 梁明宏, 等, 2015.阿尔金南缘地质填图新进展及对找矿的启示:据甘肃1:5万莫坝尔等六幅区调.中国地质调查, 2(2):40-47. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDC201502007.htm
      [120] 张建新, 孟繁聪, 于胜尧, 等, 2007.北阿尔金HP/LT蓝片岩和榴辉岩的Ar-Ar年代学及其区域构造意义.中国地质, 34(4):558-564. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200704003.htm
      [121] 张建新, 于胜尧, 李云帅, 等, 2015.原特提斯洋的俯冲、增生及闭合:阿尔金-祁连-柴北缘造山系早古生代增生/碰撞造山作用.岩石学报, 31(12):3531-3554. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201512003.htm
      [122] 张旗, 王焰, 李承东, 等, 2006.花岗岩的Sr-Yb分类及其地质意义.岩石学报, 22(9):2249-2269. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200609000.htm
      [123] 张照伟, 李文渊, 高永宝, 等, 2012.南祁连裕龙沟岩体ID-TIMS锆石U-Pb年龄及其地质意义.地质通报, 31(2):455-462. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2012Z1030.htm
      [124] 赵更新, 毛德宝, 张燕, 等, 2007.阿尔金成矿带加里东期主要成矿系统.地质调查与研究, 30(2):90-97. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ200702003.htm
      [125] 赵志雄, 2011.阿尔金东段-柴北缘古生代花岗岩年代学及其构造意义的研究(博士学位论文).兰州: 兰州大学.
    • 期刊类型引用(5)

      1. 陈丛敏,周云,冯佐海,李政林,蔡瑾,焦显杨,蔡永丰. 滇西点苍山新元古代辉长岩的识别及其大地构造意义. 地球科学. 2024(12): 4434-4449 . 本站查看
      2. 杜宇晶,周云,刘希军,蔡永丰,宋宏星,赵永山. 海南岛原特提斯洋演化——来自安山岩年代学和地球化学证据. 吉林大学学报(地球科学版). 2023(05): 1483-1498 . 百度学术
      3. Yun Zhou,Yongshan Zhao,Yongfeng Cai,Qiaofan Hu,Ce Wang. Permian-Triassic Magmatism in the Qin-Fang Tectonic Belt, SW China: New Insights into Tectonic Evolution of the Eastern Paleo-Tethys. Journal of Earth Science. 2023(06): 1704-1716 . 必应学术
      4. 刘昊茹,蔡永丰,赵锴,华洁文,周云. 云南瑶山群新元古代变基性岩的识别及其地质意义. 地球科学. 2023(12): 4495-4507 . 本站查看
      5. 武利民,彭头平,范蔚茗,董晓涵,彭世利,廖冬宇. 滇西点苍山印支期花岗岩的成因及其大地构造意义. 大地构造与成矿学. 2023(06): 1363-1380 . 百度学术

      其他类型引用(2)

    • 加载中
    图(9) / 表(2)
    计量
    • 文章访问数:  753
    • HTML全文浏览量:  182
    • PDF下载量:  41
    • 被引次数: 7
    出版历程
    • 收稿日期:  2019-07-24
    • 刊出日期:  2020-12-15

    目录

    /

    返回文章
    返回