• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    板块俯冲过程中的Mg-Li-Fe-Cr同位素分馏

    李东永 肖益林 王洋洋 沈骥 刘海洋

    李东永, 肖益林, 王洋洋, 沈骥, 刘海洋, 2019. 板块俯冲过程中的Mg-Li-Fe-Cr同位素分馏. 地球科学, 44(12): 4081-4085. doi: 10.3799/dqkx.2019.255
    引用本文: 李东永, 肖益林, 王洋洋, 沈骥, 刘海洋, 2019. 板块俯冲过程中的Mg-Li-Fe-Cr同位素分馏. 地球科学, 44(12): 4081-4085. doi: 10.3799/dqkx.2019.255
    Li Dongyong, Xiao Yilin, Wang Yangyang, Shen Ji, Liu Haiyang, 2019. Mg-Li-Fe-Cr Isotopic Fractionation during Subduction. Earth Science, 44(12): 4081-4085. doi: 10.3799/dqkx.2019.255
    Citation: Li Dongyong, Xiao Yilin, Wang Yangyang, Shen Ji, Liu Haiyang, 2019. Mg-Li-Fe-Cr Isotopic Fractionation during Subduction. Earth Science, 44(12): 4081-4085. doi: 10.3799/dqkx.2019.255

    板块俯冲过程中的Mg-Li-Fe-Cr同位素分馏

    doi: 10.3799/dqkx.2019.255
    基金项目: 

    国家重点基础研究发展计划项目 2015CB856102

    国家自然科学基金项目 41703002

    详细信息
      作者简介:

      李东永(1987-), 男, 博士后, 地球化学专业

      通讯作者:

      肖益林

    • 中图分类号: P581

    Mg-Li-Fe-Cr Isotopic Fractionation during Subduction

    • 摘要: 金属稳定同位素体系是示踪板块俯冲对壳幔物质再循环影响的全新工具,因此其在俯冲带的地球化学行为备受关注.Mg同位素在俯冲过程中不发生显著分馏,但大陆玄武岩具有低于洋中脊玄武岩的Mg同位素,这可能是碳酸岩的俯冲再循环导致的.与角闪岩继承原岩的Li同位素组成不同,榴辉岩具有轻于原岩的Li同位素组成,可归因于俯冲折返过程中的动力学扩散、脱水反应或低Li同位素的流体交代.作为变价元素,Fe和Cr的同位素在榴辉岩的形成过程中均不发生显著分馏,但是蛇纹岩的Fe同位素和Cr同位素与氧逸度指标具有相关性,指示氧化还原条件变化时脱水过程或流体交代会导致同位素分馏.

       

    • 图  1  大别造山带不同变质级别变质岩的烧失量与MgO和δ26Mg

      李曙光(2015);数据引自Wang et al.(2014)

      Fig.  1.  MgO vs. LOI and δ26Mg vs. LOI for greenschists, amphibolites and eclogites from the Dabie orogen

      图  2  松多榴辉岩的Li模拟计算

      Liu et al.(2019)

      Fig.  2.  Li model results for the Sumdo eclogites

      图  3  碧溪岭榴辉岩单矿物的δ56Fe值和Fe3+/ΣFe

      Li et al.(2016)

      Fig.  3.  Plot of δ56Fe vs. Fe3+/ΣFe for mineral separated from the Bixiling eclogites

      图  4  大别山榴辉岩的δ53Cr vs.烧失量和δ53Cr vs. Cr含量

      Shen et al.(2015)

      Fig.  4.  δ53Cr vs. LOI and δ53Cr vs. Cr content for eclogites from the Dabie orogen

