• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    西江凹陷早新生代断裂演化及其对南海北缘应力场顺时针旋转的响应

    程燕君 吴智平 张杰 陈明明 戴伊宁 楚逸忱

    程燕君, 吴智平, 张杰, 陈明明, 戴伊宁, 楚逸忱, 2020. 西江凹陷早新生代断裂演化及其对南海北缘应力场顺时针旋转的响应. 地球科学, 45(6): 2199-2209. doi: 10.3799/dqkx.2019.250
    引用本文: 程燕君, 吴智平, 张杰, 陈明明, 戴伊宁, 楚逸忱, 2020. 西江凹陷早新生代断裂演化及其对南海北缘应力场顺时针旋转的响应. 地球科学, 45(6): 2199-2209. doi: 10.3799/dqkx.2019.250
    Cheng Yanjun, Wu Zhiping, Zhang Jie, Chen Mingming, Dai Yining, Chu Yichen, 2020. Early Cenozoic Evolution of Fault System in Xijiang Sag and Its Implication to Clockwise Rotation of Extension Stress in Northern Margin of South China Sea. Earth Science, 45(6): 2199-2209. doi: 10.3799/dqkx.2019.250
    Citation: Cheng Yanjun, Wu Zhiping, Zhang Jie, Chen Mingming, Dai Yining, Chu Yichen, 2020. Early Cenozoic Evolution of Fault System in Xijiang Sag and Its Implication to Clockwise Rotation of Extension Stress in Northern Margin of South China Sea. Earth Science, 45(6): 2199-2209. doi: 10.3799/dqkx.2019.250

    西江凹陷早新生代断裂演化及其对南海北缘应力场顺时针旋转的响应

    doi: 10.3799/dqkx.2019.250
    基金项目: 

    国家重大科技专项 No.2016ZX05024-002-001

    山东省自然科学基金博士基金 No.ZR2017BD013

    中国石油大学(华东)自主创新科研计划项目 No.17CX02004A

    详细信息
      作者简介:

      程燕君(1986-), 女, 讲师, 博士, 主要从事油气区构造研究.ORCID:0000-0002-7923-8913.E-mail:chengyanjun@outlook.com

      通讯作者:

      吴智平, E-mail:wuzhp@upc.edu.cn

    • 中图分类号: P542

    Early Cenozoic Evolution of Fault System in Xijiang Sag and Its Implication to Clockwise Rotation of Extension Stress in Northern Margin of South China Sea

    • 摘要: 南海北部发育了一系列的新生代盆地,该类盆地记录了新生代早期南海北缘应力场顺时针旋转过程,西江凹陷位于珠江口盆地内,记录了这一过程.利用丰富的二维、三维地震资料,针对西江凹陷断裂体系的演化过程进行了研究.凹陷基底在新生代之前作为华南陆缘的一部分,经历了多期次复杂的构造演化,形成了NE和NW两个方向的基底断层; 早-中始新世,NE向先存断裂优先复活,由太平洋板块俯冲后撤在研究区产生的NW-SE向伸展应力所致; 晚始新世-早渐新世,近EW向断裂大量发育,NW向断裂以走滑方式复活,该时期断层演化主要受太平洋俯冲方向的变化、印度板块碰撞及古南海的拖拽导致该地区应力场顺时针转变为近NS向的影响; 进一步通过物理模拟实验验证了断裂的演化机制,NE向先存断裂施加NS向拉张应力,先存NE向断裂局部复活,大量近EW向断层沿着NE向先存断裂展布位置形成,剖面上表现为正断层; NW向断裂在NS向拉张应力条件下,可见NW向走滑大量复活,局部发育少量的近EW向断裂.该研究对南海北缘新生代应力转变过程研究具有重要的借鉴意义.

