Mafic Magmatic Records of Rodinia Amalgamation in the Northern Margin of the South China Block
-
摘要: 超大陆的聚合必然伴随着从大洋俯冲、弧陆碰撞到陆陆碰撞等一系列板块汇聚和造山过程,这些不同阶段的俯冲和汇聚过程会产生不同特征的岩浆岩记录.华南陆块是新元古代罗迪尼亚超大陆的重要组成部分,在这个超大陆聚合过程中有格林维尔期洋壳俯冲及其伴随的壳幔相互作用.总结了华南陆块北缘记录的罗迪尼亚超大陆聚合不同阶段发生的岩浆活动,比较了其产物的地球化学特征,探讨了它们对应的构造环境.华南陆块北缘900~950 Ma的岩浆活动产物以镁铁质岩浆岩为主,伴随有少量斜长花岗岩,为洋壳俯冲作用的产物.当洋壳俯冲到大陆边缘之下形成安第斯型俯冲带,古老陆源沉积物也被携带进入俯冲带,由此部分熔融产生的含水熔体交代上覆地幔楔形成极度富集的造山带岩石圈地幔,其在新元古代中期发生部分熔融形成具有极负锆石εHf(t)值的镁铁质岩浆岩.因此,在罗迪尼亚超大陆聚合过程中地幔楔被交代形成镁铁质-超镁铁质交代岩,其中一部分在俯冲阶段就发生部分熔融形成大洋弧或大陆弧镁铁质岩浆岩,另一部分在俯冲之后由于大陆裂断引起造山带岩石圈拉张使其与上覆地壳一起部分熔融形成双峰式岩浆岩.Abstract: The amalgamation of supercontinents is associated with a series of orogenic processes during plate convergence from oceanic subduction, arc-continent collision and continent-continent collision. These processes are recorded in different types of magmatic rocks. The South China block is one of the most important continents in supercontinent Rodinia, whose amalgamation is caused by Grenvillian subduction of oceanic slabs with considerable crust-mantle interaction. This paper presents a summary of magmatic records in the northern margin of the South China block during the Rodinia amalgamation. The 900-950 Ma magmatic rocks are mainly of mafic to intermediate compositions with a few plagiogranites, and they are the products of intraoceanic subduction. As the subduction style evolved into Andean type, ancient terrigenous sediments were carried into subduction zones to undergo dehydration melting, giving rise to hydrous felsic melts which would react with the overlying mantle wedge. This results in the formation of highly enriched mantle sources, whose partial melting in the Middle Neoproterozoic to produced mafic magmatic rocks with very negative zircon εHf(t) values. In this regard, mafic to ultramafic rocks were generated in the mantle wedge through crustal metasomatism by subducting oceanic crust-derived fluids during the Rodinia amalgamation. Some of these rocks were partially melted in the subduction stage to form mafic arc volcanics along convergent plate boundaries, and the other parts were partially melted together with the overlying crust during lithospheric extension by continental rifting at a later time for bimodal magmatism.