    • [1] Dauphas, N., John, S.G., Rouxel, O., 2017.Iron Isotope Systematics.Reviews in Mineralogy and Geochemistry, 82(1):415-510. https://doi.org/10.2138/rmg.2017.82.11
      [2] Debret, B., Millet, M.A., Pons, M.L., et al., 2016.Isotopic Evidence for Iron Mobility during Subduction.Geology, 44(3):215-218. https://doi.org/10.1130/g37565.1
      [3] Huang, J., Huang, F., Xiao, Y.L., 2019.Fe-Mg Isotopic Compositions of Altered Oceanic Crust and Subduction-Zone Fluids.Earth Science, 44(12):4050-4056(in Chinese with English abstract).
      [4] Li, D.Y., Xiao, Y.L., Li, W.Y., et al., 2016.Iron Isotopic Systematics of UHP Eclogites Respond to Oxidizing Fluid during Exhumation.Journal of Metamorphic Geology, 34(9):987-997. https://doi.org/10.1111/jmg.12217
      [5] Li, W.Y., Teng, F.Z., Ke, S., et al., 2010.Heterogeneous Magnesium Isotopic Composition of the Upper Continental Crust.Geochimica et Cosmochimica Acta, 74(23):6867-6884. https://doi.org/10.1016/j.gca.2010.08.030
      [6] Li, S.G, 2015.Tracing Deep Carbon Recycling by Mg Isotopes.Earth Science Frontiers, 22(5):43-159(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201505012
      [7] Liu, H.Y., Sun, H., Xiao, Y.L., et al., 2019.Lithium Isotope Systematics of the Sumdo Eclogite, Tibet:Tracing Fluid/Rock Interaction of Subducted Low-T Altered Oceanic Crust.Geochimica et Cosmochimica Acta, 246(1):385-405. https://doi.org/10.1016/j.gca.2018.12.002
      [8] Marschall, H.R., von Strandmann, P.A.E.P., Seitz, H.M., et al., 2007.The Lithium Isotopic Composition of Orogenic Eclogites and Deep Subducted Slabs.Earth and Planetary Science Letters, 262(3-4):563-580. https://doi.org/10.1016/j.epsl.2007.08.005
      [9] Penniston-Dorland, S.C., Bebout, G.E., von Strandmann, P.A.E.P., et al., 2012.Lithium and Its Isotopes as Tracers of Subduction Zone Fluids and Metasomatic Processes:Evidence from the Catalina Schist, California, USA.Geochimica et Cosmochimica Acta, 77:530-545. https://doi.org/10.1016/j.gca.2011.10.038
      [10] Penniston-Dorland, S.C., Liu, X.M., Rudnick, R.L., 2017.Lithium Isotope Geochemistry.Reviews in Mineralogy and Geochemistry, 82(1):165-217. https://doi.org/10.2138/rmg.2017.82.6
      [11] Qin, L.P., Wang, X.L., 2017.Chromium Isotope Geochemistry.Reviews in Mineralogy and Geochemistry, 82(1):379-414. https://doi.org/10.2138/rmg.2017.82.10.
      [12] Shen, J., Li, S.G., Wang, S.J., et al., 2018.Subducted Mg-Rich Carbonates into the Deep Mantle Wedge. Earth and Planetary Science Letters, 503:118-130. https://doi.org/10.1016/j.epsl.2018.09.011
      [13] Shen, J., Li, W.Y., Li, S.G., et al., 2019.Crust-Mantle Interactions at Different Depths in the Subduction Channel:Magnesium Isotope Records of Ultramafic Rocks from the Mantle Wedges.Earth Science, 44(12):4102-4111(in Chinese with English abstract).
      [14] Shen, J., Liu, J., Qin, L.P., et al., 2015.Chromium Isotope Signature during Continental Crust Subduction Recorded in Metamorphic Rocks.Geochemistry, Geophysics, Geosystems, 16(11):3840-3854. https://doi.org/10.1002/2015gc005944
      [15] Teng, F.Z., 2017.Magnesium Isotope Geochemistry.Reviews in Mineralogy and Geochemistry, 82(1):219-287. https://doi.org/10.2138/rmg.2017.82.7
      [16] Teng, F.Z., McDonough, W.F., Rudnick, R.L., et al., 2004.Lithium Isotopic Composition and Concentration of the Upper Continental Crust.Geochimica et Cosmochimica Acta, 68(20):4167-4178. https://doi.org/10.1016/j.gca.2004.03.031
      [17] Wang, S.J., Teng, F.Z., Li, S.G., et al., 2014.Magnesium Isotopic Systematics of Mafic Rocks during Continental Subduction.Geochimica et Cosmochimica Acta, 143:34-48. https://doi.org/10.1016/j.gca.2014.03.029
      [18] Wang, S.J., Teng, F.Z., Scott, J.M., 2016.Tracing the Origin of Continental HIMU-Like Intraplate Volcanism Using Magnesium Isotope Systematics.Geochimica et Cosmochimica Acta, 185:78-87. https://doi.org/10.1016/j.gca.2016.01.007
      [19] Zack, T., Tomascak, P.B., Rudnick, R.L., et al., 2003.Extremely Light Li in Orogenic Eclogites:The Role of Isotope Fractionation during Dehydration in Subducted Oceanic Crust.Earth and Planetary Science Letters, 208(3-4):279-290. https://doi.org/10.1016/s0012-821x(03)00035-9
      [20] 黄建, 黄方, 肖益林, 2019.蚀变洋壳和俯冲带变质流体的Fe-Mg同位素组成.地球科学, 44(12):4050-4056.
      [21] 李曙光, 2015.深部碳循环的Mg同位素示踪.地学前缘, 22(5):143-159. http://d.old.wanfangdata.com.cn/Periodical/kwysdqhxtb201702002
      [22] 沈骥, 李王晔, 李曙光, 等, 2019.俯冲隧道内不同深度的壳幔相互作用——地幔楔超镁铁质岩的镁同位素记录.地球科学, 44(12):4102-4111.
    • 加载中
    图(4)
    计量
    • 文章访问数:  3388
    • HTML全文浏览量:  1354
    • PDF下载量:  134
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-08-30
    • 刊出日期:  2019-12-15

    目录

      /

      返回文章
      返回