Multiple Crust-Mantle Interaction in Continental Subduction Zones: Insights from Orogenic Peridotites
-
摘要: 俯冲带是地壳与地幔之间物质交换的主要场所.前人对大洋俯冲带壳幔相互作用进行了大量研究,但是对俯冲带壳幔相互作用的物理化学过程和机理仍缺乏明确认识.在大陆俯冲带出露有造山带橄榄岩,它们来自俯冲板片之上的地幔楔,是解决这个问题的理想样品.通过对大别-苏鲁和柴北缘造山带橄榄岩进行系统的岩石学和地球化学研究,发现地幔楔橄榄岩由于俯冲地壳的交代作用而含有新生锆石和残留锆石,它们能为地壳交代作用时间、交代介质来源、性质和组成提供制约.地幔楔橄榄岩在大陆碰撞过程的不同阶段受到了俯冲大陆地壳衍生的多期不同性质流体的交代作用.地幔楔橄榄岩还受到了陆壳俯冲之前古俯冲洋壳衍生流体的交代作用.深俯冲陆壳衍生熔体与橄榄岩反应形成的石榴辉石岩具有高的水含量,能提供高水含量的地幔源区.Abstract: Subduction zones are the major sites for mass exchange between crust and mantle. Although a great deal of studies have devoted to the crust-mantle interaction in oceanic subduction zones, it is still not clear what are physicochemical processes and mechanisms for the crust-mantle interactions in subduction zones. Orogenic peridotites are widely exposed in collisional subduction zones and they were originally located in the mantle wedge above the subducting continental slab, providing us excellent samples to resolve this issue. Through a systematic study of petrology and geochemistry for orogenic peridotites from the Dabie-Sulu and North Qaidam orogens, it is found that crustal metasomatism results in the occurrence of both newly grown zircon and relict zircon. The two types of zircons provide important constraints on not only the timing of crustal metasomatism but also the origin, property and composition of metasomatic agents in the mantle wedge. The mantle wedge peridotites in the continental subduction zones underwent multiple episodes of crustal metasomatism by different properties of fluids derived from the deeply subducted continental crust during continental collision. They were also metasomatized by fluids derived from precedingly subducted oceanic crust. They reacted with subducted continental crust-derived melts to generate garnet pyroxenites, which have high water contents and thus can serve as the mantle source of mafic igneous rocks with high water contents.
-
图 1 造山带橄榄岩中锆石Hf-O同位素组成
a.苏鲁荣成橄榄岩和片麻岩中锆石(改自Li et al., 2016);b.柴北缘绿梁山造山带橄榄岩中锆石(数据来自Chen et al., 2017)
Fig. 1. Hf-O isotope compositions for zircons in orogenic peridotites
图 2 造山带橄榄岩中交代锆石和残留锆石U-Pb年龄(a,c)和Th vs. U(b,d)图解
a和b.大别-苏鲁造山带M型橄榄岩(改自Chen and Zheng, 2017);c和d.柴北缘绿梁山造山带橄榄岩(数据来自Chen et al., 2017及其中参考文献)
Fig. 2. Histrograms of U-Pb ages and Th vs. U for metasomatic and relict zircons in M-type orogenic peridotites
图 3 柴北缘绿梁山造山带橄榄岩造岩矿物氧同位素组成
数据来源:橄榄岩.Chen et al.(2017);榴辉岩.Zhang et al.(2017);矿物代号:Ol.橄榄石,Grt.石榴石,Opx.斜方辉石,Cpx.单斜辉石,Spl.尖晶石,Phl.金云母
Fig. 3. Mineral oxygen isotope compositions for orogenic peridotites from Lüliangshan in the North Qaidam orogen
图 4 苏鲁胡家林石榴辉石岩水含量和H2O/Ce比值关系图解
Fig. 4. H2O/Ce ratios versus H2O contents for the Hujialin garnet pyroxenties in the Sulu orogen compared to peridotites and pyroxenites from different tectonic settings, including OIB and MORB sources
-
[1] Belousova, E.A., González Jiménez, J.M., Graham, I., et al., 2015.The Enigma of Crustal Zircons in Upper-Mantle Rocks:Clues from the Tumut Ophiolite, Southeast Australia.Geology, 43(2):119-122. https://doi.org/10.1130/g36231.1 [2] Cai, P.J., Xu, R.K., Zheng, Y.Y., et al., 2018.From Oceanic Subduction to Continental Collision in North Qaidam:Evidence from Kaipinggou Orogenic M-Type Peridotite.Earth Science, 43(8):2875-2892(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201808024 [3] Chen, R.X., Li, H.Y., Zheng, Y.F., et al., 2017.Crust-Mantle Interaction in a Continental Subduction Channel:Evidence from Orogenic Peridotites in North Qaidam, Northern Tibet.Journal of Petrology, 58(2):191-226. https://doi.org/10.1093/petrology/egx011 [4] Chen, R.X., Yin, Z.Z., Xia, C.P., 2019.Crustal Metasomatism of Mantle Wedge during Collisional Orogeny:Insights from Orogenic Peridotites in the Dabie-Sulu Orogenic Belt.Bulletin of Mineralogy, Petrology and Geochemistry, 38(3):459-484(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/kwysdqhxtb201903003 [5] Chen, R.X., Zheng, Y.F., 2017.Metamorphic Zirconology of Continental Subduction Zones.Journal of Asian Earth Sciences, 145:149-176. https://doi.org/10.1016/j.jseaes.2017.04.029 [6] Chen, Y., Su, B., Guo, S., 2015.The Dabie-Sulu Orogenic Peridotites:Progress and Key Issues.Science China:Earth Sciences, 45(5):1245-1269(in Chinese). http://cn.bing.com/academic/profile?id=cf5b4830ef08f1cf8964503da2e5d338&encoded=0&v=paper_preview&mkt=zh-cn [7] Chen, Y., Ye, K., Guo, S., et al., 2013a.Multistage Metamorphism of Garnet Orthopyroxenites from the Maowu Mafic-Ultramafic Complex, Dabieshan UHP Terrane, Eastern China.International Geology Review, 55(10):1239-1260. https://doi.org/10.1080/00206814.2013.772694 [8] Chen, Y., Ye, K., Wu, Y.W., et al., 2013b.Hydration and Dehydration in the Lower Margin of a Cold Mantle Wedge:Implications for Crust-Mantle Interactions and Petrogeneses of Arc Magmas.International Geology Review, 55(12):1506-1522. https://doi.org/10.1080/00206814.2013.781732 [9] Chopin, C., 2003.Ultrahigh-Pressure Metamorphism:Tracing Continental Crust into the Mantle.Earth and Planetary Science Letters, 212(1-2):1-14. https://doi.org/10.1016/s0012-821x(03)00261-9 [10] Grieco, G., Ferrario, A., von Quadt, A., et al., 2001.The Zircon-Bearing Chromitites of the Phlogopite Peridotite of Finero (Ivrea Zone, Southern Alps):Evidence and Geochronology of a Metasomatized Mantle Slab.Journal of Petrology, 42(1):89-101. https://doi.org/10.1093/petrology/42.1.89 [11] Hermann, J., Rubatto, D., Trommsdorff, V., 2006.Sub-Solidus Oligocene Zircon Formation in Garnet Peridotite during Fast Decompression and Fluid Infiltration (Duria, Central Alps).Mineralogy and Petrology, 88(1-2):181-206. https://doi.org/10.1007/s00710-006-0155-3 [12] Li, H.Y., Chen, R.X., Zheng, Y.F., et al., 2016.The Crust-Mantle Interaction in Continental Subduction Channels:Zircon Evidence from Orogenic Peridotite in the Sulu Orogen.Journal of Geophysical Research:Solid Earth, 121(2):687-712. doi: 10.1002/2015JB012231 [13] Li, H.Y., Chen, R.X., Zheng, Y.F., et al., 2018a.Crustal Metasomatism at the Slab-Mantle Interface in a Continental Subduction Channel:Geochemical Evidence from Orogenic Peridotite in the Sulu Orogen.Journal of Geophysical Research:Solid Earth, 123(3):2174-2198. doi: 10.1002/2017JB014015 [14] Li, H.Y., Chen, R.X., Zheng, Y.F., et al., 2018b.Water in Garnet Pyroxenite from the Sulu Orogen:Implications for Crust-Mantle Interaction in Continental Subduction Zone.Chemical Geology, 478:18-38. https://doi.org/10.1016/j.chemgeo.2017.09.025 [15] Palme, H., O'Neill, H.S.C., 2007.Cosmochemical Estimates of Mantle Composition.Treatise on Geochemistry, 2:1-38. https://doi.org/10.1016/b0-08-043751-6/02177-0 [16] Shen, J., Li, S.G., Wang, S.J., et al., 2018.Subducted Mg-Rich Carbonates into the Deep Mantle Wedge. Earth and Planetary Science Letters, 503:118-130. https://doi.org/10.1016/j.epsl.2018.09.011 [17] Song, S.G., Niu, Y.L., Su, L., et al., 2014.Continental Orogenesis from Ocean Subduction, Continent Collision/Subduction, to Orogen Collapse, and Orogen Recycling:The Example of the North Qaidam UHPM Belt, NW China.Earth-Science Reviews, 129:59-84. https://doi.org/10.1016/j.earscirev.2013.11.010 [18] Su, B., Chen, Y., Guo, S., et al., 2016.Carbonatitic Metasomatism in Orogenic Dunites from Lijiatun in the Sulu UHP Terrane, Eastern China.Lithos, 262:266-284. https://doi.org/10.1016/j.lithos.2016.07.007 [19] Xia, Q.K., Liu, J., Kovács, I., et al., 2019.Water in the Upper Mantle and Deep Crust of Eastern China:Concentration, Distribution and Implications.National Science Review, 6(1):125-144. https://doi.org/10.1093/nsr/nwx016 [20] Yamamoto, S., Komiya, T., Yamamoto, H., et al., 2013.Recycled Crustal Zircons from Podiform Chromitites in the Luobusa Ophiolite, Southern Tibet.Island Arc, 22(1):89-103. https://doi.org/10.1111/iar.12011 [21] Yang, X.Z., McCammon, C., 2012.Fe3+-Rich Augite and High Electrical Conductivity in the Deep Lithosphere.Geology, 40(2):131-134. https://doi.org/10.1130/g32725.1 [22] Ye, K., Song, Y.R., Chen, Y., et al., 2009.Multistage Metamorphism of Orogenic Garnet-Lherzolite from Zhimafang, Sulu UHP Terrane, E.China:Implications for Mantle Wedge Convection during Progressive Oceanic and Continental Subduction.Lithos, 109(3-4):155-175. https://doi.org/10.1016/j.lithos.2008.08.005 [23] Zhang, L., Chen, R.X., Zheng, Y.F., et al., 2016.The Tectonic Transition from Oceanic Subduction to Continental Subduction:Zirconological Constraints from Two Types of Eclogites in the North Qaidam Orogen, Northern Tibet.Lithos, 244:122-139. https://doi.org/10.1016/j.lithos.2015.12.003 [24] Zhang, L., Chen, R.X., Zheng, Y.F., et al., 2017.Whole-Rock and Zircon Geochemical Distinction between Oceanic- and Continental-Type Eclogites in the North Qaidam Orogen, Northern Tibet.Gondwana Research, 44:67-88. https://doi.org/10.1016/j.gr.2016.10.021 [25] Zhang, R.Y., Yang, J.S., Wooden, J.L., et al., 2005.U-Pb SHRIMP Geochronology of Zircon in Garnet Peridotite from the Sulu UHP Terrane, China:Implications for Mantle Metasomatism and Subduction-Zone UHP Metamorphism.Earth and Planetary Science Letters, 237(3-4):729-743. https://doi.org/10.1016/j.epsl.2005.07.003 [26] Zheng, J.P., Griffin, W.L., O'Reilly, S.Y., et al., 2006.A Refractory Mantle Protolith in Younger Continental Crust, East-Central China:Age and Composition of Zircon in the Sulu Ultrahigh-Pressure Peridotite.Geology, 34(9):705-708. https://doi.org/10.1130/g22569.1 [27] Zheng, J.P., Zhao, Y., Xiong, Q., 2019.Genesis and Geological Significance of Zircons in Orogenic Peridotite.Earth Science, 44(4):1067-1082(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201904002 [28] Zheng, Y.F., 2012.Metamorphic Chemical Geodynamics in Continental Subduction Zones.Chemical Geology, 328:5-48. https://doi.org/10.1016/j.chemgeo.2012.02.005 [29] Zheng, Y.F., 2019.Subduction Zone Geochemistry.Geoscience Frontiers, 10(4):1223-1254. https://doi.org/10.1016/j.gsf.2019.02.003 [30] Zheng, Y.F., Chen, Y.X., 2016.Continental versus Oceanic Subduction Zones.National Science Review, 3(4):495-519. https://doi.org/10.1093/nsr/nww049 [31] Zheng, Y.F., Hermann, J., 2014.Geochemistry of Continental Subduction-Zone Fluids.Earth, Planets and Space, 66(1):93. https://doi.org/10.1186/1880-5981-66-93 [32] Zhou, L.G., Xia, Q.X., Zheng, Y.F., et al., 2015.Tectonic Evolution from Oceanic Subduction to Continental Collision during the Closure of Paleothyan Ocean:Geochronological and Geochemical Constraints from Metamorphic Rocks in the Hong'an Orogeny.Gondwana Research, 28(1):348-370. https://doi.org/10.1016/j.gr.2014.03.009 [33] 蔡鹏捷, 许荣科, 郑有业, 等, 2018.柴北缘从大洋俯冲到陆陆碰撞:来自开屏沟造山带M型橄榄岩的证据.地球科学, 43(8):2875-2892. doi: 10.3799/dqkx.2018.112 [34] 陈意, 苏斌, 郭顺, 2015.大别-苏鲁造山带橄榄岩:进展和问题.中国科学:地球科学, 45(9):1245-1269. http://d.old.wanfangdata.com.cn/Periodical/kwysdqhxtb201903003 [35] 陈仁旭, 尹壮壮, 夏春鹏, 2019.大别-苏鲁造山带橄榄岩记录的碰撞造山过程中地幔楔的地壳交代作用.矿物岩石地球化学通报, 38(3):459-484. http://d.old.wanfangdata.com.cn/Periodical/kwysdqhxtb201903003 [36] 郑建平, 赵伊, 熊庆, 2019.造山带橄榄岩中锆石的成因及其地质意义.地球科学, 44(4):1067-1082. doi: 10.3799/dqkx.2018.375