-
Key words:
- South China block /
- Rodinia /
- supercontinent amalgamation /
- oceanic subduction /
- mantle metasomatism /
- petrology
-
图 1 勉略带三岔子岩浆岩中不同岩性的锆石U⁃Pb年龄和Lu⁃Hf同位素结果
Fig. 1. Zircon U⁃Pb ages and Lu⁃Hf isotope results for different magmatic rocks from the Sanchazi area in the Mianlue belt
图 2 蕲春辉石岩的锆石U⁃Pb年龄和Lu⁃Hf同位素分析结果
Fig. 2. Zircon U⁃Pb ages and Lu⁃Hf isotope results for the Qichun pyroxenite
图 3 华南聚合到罗迪尼亚超大陆的过程
Fig. 3. The tectonic evolution during the assemblage of South China into Rodinia supercontinent
-
[1] Cawood, P.A., Kröner, A., Collins, W.J., et al., 2009.Accretionary Orogens through Earth History.Geological Society, London, Special Publications, 318(1):1-36. doi: 10.1144/SP318.1 [2] Chen, Z.H., Guo, K.Y., Dong, Y.G., et al., 2009.Possible Early Neoproterozoic Magmatism Associated with Slab Window in the Pingshui Segment of the Jiangshan⁃Shaoxing Suture Zone:Evidence from Zircon LA⁃ICP⁃MS U⁃Pb Geochronology and Geochemistry.Science China:Earth Sciences, 39(7):994-1008(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-JDXG200907005.htm [3] Deng, H., Peng, S.B., Polat, A., et al., 2017.Neoproterozoic IAT Intrusion into Mesoproterozoic MOR Miaowan Ophiolite, Yangtze Craton:Evidence for Evolving Tectonic Settings.Precambrian Research, 289:75-94. https://doi.org/10.1016/j.precamres.2016.12.003 [4] Dewey, J.F., Burke, K., 1974.Hot Spots and Continental Break⁃up:Implications for Collisional Orogeny.Geology, 2(2):57-60. doi: 10.1130/0091-7613(1974)2<57:HSACBI>2.0.CO;2 [5] Dong, Y.P., Liu, X.M., Santosh, M., et al., 2011.Neoproterozoic Subduction Tectonics of the Northwestern Yangtze Block in South China:Constrains from Zircon U⁃Pb Geochronology and Geochemistry of Mafic Intrusions in the Hannan Massif.Precambrian Research, 189:66-90. https://doi.org/10.1016/j.precamres.2011.05.002 [6] Dong, Y.P., Liu, X.M., Santosh, M., et al., 2012.Neoproterozoic Accretionary Tectonics along the Northwestern Margin of the Yangtze Block, China:Constraints from Zircon U⁃Pb Geochronology and Geochemistry.Precambrian Research, 196-197:247-274. doi: 10.1016/j.precamres.2011.12.007 [7] Dong, Y.P., Sun, S.S., Yang, Z., et al., 2017.Neoproterozoic Subduction⁃Accretionary Tectonics of the South Qinling Belt, China.Precambrian Research, 293:73-90. doi: 10.1016/j.precamres.2017.02.015 [8] Downes, H., 2007.Origin and Significance of Spinel and Garnet Pyroxenites in the Shallow Lithospheric Mantle:Ultramafic Massifs in Orogenic Belts in Western Europe and NW Africa.Lithos, 99(1-2):1-24. doi: 10.1016/j.lithos.2007.05.006 [9] Gao, J., Klemd, R., Long, L.L., et al., 2009.Adakitic Signature Formed by Fractional Crystallization:An Interpretation for the Neo⁃Proterozoic Meta⁃Plagiogranites of the NE Jiangxi Ophiolitic Mélange Belt, South China.Lithos, 110:277-293. doi: 10.1016/j.lithos.2009.01.009 [10] Greentree, M.R., Li, Z.X., Li, X.H., et al., 2006.Late Mesoproterozoic to Earliest Neoproterozoic Basin Record of the Sibao Orogenesis in Western South China and Relationship to the Assembly of Rodinia.Precambrian Research, 151(1-2):79-100. doi: 10.1016/j.precamres.2006.08.002 [11] Grimes, C.B., Ushikubo, T., Kozdon, R., et al., 2013.Perspectives on the Origin of Plagiogranite in Ophiolites from Oxygen Isotopes in Zircon.Lithos, 179:48-66. doi: 10.1016/j.lithos.2013.07.026 [12] He, Q., Zhang, S.B., Zheng, Y.F., 2016.High Temperature Glacial Meltwater⁃Rock Reaction in the Neoproterozoic:Evidence from Zircon In⁃Situ Oxygen Isotopes in Granitic Gneiss from the Sulu Orogen.Precambrian Research, 284:1-13. https://doi.org/10.1016/j.precamres.2016.07.012 [13] He, Q., Zhang, S.B., Zheng, Y.F., 2018.Evidence for Regional Metamorphism in a Continental Rift during the Rodinia Breakup.Precambrian Research, 314:414-427. https://doi.org/10.1016/j.precamres.2018.06.009 [14] Hoffman, P.F., 1991.Did the Breakout of Laurentia Turn Gondwanaland Inside⁃Out?Science, 252:1409-1412. doi: 10.1126/science.252.5011.1409 [15] Hu, J., Liu, X.C., Qu, W., et al., 2019.Mid⁃Neoproterozoic Amphibolite Facies Metamorphism at the Northern Margin of the Yangtze Craton.Precambrian Research, 326:333-343. doi: 10.1016/j.precamres.2017.10.010 [16] Irving, A.J., 1980.Petrology and Geochemistry of Composite Ultramafic Xenoliths in Alkali Basalts and Implications for Magmatic Processes within the Mantle.American Journal of Science, 280:389-426. http://core.ac.uk/display/10352567 [17] Lai, S.C., Qin, J.F., 2010.The Ophiolite and Volcanics of the Mianlue Zone in South Qinling.Science Press, Beijing (in Chinese). [18] Li, H.K., Zhang, C.L., Xiang, Z.Q., et al., 2013.Zircon and Baddeleyite U⁃Pb Geochronology of the Shennongjia Group in the Yangtze Craton and Its Tectonic Significance.Acta Petrologica Sinica, 29(2):673-697(in Chinese with English abstract). [19] Li, S.G., Hou, Z.H., Yang, Y.C., et al., 2003. Timing and Geochemistry Characters of the Sanchazi Magmatic Arc in Mianlue Tectonic Zone, South Qinling.Science China:Earth Sciences, 33(12):1163-1173(in Chinese). http://earth.scichina.com:8080/sciDe/CN/Y2004/V47/I4/317 [20] Li, Z., 2003.Geochronology of Neoproterozoic Syn⁃Rift Magmatism in the Yangtze Craton, South China and Correlations with Other Continents:Evidence for a Mantle Superplume That Broke up Rodinia.Precambrian Research, 122(1-4):85-109. doi: 10.1016/S0301-9268(02)00208-5 [21] Li, Z.X., Bogdanova, S.V., Collins, A.S., et al., 2008.Assembly, Configuration, and Break⁃up History of Rodinia:A Synthesis.Precambrian Research, 160(1-2):179-210. doi: 10.1016/j.precamres.2007.04.021 [22] Li, Z.X., Li, X.H., Kinny, P.D., et al., 1999.The Breakup of Rodinia:Did It Start with a Mantle Plume beneath South China? Earth and Planetary Science Letters, 173(3):171-181. https://doi.org/10.1016/s0012⁃821x(99)00240⁃x [23] Li, Z.X., Li, X.H., Zhou, H.W., et al., 2002.Grenvillian Continental Collision in South China:New SHRIMP U⁃Pb Zircon Results and Implications for the Configuration of Rodinia.Geology, 30(2):163. doi: 10.1130/0091-7613(2002)030<0163:GCCISC>2.0.CO;2 [24] Li, Z.X., Wartho, J.A., Occhipinti, S., et al., 2007.Early History of the Eastern Sibao Orogen (South China) during the Assembly of Rodinia:New Mica 40Ar/39Ar Dating and SHRIMP U⁃Pb Detrital Zircon Provenance Constraints.Precambrian Research, 159(1-2):79-94. doi: 10.1016/j.precamres.2007.05.003 [25] Ling, W., 2003.Neoproterozoic Tectonic Evolution of the Northwestern Yangtze Craton, South China:Implications for Amalgamation and Break⁃up of the Rodinia Supercontinent.Precambrian Research, 122(1-4):111-140. doi: 10.1016/S0301-9268(02)00222-X [26] Liu, C.H., Wu, C.L., Gao, Y.H., et al., 2014.Zircon LA⁃ICP⁃MS U⁃Pb Dating and Lu⁃Hf Isotopic System of Dongjiangkou, Zhashui, and Liyuantang Granitoid Intrusions, South Qinling Belt, Central China.Acta Petrologica Sinica, 30(8):2402-2420(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201408021 [27] Liu, R.Y., Niu, B.G., He, Z.J., et al., 2011.LA⁃ICP⁃MS Zircon U⁃Pb Geochronology of the Eastern Part of the Xiaomaoling Composite Intrusives in Zhashui Area, Shaanxi, China.Geological Bulletin of China, 30(2-3):448-460(in Chinese with English abstract). [28] Liu, Y., Gao, S., Lee, C., et al., 2005.Melt⁃Peridotite Interactions:Links between Garnet Pyroxenite and High⁃Mg# Signature of Continental Crust.Earth and Planetary Science Letters, 234(1-2):39-57. doi: 10.1016/j.epsl.2005.02.034 [29] Moores, E.M., 1991.Southwest U.S.⁃East Antarctic (SWEAT) Connection:A Hypothesis.Geology, 19(5):425. doi: 10.1130/0091-7613(1991)019<0425:SUSEAS>2.3.CO;2 [30] Nie, H., Yao, J., Wan, X., et al., 2016.Precambrian Tectonothermal Evolution of South Qinling and Its Affinity to the Yangtze Block:Evidence from Zircon Ages and Hf⁃Nd Isotopic Compositions of Basement Rocks.Precambrian Research, 286:167-179. doi: 10.1016/j.precamres.2016.10.005 [31] Peng, S.B., Kusky, T.M., Jiang, X.F., et al., 2012.Geology, Geochemistry, and Geochronology of the Miaowan Ophiolite, Yangtze Craton:Implications for South China's Amalgamation History with the Rodinian Supercontinent.Gondwana Research, 21(2-3):577-594. doi: 10.1016/j.gr.2011.07.010 [32] Qiu, X.F., Ling, W.L., Liu, X.M., et al., 2011.Recognition of Grenvillian Volcanic Suite in the Shennongjia Region and Its Tectonic Significance for the South China Craton.Precambrian Research, 191(3-4):101-119. doi: 10.1016/j.precamres.2011.09.011 [33] Ratschbacher, L., Hacker, B.R., Calvert, A., et al., 2003.Tectonics of the Qinling (Central China):Tectonostratigraphy, Geochronology, and Deformation History.Tectonophysics, 366(1-2):1-53. doi: 10.1016/S0040-1951(03)00053-2 [34] Shi, Y.R., Liu, D.Y., Zhang, Z.Q., et al., 2007.SHRIMP Zircon U⁃Pb Dating of Gabbro and Granite from the Huashan Ophiolite, Qinling Orogenic Belt, China:Neoproterozoic Suture on the Northern Margin of the Yangtze Craton.Acta Geologica Sinica(English Edition), 81(2):239-243. doi: 10.1111/j.1755-6724.2007.tb00947.x [35] Sun, Z.M., Wang, X.L., Qi, L., et al., 2018.Formation of the Neoproterozoic Ophiolites in Southern China:New Constraints from Trace Element and PGE Geochemistry and Os Isotopes.Precambrian Research, 309:88-101. doi: 10.1016/j.precamres.2017.12.042 [36] Valley, J.W., Kinny, P.D., Schulze, D.J., et al., 1998.Zircon Megacrysts from Kimberlite:Oxygen Isotope Variability among Mantle Melts.Contributions to Mineralogy and Petrology, 133(1-2):1-11. https://doi.org/10.1007/s004100050432 [37] Wang, J., Deng, Q., Wang, Z.J., et al., 2013.New Evidences for Sedimentary Attributes and Timing of the "Macaoyuan Conglomerates" on the Northern Margin of the Yangtze Block in Southern China.Precambrian Research, 235:58-70. https://doi.org/10.1016/j.precamres.2013.06.003 [38] Wang, X.L., Zhou, J.C., Griffin, W.L., et al., 2014.Geochemical Zonation across a Neoproterozoic Orogenic Belt:Isotopic Evidence from Granitoids and Metasedimentary Rocks of the Jiangnan Orogen, China.Precambrian Research, 242:154-171. https://doi.org/10.1016/j.precamres.2013.12.023 [39] Wilson, J.T., 1966.Did the Atlantic Close and then Re⁃Open? Nature, 211:676-681. doi: 10.1038/211676a0 [40] Wu, P., Zhang, S.B., Zheng, Y.F., et al., 2019.Amalgamation of South China into Rodinia during the Grenvillian Accretionary Orogeny:Geochemical Evidence from Early Neoproterozoic Igneous Rocks in the Northern Margin of the South China Block.Precambrian Research, 321:221-243. https://doi.org/10.1016/j.precamres.2018.12.015 [41] Wu, Y.B., Zheng, Y.F., Tang, J., et al., 2007.Zircon U⁃Pb Dating of Water⁃Rock Interaction during Neoproterozoic Rift Magmatism in South China.Chemical Geology, 246(1-2):65-86. https://doi.org/10.1016/j.chemgeo.2007.09.004 [42] Xiao, L., Zhang, H.F., Ni, P.Z., et al., 2007.LA⁃ICP⁃MS U⁃Pb Zircon Geochronology of Early Neoproterozoic Mafic⁃Intermediate Intrusions from NW Margin of the Yangtze Block, South China:Implication for Tectonic Evolution.Precambrian Research, 154(3-4):221-235. https://doi.org/10.1016/j.precamres.2006.12.013 [43] Xu, Y., Yang, K.G., Polat, A., et al., 2016.The ∼860 Ma Mafic Dikes and Granitoids from the Northern Margin of the Yangtze Block, China:A Record of Oceanic Subduction in the Early Neoproterozoic.Precambrian Research, 275:310-331. https://doi.org/10.1016/j.precamres.2016.01.021 [44] Xue, H.M., Liu, D.Y., Dong, S.W., et al., 2004.U⁃Pb SHRIMP Zircon Ages of the Qichun Granitoids, Hubei Province:Discovery of Neoproterozoic Weakly Metamorphosed⁃Unmetamorphosed Granitoids in the Dabie Mountains.Acta Geologica Sinica, 78(1):81-88 (in Chinese with English abstract). [45] Yan, M., Liu, S.W., Li, Q.G., et al., 2014.LA⁃ICP⁃MS Zircon U⁃Pb chronology and Lu⁃Hf Isotopic Features of the Mihunzhen Pluton in the South Qinling Tectonic Belt.Acta Petrologica Sinica, 30(2):390-400(in Chinese with English abstract). [46] Yan, Q.R., Wang, Z.Q., Yan, Z., et al., 2007.SHRIMP Analyses for Ophiolitic⁃Mafic Blocks in the Kangxian⁃Mianxian Section of the Mianxian⁃Lueyang Melange:Their Geological Implications.Geological Review, 53(6):755-764 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/OA000004823 [47] Yang, C.H., Geng, Y.S., Du, L.L., et al., 2009.The Identification of the Grenvillian Granite on the Western Margin of the Yangtze Block and Its Geological Implications.Geology in China, 36(3):647-657(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi200903011 [48] Ye, M.F., Li, X.H., Li, W.X., et al., 2007.SHRIMP Zircon U⁃Pb Geochronological and Whole⁃Rock Geochemical Evidence for an Early Neoproterozoic Sibaoan Magmatic Arc along the Southeastern Margin of the Yangtze Block.Gondwana Research, 12(1-2):144-156. https://doi.org/10.1016/j.gr.2006.09.001 [49] Yu, S.Y., Xu, Y.G., Ma, J.L., et al., 2010.Remnants of Oceanic Lower Crust in the Subcontinental Lithospheric Mantle:Trace Element and Sr⁃Nd⁃O Isotope Evidence from Aluminous Garnet Pyroxenite Xenoliths from Jiaohe, Northeast China.Earth and Planetary Science Letters, 297(3-4):413-422. https://doi.org/10.1016/j.epsl.2010.06.043 [50] Zhang, C.H., Gao, L.Z., Wu, Z.J., et al., 2007.SHRIMP U⁃Pb Zircon Age of Tuff from the Kunyang Group in Central Yunnan: Evidence for Grenvillian Orogeny in South China.Chinese Science Bulletin, 52(7):818-824(in Chinese). doi: 10.1360/csb2007-52-7-818 [51] Zhang, G.W., 2015.The Mianlue Tectonic Zone of the Qinling Orogen and China Continental Tectonics.Science Press, Beijing (in Chinese). [52] Zhang, G.W., Cheng, S.Y., Guo, A.L., et al., 2004.Mianlue Paleo⁃Suture on the Southern Margin of the Central Orogenic System in Qinling⁃Dabie:With a Discussion of the Assembly of the Main Part of the Continent of China.Geological Bulletin of China, 23(9):846-853(in Chinese with English abstract). [53] Zhang, G.W., Meng, Q.R., Lai, S.C., 1995.Tectonics and Structure of Qinling Orogenic Belt.Science China (Series B), 25(9):994-1003(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/OA000002705 [54] Zhang, G.W., Meng, Q.R., Yu, Z.P., et al., 1996.Orogenesis and Dynamics of the Qinling Orogen.Science China (Series D), 26(3):193-200(in Chinese). http://cn.bing.com/academic/profile?id=9ac292ed84054ac6c0b0003fab83af51&encoded=0&v=paper_preview&mkt=zh-cn [55] Zhang, G.W., Zhang, B.R., Yuan, X.C., et al., 2001.The Qinling Orogenic Belt and Continental Geodynamics.Science Press, Beijing(in Chinese). [56] Zhang, R.Y., Sun, Y., Zhang, X., et al., 2016b.Neoproterozoic Magmatic Events in the South Qinling Belt, China:Implications for Amalgamation and Breakup of the Rodinia Supercontinent.Gondwana Research, 30:6-23. https://doi.org/10.1016/j.gr.2015.06.015 [57] Zhang, S.B., Tang, J., Zheng, Y.F., 2014.Contrasting Lu⁃Hf Isotopes in Zircon from Precambrian Metamorphic Rocks in the Jiaodong Peninsula:Constraints on the Tectonic Suture between North China and South China.Precambrian Research, 245:29-50. https://doi.org/10.1016/j.precamres.2014.01.006 [58] Zhang, S.B., Wu, R.X., Zheng, Y.F., 2012.Neoproterozoic Continental Accretion in South China:Geochemical Evidence from the Fuchuan Ophiolite in the Jiangnan Orogen.Precambrian Research, 220-221:45-64. https://doi.org/10.1016/j.precamres.2012.07.010 [59] Zhang, S.B., Zheng, Y.F., 2013.Formation and Evolution of Precambrian Continental Lithosphere in South China.Gondwana Research, 23(4):1241-1260. https://doi.org/10.1016/j.gr.2012.09.005 [60] Zhang, S.B., Zheng, Y.F., Zhao, Z.F., et al., 2016a.The Extremely Enriched Mantle beneath the Yangtze Craton in the Neoproterozoic:Constraints from the Qichun Pyroxenite.Precambrian Research, 276:194-210. https://doi.org/10.1016/j.precamres.2016.02.002 [61] Zhang, Z.Q., Tang, S.H., Zhang, G.W., et al., 2005.Ages of Metamorphic Mafic⁃Andesitic Volcanic Rock Blocks and Tectonic Evolution Complexity of Mianxian⁃Lueyang Ophiolitic Mélange Belt.Acta Geologica Sinica, 79(4):531-539 (in Chinese with English abstract). [62] Zhao, J.H., Zhou, M.F., 2009.Secular Evolution of the Neoproterozoic Lithospheric Mantle underneath the Northern Margin of the Yangtze Block, South China.Lithos, 107(3-4):152-168. https://doi.org/10.1016/j.lithos.2008.09.017 [63] Zheng, Y.F., Chen, R.X., 2017.Regional Metamorphism at Extreme Conditions:Implications for Orogeny at Convergent Plate Margins.Journal of Asian Earth Sciences, 145:46-73. doi: 10.1016/j.jseaes.2017.03.009 [64] Zheng, Y.F., Chen, R.X., Zhao, Z.F., 2009.Chemical Geodynamics of Continental Subduction⁃Zone Metamorphism:Insights from Studies of the Chinese Continental Scientific Drilling (CCSD) Core Samples.Tectonophysics, 475(2):327-358. https://doi.org/10.1016/j.tecto.2008.09.014 [65] Zheng, Y.F., Chen, Y.X., 2016.Continental versus Oceanic Subduction Zones.National Science Review, 3:495-519. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0220896643/ [66] Zheng, Y.F., Chen, Y.X., Dai, L.Q., et al., 2015.Developing Plate Tectonics Theory from Oceanic Subduction Zones to Collisional Orogens.Science China:Earth Sciences, 58:1045-1069. doi: 10.1007/s11430-015-5097-3 [67] Zheng, Y.F., Fu, B., 1998.Estimation of Oxygen Diffusivity from Anion Porosity in Minerals.Geochemical Journal, 32(2):71-89. https://doi.org/10.2343/geochemj.32.71 [68] Zheng, Y.F., Fu, B., Gong, B., et al., 2003.Stable Isotope Geochemistry of Ultrahigh Pressure Metamorphic Rocks from the Dabie⁃Sulu Orogen in China:Implications for Geodynamics and Fluid Regime.Earth⁃Science Reviews, 62:105-161. http://cn.bing.com/academic/profile?id=4ef6618c53650d437c62bb355ee190b3&encoded=0&v=paper_preview&mkt=zh-cn [69] Zheng, Y.F., Gong, B., Zhao, Z.F., et al., 2008a.Zircon U⁃Pb Age and O Isotope Evidence for Neoproterozoic Low⁃18O Magmatism during Supercontinental Rifting in South China:Implications for the Snowball Earth Event.American Journal of Science, 308(4):484-516. doi: 10.2475/04.2008.04 [70] Zheng, Y.F., Wu, R.X., Wu, Y.B., et al., 2008b.Rift Melting of Juvenile Arc⁃Derived Crust:Geochemical Evidence from Neoproterozoic Volcanic and Granitic Rocks in the Jiangnan Orogen, South China.Precambrian Research, 163(3-4):351-383. https://doi.org/10.1016/j.precamres.2008.01.004 [71] Zheng, Y.F., Wu, Y.B., Chen, F.K., et al., 2004.Zircon U⁃Pb and Oxygen Isotope Evidence for a Large⁃Scale 18O Depletion Event in Igneous Rocks during the Neoproterozoic.Geochimica et Cosmochimica Acta, 68(20):4145-4165. doi: 10.1016/j.gca.2004.01.007 [72] Zheng, Y.F., Wu, Y.B., Gong, B., et al., 2007a.Tectonic Driving of Neoproterozoic Glaciations:Evidence from Extreme Oxygen Isotope Signature of Meteoric Water in Granite.Earth and Planetary Science Letters, 256:196-210. doi: 10.1016/j.epsl.2007.01.026 [73] Zheng, Y.F., Zhang, S.B., Zhao, Z.F., et al., 2007b.Contrasting Zircon Hf and O Isotopes in the Two Episodes of Neoproterozoic Granitoids in South China:Implications for Growth and Reworking of Continental Crust.Lithos, 96(1-2):127-150. https://doi.org/10.1016/j.lithos.2006.10.003 [74] Zheng, Y.F., Xiao, W.J., Zhao, G.C., 2013.Introduction to Tectonics of China.Gondwana Research, 23(4):1189-1206. https://doi.org/10.1016/j.gr.2012.10.001 [75] Zheng, Y.F., Zhao, Z.F., Chen, R.X., 2018.Ultrahigh⁃Pressure Metamorphic Rocks in the Dabie⁃Sulu Orogenic Belt:Compositional Inheritance and Metamorphic Modification.Geological Society, London, Special Publications, 474(1):89-132. [76] Zheng, Y.F., Zhao, Z.F., Wu, Y.B., et al., 2006.Zircon U⁃Pb Age, Hf and O Isotope Constraints on Protolith Origin of Ultrahigh⁃Pressure Eclogite and Gneiss in the Dabie Orogen.Chemical Geology, 231:135-158. doi: 10.1016/j.chemgeo.2006.01.005 [77] Zheng, Y.F., Zhou, J.B., Wu, Y.B., et al., 2005.Low⁃Grade Metamorphic Rocks in the Dabie⁃Sulu Orogenic Belt:A Passive⁃Margin Accretionary Wedge Deformed during Continent Subduction.International Geology Review, 47(8):851-871. doi: 10.2747/0020-6814.47.8.851 [78] Zhou, J.L., Li, X.H., Tang, G.Q., et al., 2018.Ca.890 Ma Magmatism in the Northwest Yangtze Block, South China:SIMS U⁃Pb Dating, In⁃Situ Hf⁃O Isotopes, and Tectonic Implications.Journal of Asian Earth Sciences, 151:101-111. https://doi.org/10.1016/j.jseaes.2017.10.029 [79] 陈志洪, 郭坤一, 董永观, 等, 2009.江山-绍兴拼合带平水段可能存在新元古代早期板片窗岩浆活动:来自锆石LA⁃ICP⁃MS年代学和地球化学的证据.中国科学:地球科学, 39(7):994-1008. [80] 赖绍聪, 秦江峰, 2010.南秦岭勉略缝合带蛇绿岩与火山岩.北京:科学出版社. [81] 李怀坤, 张传林, 相振群, 等, 2013.扬子克拉通神农架群锆石和斜锆石U⁃Pb年代学及其构造意义.岩石学报, 29(2):673-697. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201302022 [82] 李曙光, 侯振辉, 杨永成, 等, 2003.南秦岭勉略构造带三岔子古岩浆弧的地球化学特征及形成时代.中国科学(D辑), 33(12):1163-1173. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200312005 [83] 刘春花, 吴才来, 郜源红, 等, 2014.南秦岭东江口、柞水和梨园堂花岗岩类锆石LA⁃ICP⁃MSU⁃Pb年代学与锆石Lu⁃Hf同位素组成.岩石学报, 30(8):2402-2420. [84] 刘仁燕, 牛宝贵, 和政军, 等, 2011.陕西柞水地区小茅岭复式岩体东段LA⁃ICP⁃MS锆石U⁃Pb定年.地质通报, 30(2-3):448-460. http://d.old.wanfangdata.com.cn/Periodical/zgqydz201102032 [85] 薛怀民, 刘敦一, 董树文, 等, 2004.湖北蕲春花岗岩类锆石SHRIMP年龄:大别山造山带内弱变质-未变质晋宁期花岗岩类的发现.地质学报, 78(1):81-88. doi: 10.3321/j.issn:0001-5717.2004.01.010 [86] 阎明, 刘树文, 李秋根, 等, 2014.南秦岭迷魂阵岩体LA-ICP-MS锆石U-Pb年代学和Lu-Hf同位素特征.岩石学报, 30(2):390-400. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201402007 [87] 闫全人, 王宗起, 闫臻, 等, 2007.秦岭勉略构造混杂带康县——勉县段蛇绿岩块-铁镁质岩块的SHRIMP年代及其意义.地质论评, 53(6):755-764. doi: 10.3321/j.issn:0371-5736.2007.06.009 [88] 杨崇辉, 耿元生, 杜利林, 等, 2009.扬子地块西缘Grenville期花岗岩的厘定及其地质意义.中国地质, 36(3):647-657. doi: 10.3969/j.issn.1000-3657.2009.03.011 [89] 张传恒, 高林志, 武振杰, 等, 2007.滇中昆阳群凝灰岩锆石SHRIMP U⁃Pb年龄:华南格林威尔期造山的证据.科学通报, 52(7):818-824. doi: 10.3321/j.issn:0023-074X.2007.07.016 [90] 张国伟, 孟庆任, 赖绍聪, 1995.秦岭造山带的结构构造.中国科学(B辑), 25(9):994-1003 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199500247435 [91] 张国伟, 孟庆任, 于在平, 等, 1996.秦岭造山带的造山过程及其动力学特征.中国科学(D辑), 26:193-200. doi: 10.3321/j.issn:1006-9267.1996.03.001 [92] 张国伟, 张本仁, 袁学诚, 等, 2001.秦岭造山带与大陆动力学.北京:科学出版社. [93] 张国伟, 程顺有, 郭安林, 等, 2004.秦岭-大别中央造山系南缘勉略古缝合带的再认识——兼论中国大陆主体的拼合.地质通报, 23(9):846-853. doi: 10.3969/j.issn.1671-2552.2004.09.005 [94] 张国伟, 2015.秦岭勉略构造带与中国大陆构造.北京:科学出版社. [95] 张宗清, 唐索寒, 张国伟, 等, 2005.勉县-略阳蛇绿混杂岩带镁铁质-安山质火山岩块年龄和该带构造演化的复杂性.地质学报, 79(4):531-539. doi: 10.3321/j.issn:0001-5717.2005.04.011