       

    • 图  1  西江凹陷区域构造位置图

      Fig.  1.  The tectonic framework of the Xijiang sag

      图  2  西江凹陷构造-地层格架

      Fig.  2.  Stratigraphic framework and tectonic events of the Xijiang sag

      图  3  (a) 西江凹陷T90反射层主干断裂平面展布图, (b)番禺地区T90反射层三维立体图, (c)番禺地区T70反射层三维立体图

      Fig.  3.  (a) Map showing the major faults of the Xijiang sag along T90 horizon, (b) 3-D version of T90 horizon in the the Panyu area, (c) 3-D version of T70 horizon in the Panyu area

      图  4  西江凹陷典型地震剖面(位置见图 3)

      Fig.  4.  Typical seismic profiles of the Xijiang sag

      图  5  西江凹陷断裂活动速率图

      a.计算活动强度的断裂分布图及计算点位置;b.XJ27断裂(F1)活动速率图;c.PY4断裂(F2)活动速率图;d.XJ36断裂(F3)活动速率图;e.F4断裂活动速率图;f.F5断裂活动速率图

      Fig.  5.  The fault activation of the Xijiang sag

      图  6  西江凹陷文昌组、恩平组和珠海组沉积期同沉积断层展布图和地层厚度图

      a.文昌组同沉积断层展布图;b.文昌组地层厚度图;c.恩平组同沉积断层展布图;d.恩平组地层厚度图;e.珠海组同沉积断层展布图;f.珠海组地层厚度图

      Fig.  6.  Syn-depostional fault maps and thickness isopach maps during the depositional stage of Wenchang, Enping and Zhuhai formations

      图  7  珠江口盆地基底地质简图

      1.新生界; 2.中生界; 3.震旦系-下古生界; 4.白垩纪闪长岩; 5.白垩纪花岗岩; 6.砂岩; 7.玄武岩; 8.中酸性火山岩; 9.泥岩; 10.变质砂岩和砾岩; 11.盆地边界; 12.中生代断裂.据刘雨晴等(2019)

      Fig.  7.  The basement framework of the Pearl River Mouth basin

      图  8  先存NE向断层恩平期NS向伸展应力物理模拟实验图

      Fig.  8.  The NS-striking extension analogue experiment of pre-existing NE-striking faults

      图  9  先存NW向断层恩平期NS向伸展应力物理模拟实验图

      Fig.  9.  The NS-striking extension analogue experiment of pre-existing NW-striking faults

    • [1] Bao H.Y., Guo Z.F., Zhang L.L., et al.2013.Tectonic Dynamics of Eastern China since the Formation of the Pacific Plate.Advances in Earth Science, 28(3):337-346(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201303005
      [2] Bonini M..2007.Deformation Patterns and Structural Vergence in Brittle-Ductile Thrust Wedges:An Additional Analogue Modelling Perspective.Journal of Structural Geology, 29(1):141-158. https://doi.org/10.1016/j.jsg.2006.06.012
      [3] Briais A., Patriat P., Tapponnier P..1993.Updated Interpretation of Magnetic Anomalies and Seafloor Spreading Stages in the South China Sea:Implications for the Tertiary Tectonics of Southeast Asia.Journal of Geophysical Research:Solid Earth, 98(B4):6299-6328.https://doi.org/10.1029/92jb02280 doi: 10.1029/92JB02280
      [4] Buchanan P.G., McClay K.R..1991.Sandbox Experiments of Inverted Listric and Planar Fault Systems.Tectonophysics, 188(1-2):97-115.https://doi.org/10.1016/0040-1951(91)90317-l doi: 10.1016/0040-1951(91)90317-L
      [5] Cui Y.C., Cao L.C., Qiao P.J., et al.2018.Provenance Evolution of Paleogene Sequence(Northern South China Sea) Based on Detrital Zircon U-Pb Dating Analysis.Earth Science, 43(1):4169-4179(in Chinese with English abstract).https://doi.org/10.3799/dqkx.2017.594 http://d.old.wanfangdata.com.cn/Periodical/dqkx201811031
      [6] Cullen A., Reemst P., Henstra G., et al.2010.Rifting of the South China Sea:New Perspectives.Petroleum Geoscience, 16(3):273-282.https://doi.org/10.1144/1354-079309-908 https://www.academia.edu/8373549/Rifting_of_the_South_China_Sea_new_perspectives
      [7] Faure M., Leprier C., van Nguyen V., et al.2014.The South China Block-Indochina Collision:Where, When, and How.Journal of Asian Earth Sciences, 79:260-274. https://doi.org/10.1016/j.jseaes.2013.09.022
      [8] Ge J.W., Zhu X.M., Zhang X.T., et al.2018.Tectono-Sedimentation Model of the Eocene Wenchang Formation in the Lufeng Depression, Pearl River Mouth Basin.Journal of China University of Mining & Technology, 47(2):308-322(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkydxxb201802012
      [9] Gilder S.A., Leloup P.H., Courtillot V., et al.1999.Tectonic Evolution of The Tancheng-Lujiang (Tan-Lu) Fault via Middle Triassic to Early Cenozoic Paleomagnetic Data.Journal of Geophysical Research:Solid Earth, 104(B7):15365-15390.https://doi.org/10.1029/1999jb900123 doi: 10.1029/1999JB900123
      [10] Hall R..2002.Cenozoic Geological and Plate Tectonic Evolution of SE Asia and the SW Pacific:Computer-Based Reconstructions, Model and Animations.Journal of Asian Earth Sciences, 20(4):353-431.https://doi.org/10.1016/s1367-9120(01)00069-4 doi: 10.1016/S1367-9120(01)00069-4
      [11] Hall R., van Hattum M.W.A., Spakman W..2008.Impact of India-Asia Collision on SE Asia:The Record in Borneo.Tectonophysics, 451(1-4):366-389. https://doi.org/10.1016/j.tecto.2007.11.058
      [12] He W.G., Zhou J.X..2018.Analogue Modeling of Feature and Formation Mechanism of Horsetail-Shaped Fold Belt in Southeast Sichuan Basin, South China.Earth Science, 43(6):2133-2148(in Chinese with English abstract).https://doi.org/10.3799/dqkx.2017.619 http://d.old.wanfangdata.com.cn/Periodical/dqkx201806025
      [13] Lei C., Ren J.Y., Zhang J..2015.Tectonic Province Divisions in the South China Sea:Implications for Basin Geodynamics.Earth Science, 40(4):744-762(in Chinese with English abstract).https://doi.org/10.3799/dqkx.2015.062 http://d.old.wanfangdata.com.cn/Periodical/dqkx201504016
      [14] Li F.C., Sun Z., Zhang J.Y..2018.Numerical Studies on Continental Lithospheric Breakup in Response to the Extension Induced by Subduction Direction Inversion.Earth Science, 43(10):3762-3777(in Chinese with English abstract).https://doi.org/10.3799/dqkx.2018.581 http://d.old.wanfangdata.com.cn/Periodical/dqkx201810032
      [15] Li J., Yuen D.A..2014.Mid-Mantle Heterogeneities Associated with Izanagi Plate:Implications for Regional Mantle Viscosity.Earth and Planetary Science Letters, 385:137-144. https://doi.org/10.1016/j.epsl.2013.10.042
      [16] Li S.Z., Suo Y.H., Liu X., et al.2012.Basin Dynamics and Basin Groups of the South China Sea.Marine Geology & Quaternary Geology, 32(6):55-78(in Chinese with English abstract). https://ui.adsabs.harvard.edu/abs/2013MGQG...32...55L/abstract
      [17] Li Z.X., Li X.H..2007.Formation of the 1 300 km Wide Intracontinental Orogen and Postorogenic Magmatic Province in Mesozoic South China:A Flat-Slab Subduction Model.Geology, 35(2):179-182.https://doi.org/10.1130/g23193a.1 doi: 10.1130/G23193A.1
      [18] Lin C.S., