Multiple Crust-Mantle Interaction in Continental Subduction Zones: Insights from Orogenic Peridotites
-
摘要: 俯冲带是地壳与地幔之间物质交换的主要场所.前人对大洋俯冲带壳幔相互作用进行了大量研究,但是对俯冲带壳幔相互作用的物理化学过程和机理仍缺乏明确认识.在大陆俯冲带出露有造山带橄榄岩,它们来自俯冲板片之上的地幔楔,是解决这个问题的理想样品.通过对大别-苏鲁和柴北缘造山带橄榄岩进行系统的岩石学和地球化学研究,发现地幔楔橄榄岩由于俯冲地壳的交代作用而含有新生锆石和残留锆石,它们能为地壳交代作用时间、交代介质来源、性质和组成提供制约.地幔楔橄榄岩在大陆碰撞过程的不同阶段受到了俯冲大陆地壳衍生的多期不同性质流体的交代作用.地幔楔橄榄岩还受到了陆壳俯冲之前古俯冲洋壳衍生流体的交代作用.深俯冲陆壳衍生熔体与橄榄岩反应形成的石榴辉石岩具有高的水含量,能提供高水含量的地幔源区.Abstract: Subduction zones are the major sites for mass exchange between crust and mantle. Although a great deal of studies have devoted to the crust-mantle interaction in oceanic subduction zones, it is still not clear what are physicochemical processes and mechanisms for the crust-mantle interactions in subduction zones. Orogenic peridotites are widely exposed in collisional subduction zones and they were originally located in the mantle wedge above the subducting continental slab, providing us excellent samples to resolve this issue. Through a systematic study of petrology and geochemistry for orogenic peridotites from the Dabie-Sulu and North Qaidam orogens, it is found that crustal metasomatism results in the occurrence of both newly grown zircon and relict zircon. The two types of zircons provide important constraints on not only the timing of crustal metasomatism but also the origin, property and composition of metasomatic agents in the mantle wedge. The mantle wedge peridotites in the continental subduction zones underwent multiple episodes of crustal metasomatism by different properties of fluids derived from the deeply subducted continental crust during continental collision. They were also metasomatized by fluids derived from precedingly subducted oceanic crust. They reacted with subducted continental crust-derived melts to generate garnet pyroxenites, which have high water contents and thus can serve as the mantle source of mafic igneous rocks with high water contents.
-
0. 引言
地壳和地幔在成分上的巨大差异导致它们在俯冲带压力-温度升高的条件下不可避免的会发生地球化学交换(Zheng et al., 2019),岛弧玄武岩是俯冲洋壳与地幔之间相互作用的典型产物.变质表壳岩中超高压指示性矿物如柯石英和金刚石的发现,表明大陆地壳也可以俯冲到 > 80 km的弧下深处经历超高压变质作用(Chopin,2003).尽管陆壳在俯冲之前相对缺水,但近年来的研究显示陆壳在超高压条件下可能具有与洋壳类似的水含量(Zheng and Chen, 2016).越来越多的研究发现,大陆俯冲带同样发育有与大洋俯冲带类似的壳幔相互作用(Zheng and Hermann, 2014).经历深俯冲的洋壳很少折返到地表,这极大制约了我们对俯冲带深部壳幔相互作用的认识.大陆俯冲带出露有随超高压岩石折返到地表的地幔楔橄榄岩,为我们研究俯冲带壳幔相互作用提供了一个极好的窗口.本文综述了我们对大别-苏鲁和柴北缘造山带橄榄岩中地壳交代作用的研究结果,旨在为研究俯冲带壳幔相互作用和化学地球动力学演化提供线索.
1. 造山带橄榄岩中的锆石
锆石具有较高的物理化学稳定性和难熔性,被广泛应用于包括交代作用在内的各种地质事件的年龄确定和地球化学示踪.原始地幔橄榄岩具有低的Zr含量和Si活度(Palme and O’Neil,2007),在理论上无法直接结晶出锆石(Zheng,2012).但是在许多造山带橄榄岩、橄榄岩包体和蛇绿岩中都发现有锆石.传统上认为,橄榄岩中这些锆石是在其侵位到地壳过程中受到地壳混染所致.然而,在橄榄岩薄片中锆石颗粒和锆石中橄榄石包裹体的发现说明,橄榄岩中锆石来自寄主橄榄岩本身而非地壳混染(Zhang et al., 2005;郑建平等,2019).对于橄榄岩中锆石成因还存在很大争议,主要机制有地幔流体交代(Grieco et al., 2001;Zheng et al., 2006)、俯冲地壳流体交代(Hermann et al., 2006)、橄榄岩侵位时花岗质岩浆注入(Belousova et al., 2015)和俯冲地壳残片(Yamamoto et al., 2013).确定造山带橄榄岩中锆石成因对于正确解释锆石年龄及其他信息所代表意义至关重要.
苏鲁造山带荣成橄榄岩是典型的经历过地壳交代作用的地幔楔橄榄岩(Su et al., 2016).Li et al.(2016)对该地区橄榄岩及其寄主片麻岩进行了综合的锆石学研究,发现橄榄岩中同时存在新生长和残留锆石,它们都具有负δ18O值和地壳特征Hf同位素组成(图 1).负δ18O值是大别-苏鲁造山带深俯冲华南陆壳的典型特征(Zheng,2012).因此这个观察明确说明,橄榄岩中锆石是由地壳流体交代形成.Chen et al.(2017)对柴北缘绿梁山造山带橄榄岩的研究同样发现,新生长锆石具有地壳特征的氧同位素组成,进一步证实了橄榄岩中锆石的地壳交代成因.由此可见,造山带橄榄岩中新生长锆石具有交代成因,残留锆石是俯冲地壳来源流体通过物理搬运进入橄榄岩(Chen and Zheng, 2017).锆石中Pb具有很高的封闭温度,且交代锆石在被辉石等其他矿物包裹时元素的扩散速率会大大降低.进一步而言,交代作用发生的板片-地幔界面温度通常比较低,橄榄岩在俯冲板片来源流体交代形成后很快就离开地幔或本身就在俯冲隧道中被交代.这样的话,交代锆石通常形成以后就达到了U-Pb体系的封闭,其U-Pb年龄能够对应交代作用时间.因此,造山带橄榄岩中交代锆石记录了地幔楔橄榄岩受到俯冲地壳来源流体交代作用时间;残留锆石是俯冲地壳来源流体通过物理搬运进入橄榄岩中的,也为交代介质来源提供了矿物学制约(Chen and Zheng, 2017).这一发现明确了橄榄岩中锆石的成因机制,从而为橄榄岩中锆石年龄和地球化学信息的正确解释奠定了基础.
图 1 造山带橄榄岩中锆石Hf-O同位素组成a.苏鲁荣成橄榄岩和片麻岩中锆石(改自Li et al., 2016);b.柴北缘绿梁山造山带橄榄岩中锆石(数据来自Chen et al., 2017)Fig. 1. Hf-O isotope compositions for zircons in orogenic peridotites2. 造山带橄榄岩记录多期俯冲陆壳交代作用
大别-苏鲁造山带地幔楔橄榄岩经历了大范围的地壳交代作用,因此含有次生含水矿物如金云母、角闪石或钛斜硅镁石(陈意等,2015;陈仁旭等,2019;郑建平等,2019).这些橄榄岩中普遍发现有交代锆石和残留锆石,为我们确定大陆岩石圈地幔楔橄榄岩的地壳交代作用时间及示踪交代介质来源和组成提供了一个很好的机会.Chen and Zheng (2017)对大别-苏鲁造山带地幔楔橄榄岩中锆石U-Pb定年结果进行了系统总结,结果发现交代锆石显示出不同的U-Pb年龄(图 2a),表明在大陆碰撞期间,从俯冲到峰期超高压变质再到折返过程中都存在新生锆石生长.新生锆石U-Pb年龄大多晚于超高压变质年龄(图 2),表明它们主要在深俯冲陆壳折返早期阶段通过地壳交代作用形成.换句话说,造山带橄榄岩的地壳交代作用主要发生在深俯冲陆壳的折返过程中.
图 2 造山带橄榄岩中交代锆石和残留锆石U-Pb年龄(a,c)和Th vs. U(b,d)图解a和b.大别-苏鲁造山带M型橄榄岩(改自Chen and Zheng, 2017);c和d.柴北缘绿梁山造山带橄榄岩(数据来自Chen et al., 2017及其中参考文献)Fig. 2. Histrograms of U-Pb ages and Th vs. U for metasomatic and relict zircons in M-type orogenic peridotites陈仁旭等(2019)对大别-苏鲁造山带地幔楔橄榄岩中锆石的Hf-O同位素进行了系统总结,发现交代和残留锆石的Hf-O同位素组成与超高压变质岩及其中长英质脉体和淡色体中锆石相当,指示交代流体来自华南陆块的深俯冲陆壳.由此可见,大陆俯冲带地幔楔橄榄岩受到了多期次俯冲陆壳来源流体的交代作用.Chen et al.(2017)对柴北缘绿梁山造山带橄榄岩进行了锆石学研究,同样发现存在多期交代锆石,且大部分锆石U-Pb年龄与该造山带陆壳岩石超高压变质作用同时或稍晚(图 2c).这些锆石具有地壳特征的氧同位素组成(图 1),指示该造山带地幔楔橄榄岩同样受到了多期俯冲陆壳来源流体交代作用.
大别-苏鲁和柴北缘绿梁山造山带橄榄岩中交代锆石表现出异常大的Th和U含量变化,Th/U比值从 < 0.01变化到 > 1(图 2b和2d),指示深俯冲陆壳来源不同性质流体(富水溶液、含水熔体甚至超临界流体)都参与了橄榄岩的交代作用(Chen and Zheng, 2017;陈仁旭等,2019).这得到了造山带橄榄岩中交代锆石中各种熔/流体包裹体和多相固体包裹体发现的证实(Zhang et al., 2005;Chen et al., 2017).
大陆俯冲带地幔楔橄榄岩受到多期俯冲陆壳衍生流体交代作用,不仅会导致交代锆石的生长和残留锆石的机械迁移,而且在橄榄岩全岩和其他矿物中留有印记.Li et al.(2018a)对苏鲁造山带荣成橄榄岩进行了系统的岩石学研究,结果发现这些橄榄岩在俯冲带浅部受到了俯冲大陆地壳衍生流体交代作用形成交代橄榄岩;在峰期超高压变质和深俯冲地壳初始折返阶段,受到俯冲陆壳来源碳酸盐熔体交代作用;在折返晚期阶段,受到俯冲地壳来源流体交代作用.结合寄主片麻岩的研究,发现交代流体并非源于现今出露地表的寄主片麻岩,而是来自深俯冲大陆地壳的其他部位,是在俯冲带深部与橄榄岩接触的地壳岩石,目前并不出露在纯橄岩附近.这些多阶段地壳交代作用指示,地幔楔底部的橄榄岩在大陆俯冲过程中被刮削进入俯冲隧道,并且在不同深度经历不同组分地壳来源流体的交代作用.
3. 陆壳俯冲之前古俯冲洋壳对地幔楔的交代作用
在地球动力学上,大陆地壳无法自发俯冲,需要先存俯冲洋壳的牵引.因此,对于产有超高压变质岩的碰撞造山带,存在着从洋壳俯冲到大陆俯冲的构造演化.这也得到了一些造山带如阿尔卑斯、波西米亚、红安和柴北缘中共存的俯冲变质洋壳和陆壳岩石的证实(Song et al., 2014;Zhang et al., 2017).陆壳俯冲之前的洋壳俯冲必然会释放流体交代地幔楔橄榄岩.认识先前古俯冲洋壳对俯冲带上覆地幔楔的改造效应,对于理解大陆俯冲带壳幔相互作用具有重要意义.然而,由于后期多期俯冲陆壳来源流体对地幔楔橄榄岩的改造效应,导致其识别存在困难.
柴北缘造山带同时存在有洋壳和陆壳俯冲形成的榴辉岩,且它们的氧同位素组成上存在差异(Zhang et al., 2016, 2017),这为我们区分该造山带中洋壳和陆壳来源流体提供了很好的机会.Chen et al.(2017)对柴北缘绿梁山造山带橄榄岩进行了氧同位素分析,发现造岩矿物的氧同位素组成既有高于也有低于正常地幔的值(图 3),指示这些超镁铁岩同时在高温条件下经历了与低δ18O和高δ18O流体的相互作用.然而,柴北缘造山带深俯冲大陆地壳由于具有正常或较高的δ18O值(图 3),不可能提供低δ18O流体.锆石学研究也证实,深俯冲陆壳交代流体具有正常或较高的δ18O值(图 1b).据此,Chen et al.(2017)推测,绿梁山造山带橄榄岩受到了经历过海水高温热液蚀变的俯冲大洋地壳释放的低δ18O流体的交代作用.事实上,柴北缘绿梁山造山带橄榄岩中存在少数~460 Ma的交代锆石(图 2c),与沙流河和野马滩洋壳榴辉岩的一组榴辉岩相变质年龄一致(Song et al., 2014).最近,蔡鹏捷等(2018)在柴北缘地幔楔橄榄岩中发现了大量460 Ma且相对亏损Hf同位素的交代锆石.这些观察进一步证实,柴北缘造山带地幔楔橄榄岩受到了陆壳俯冲之前古洋壳的交代作用.
图 3 柴北缘绿梁山造山带橄榄岩造岩矿物氧同位素组成数据来源:橄榄岩.Chen et al.(2017);榴辉岩.Zhang et al.(2017);矿物代号:Ol.橄榄石,Grt.石榴石,Opx.斜方辉石,Cpx.单斜辉石,Spl.尖晶石,Phl.金云母Fig. 3. Mineral oxygen isotope compositions for orogenic peridotites from Lüliangshan in the North Qaidam orogen虽然大别-苏鲁造山带还缺乏洋壳俯冲的证据,但是在红安造山带识别出了三叠纪陆壳俯冲之前洋壳俯冲的存在(Zhou et al., 2015).前人通过对苏鲁芝麻坊(Ye et al., 2009)和大别毛屋(Chen et al., 2013a, 2013b)造山带橄榄岩详细的岩石学研究,推测大别-苏鲁造山带地幔楔橄榄岩受到过俯冲大洋板片来源流体的交代作用.Chen and Zheng(2017)对大别-苏鲁造山带地幔楔橄榄岩中锆石U-Pb年龄进行了系统总结(图 2a),发现有少量交代锆石具有古生代U-Pb年龄(早于大陆俯冲时间),暗示这些地幔楔橄榄岩受到了先前俯冲古洋壳的交代作用.最近,Shen et al.(2018)在毛屋石榴辉石岩中发现δ18O值为4.3‰~12.2‰的古生代锆石,证实了先前俯冲古洋壳来源流体对地幔楔橄榄岩交代作用的存在.从柴北缘和大别-苏鲁这两个造山带地幔楔橄榄岩的研究实例来看,大陆俯冲带地幔楔橄榄岩普遍经历了陆壳俯冲之前古俯冲洋壳的交代作用.不过还需要进一步开展工作,建立区分造山带橄榄岩中洋壳和陆壳交代作用的鉴定性判别指标,对比洋壳和陆壳俯冲对地幔楔改造过程及其效应.
4. 大陆俯冲带壳幔相互作用效应
大陆俯冲带壳幔相互作用将地壳物质带入地幔楔,从而产生超镁铁质(镁铁质)交代岩(Zheng,2019).这些新形成的交代岩会导致地幔岩石学和物理化学不均一性、成为同俯冲/碰撞或碰撞后镁铁质岩浆岩源区等.确定地幔交代岩的元素和同位素组成对于理解俯冲带壳幔相互作用的化学动力学具有重要意义.已有研究发现,辉石岩是地幔的一个重要组成岩石,是一些板内玄武岩可能的地幔源区;含铁和含水辉石岩的局部富集会导致地幔区域电导率异常从而影响上地幔的结构和一些关键性质(Yang and McCammon, 2012).由于水对熔融温度、压力和熔融程度以及产生熔体的组成具有显著影响,有必要对不同成因辉石岩进行系统的水含量研究(Xia et al., 2019).
Li et al.(2018b)对苏鲁造山带胡家林石榴单斜辉石岩进行了全岩主微量元素、Sr-Nd同位素及矿物水含量和主微量元素联合分析,结果发现这些辉石岩是由地幔楔橄榄岩与三叠纪深俯冲大陆地壳部分熔融衍生的含水长英质熔体发生交代反应而形成.他们进一步研究发现,石榴辉石岩全岩水含量和H2O/Ce比值分别为(424~660)×10-6和63~145(图 4),保存了地幔交代岩的初始水组成.这些辉石岩的水含量高于洋中脊玄武岩的地幔源区,相似或高于洋岛玄武岩的地幔源区,接近于岛弧玄武岩岩浆源区的下限(图 4).这些特征表明,交代成因富辉石地幔岩与高水含量和变化H2O/Ce比值的地幔源区有关;一些板内玄武岩的源区可能为橄榄岩和辉石岩的混合物.这项工作表明,大陆俯冲带熔体-橄榄岩反应形成的辉石岩具有高的水含量和变化的H2O/Ce比值,能为镁铁质岩浆岩提供高水含量的地幔源区.
5. 结语
大陆俯冲带地幔楔橄榄岩受到多期俯冲陆壳来源流体交代作用,交代作用发生在陆壳俯冲-碰撞-折返的不同阶段,但主要发生在深俯冲陆壳折返初始阶段.陆壳俯冲之前的俯冲古洋壳衍生流体也可以对大陆俯冲带地幔楔橄榄岩发生交代作用.这些地壳交代作用导致了造山带橄榄岩中锆石的形成.因而,造山带橄榄岩中新生长锆石是交代锆石,可以用于确定地壳交代作用的时间.相反,残留锆石是通过交代介质从俯冲的地壳岩石机械迁移到造山带橄榄岩中,可以对交代介质的来源提供矿物学制约.大陆俯冲带壳幔相互作用过程中同时存在俯冲地壳向地幔的化学元素迁移和难熔矿物的物理迁移.深俯冲陆壳衍生熔体交代橄榄岩形成的辉石岩具有高的水含量和变化的H2O/Ce比值,是大陆俯冲带地幔楔一个重要的水储库,能提供高水含量的地幔源区.
-
图 1 造山带橄榄岩中锆石Hf-O同位素组成
a.苏鲁荣成橄榄岩和片麻岩中锆石(改自Li et al., 2016);b.柴北缘绿梁山造山带橄榄岩中锆石(数据来自Chen et al., 2017)
Fig. 1. Hf-O isotope compositions for zircons in orogenic peridotites
图 2 造山带橄榄岩中交代锆石和残留锆石U-Pb年龄(a,c)和Th vs. U(b,d)图解
a和b.大别-苏鲁造山带M型橄榄岩(改自Chen and Zheng, 2017);c和d.柴北缘绿梁山造山带橄榄岩(数据来自Chen et al., 2017及其中参考文献)
Fig. 2. Histrograms of U-Pb ages and Th vs. U for metasomatic and relict zircons in M-type orogenic peridotites
图 3 柴北缘绿梁山造山带橄榄岩造岩矿物氧同位素组成
数据来源:橄榄岩.Chen et al.(2017);榴辉岩.Zhang et al.(2017);矿物代号:Ol.橄榄石,Grt.石榴石,Opx.斜方辉石,Cpx.单斜辉石,Spl.尖晶石,Phl.金云母
Fig. 3. Mineral oxygen isotope compositions for orogenic peridotites from Lüliangshan in the North Qaidam orogen
图 4 苏鲁胡家林石榴辉石岩水含量和H2O/Ce比值关系图解
Fig. 4. H2O/Ce ratios versus H2O contents for the Hujialin garnet pyroxenties in the Sulu orogen compared to peridotites and pyroxenites from different tectonic settings, including OIB and MORB sources
-
[1] Belousova, E.A., González Jiménez, J.M., Graham, I., et al., 2015.The Enigma of Crustal Zircons in Upper-Mantle Rocks:Clues from the Tumut Ophiolite, Southeast Australia.Geology, 43(2):119-122. https://doi.org/10.1130/g36231.1 [2] Cai, P.J., Xu, R.K., Zheng, Y.Y., et al., 2018.From Oceanic Subduction to Continental Collision in North Qaidam:Evidence from Kaipinggou Orogenic M-Type Peridotite.Earth Science, 43(8):2875-2892(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201808024 [3] Chen, R.X., Li, H.Y., Zheng, Y.F., et al., 2017.Crust-Mantle Interaction in a Continental Subduction Channel:Evidence from Orogenic Peridotites in North Qaidam, Northern Tibet.Journal of Petrology, 58(2):191-226. https://doi.org/10.1093/petrology/egx011 [4] Chen, R.X., Yin, Z.Z., Xia, C.P., 2019.Crustal Metasomatism of Mantle Wedge during Collisional Orogeny:Insights from Orogenic Peridotites in the Dabie-Sulu Orogenic Belt.Bulletin of Mineralogy, Petrology and Geochemistry, 38(3):459-484(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/kwysdqhxtb201903003 [5] Chen, R.X., Zheng, Y.F., 2017.Metamorphic Zirconology of Continental Subduction Zones.Journal of Asian Earth Sciences, 145:149-176. https://doi.org/10.1016/j.jseaes.2017.04.029 [6] Chen, Y., Su, B., Guo, S., 2015.The Dabie-Sulu Orogenic Peridotites:Progress and Key Issues.Science China:Earth Sciences, 45(5):1245-1269(in Chinese). http://cn.bing.com/academic/profile?id=cf5b4830ef08f1cf8964503da2e5d338&encoded=0&v=paper_preview&mkt=zh-cn [7] Chen, Y., Ye, K., Guo, S., et al., 2013a.Multistage Metamorphism of Garnet Orthopyroxenites from the Maowu Mafic-Ultramafic Complex, Dabieshan UHP Terrane, Eastern China.International Geology Review, 55(10):1239-1260. https://doi.org/10.1080/00206814.2013.772694 [8] Chen, Y., Ye, K., Wu, Y.W., et al., 2013b.Hydration and Dehydration in the Lower Margin of a Cold Mantle Wedge:Implications for Crust-Mantle Interactions and Petrogeneses of Arc Magmas.International Geology Review, 55(12):1506-1522. https://doi.org/10.1080/00206814.2013.781732 [9] Chopin, C., 2003.Ultrahigh-Pressure Metamorphism:Tracing Continental Crust into the Mantle.Earth and Planetary Science Letters, 212(1-2):1-14. https://doi.org/10.1016/s0012-821x(03)00261-9 [10] Grieco, G., Ferrario, A., von Quadt, A., et al., 2001.The Zircon-Bearing Chromitites of the Phlogopite Peridotite of Finero (Ivrea Zone, Southern Alps):Evidence and Geochronology of a Metasomatized Mantle Slab.Journal of Petrology, 42(1):89-101. https://doi.org/10.1093/petrology/42.1.89 [11] Hermann, J., Rubatto, D., Trommsdorff, V., 2006.Sub-Solidus Oligocene Zircon Formation in Garnet Peridotite during Fast Decompression and Fluid Infiltration (Duria, Central Alps).Mineralogy and Petrology, 88(1-2):181-206. https://doi.org/10.1007/s00710-006-0155-3 [12] Li, H.Y., Chen, R.X., Zheng, Y.F., et al., 2016.The Crust-Mantle Interaction in Continental Subduction Channels:Zircon Evidence from Orogenic Peridotite in the Sulu Orogen.Journal of Geophysical Research:Solid Earth, 121(2):687-712. doi: 10.1002/2015JB012231 [13] Li, H.Y., Chen, R.X., Zheng, Y.F., et al., 2018a.Crustal Metasomatism at the Slab-Mantle Interface in a Continental Subduction Channel:Geochemical Evidence from Orogenic Peridotite in the Sulu Orogen.Journal of Geophysical Research:Solid Earth, 123(3):2174-2198. doi: 10.1002/2017JB014015 [14] Li, H.Y., Chen, R.X., Zheng, Y.F., et al., 2018b.Water in Garnet Pyroxenite from the Sulu Orogen:Implications for Crust-Mantle Interaction in Continental Subduction Zone.Chemical Geology, 478:18-38. https://doi.org/10.1016/j.chemgeo.2017.09.025 [15] Palme, H., O'Neill, H.S.C., 2007.Cosmochemical Estimates of Mantle Composition.Treatise on Geochemistry, 2:1-38. https://doi.org/10.1016/b0-08-043751-6/02177-0 [16] Shen, J., Li, S.G., Wang, S.J., et al., 2018.Subducted Mg-Rich Carbonates into the Deep Mantle Wedge. Earth and Planetary Science Letters, 503:118-130. https://doi.org/10.1016/j.epsl.2018.09.011 [17] Song, S.G., Niu, Y.L., Su, L., et al., 2014.Continental Orogenesis from Ocean Subduction, Continent Collision/Subduction, to Orogen Collapse, and Orogen Recycling:The Example of the North Qaidam UHPM Belt, NW China.Earth-Science Reviews, 129:59-84. https://doi.org/10.1016/j.earscirev.2013.11.010 [18] Su, B., Chen, Y., Guo, S., et al., 2016.Carbonatitic Metasomatism in Orogenic Dunites from Lijiatun in the Sulu UHP Terrane, Eastern China.Lithos, 262:266-284. https://doi.org/10.1016/j.lithos.2016.07.007 [19] Xia, Q.K., Liu, J., Kovács, I., et al., 2019.Water in the Upper Mantle and Deep Crust of Eastern China:Concentration, Distribution and Implications.National Science Review, 6(1):125-144. https://doi.org/10.1093/nsr/nwx016 [20] Yamamoto, S., Komiya, T., Yamamoto, H., et al., 2013.Recycled Crustal Zircons from Podiform Chromitites in the Luobusa Ophiolite, Southern Tibet.Island Arc, 22(1):89-103. https://doi.org/10.1111/iar.12011 [21] Yang, X.Z., McCammon, C., 2012.Fe3+-Rich Augite and High Electrical Conductivity in the Deep Lithosphere.Geology, 40(2):131-134. https://doi.org/10.1130/g32725.1 [22] Ye, K., Song, Y.R., Chen, Y., et al., 2009.Multistage Metamorphism of Orogenic Garnet-Lherzolite from Zhimafang, Sulu UHP Terrane, E.China:Implications for Mantle Wedge Convection during Progressive Oceanic and Continental Subduction.Lithos, 109(3-4):155-175. https://doi.org/10.1016/j.lithos.2008.08.005 [23] Zhang, L., Chen, R.X., Zheng, Y.F., et al., 2016.The Tectonic Transition from Oceanic Subduction to Continental Subduction:Zirconological Constraints from Two Types of Eclogites in the North Qaidam Orogen, Northern Tibet.Lithos, 244:122-139. https://doi.org/10.1016/j.lithos.2015.12.003 [24] Zhang, L., Chen, R.X., Zheng, Y.F., et al., 2017.Whole-Rock and Zircon Geochemical Distinction between Oceanic- and Continental-Type Eclogites in the North Qaidam Orogen, Northern Tibet.Gondwana Research, 44:67-88. https://doi.org/10.1016/j.gr.2016.10.021 [25] Zhang, R.Y., Yang, J.S., Wooden, J.L., et al., 2005.U-Pb SHRIMP Geochronology of Zircon in Garnet Peridotite from the Sulu UHP Terrane, China:Implications for Mantle Metasomatism and Subduction-Zone UHP Metamorphism.Earth and Planetary Science Letters, 237(3-4):729-743. https://doi.org/10.1016/j.epsl.2005.07.003 [26] Zheng, J.P., Griffin, W.L., O'Reilly, S.Y., et al., 2006.A Refractory Mantle Protolith in Younger Continental Crust, East-Central China:Age and Composition of Zircon in the Sulu Ultrahigh-Pressure Peridotite.Geology, 34(9):705-708. https://doi.org/10.1130/g22569.1 [27] Zheng, J.P., Zhao, Y., Xiong, Q., 2019.Genesis and Geological Significance of Zircons in Orogenic Peridotite.Earth Science, 44(4):1067-1082(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201904002 [28] Zheng, Y.F., 2012.Metamorphic Chemical Geodynamics in Continental Subduction Zones.Chemical Geology, 328:5-48. https://doi.org/10.1016/j.chemgeo.2012.02.005 [29] Zheng, Y.F., 2019.Subduction Zone Geochemistry.Geoscience Frontiers, 10(4):1223-1254. https://doi.org/10.1016/j.gsf.2019.02.003 [30] Zheng, Y.F., Chen, Y.X., 2016.Continental versus Oceanic Subduction Zones.National Science Review, 3(4):495-519. https://doi.org/10.1093/nsr/nww049 [31] Zheng, Y.F., Hermann, J., 2014.Geochemistry of Continental Subduction-Zone Fluids.Earth, Planets and Space, 66(1):93. https://doi.org/10.1186/1880-5981-66-93 [32] Zhou, L.G., Xia, Q.X., Zheng, Y.F., et al., 2015.Tectonic Evolution from Oceanic Subduction to Continental Collision during the Closure of Paleothyan Ocean:Geochronological and Geochemical Constraints from Metamorphic Rocks in the Hong'an Orogeny.Gondwana Research, 28(1):348-370. https://doi.org/10.1016/j.gr.2014.03.009 [33] 蔡鹏捷, 许荣科, 郑有业, 等, 2018.柴北缘从大洋俯冲到陆陆碰撞:来自开屏沟造山带M型橄榄岩的证据.地球科学, 43(8):2875-2892. doi: 10.3799/dqkx.2018.112 [34] 陈意, 苏斌, 郭顺, 2015.大别-苏鲁造山带橄榄岩:进展和问题.中国科学:地球科学, 45(9):1245-1269. http://d.old.wanfangdata.com.cn/Periodical/kwysdqhxtb201903003 [35] 陈仁旭, 尹壮壮, 夏春鹏, 2019.大别-苏鲁造山带橄榄岩记录的碰撞造山过程中地幔楔的地壳交代作用.矿物岩石地球化学通报, 38(3):459-484. http://d.old.wanfangdata.com.cn/Periodical/kwysdqhxtb201903003 [36] 郑建平, 赵伊, 熊庆, 2019.造山带橄榄岩中锆石的成因及其地质意义.地球科学, 44(4):1067-1082. doi: 10.3799/dqkx.2018.375 期刊类型引用(3)
1. 康嘉淳,宋里豪,王淞杰,王淼,曹玉亭,李旭平. 北苏鲁威海地区共生伟晶岩脉-钙硅酸盐岩的形成机制和地质意义. 岩石学报. 2024(04): 1185-1204 . 百度学术
2. 赵子福,陈仁旭,陈伊翔,戴立群,郑永飞. 大陆俯冲带超高压变质岩部分熔融与壳幔相互作用研究进展. 矿物岩石地球化学通报. 2021(01): 36-59+3-4 . 百度学术
3. 张旗,张维,姜丽莉,石玉若,焦守涛,王存智,王振. 造山橄榄岩及其意义. 地质通报. 2020(10): 1489-1506 . 百度学术
其他类型引用(3)
-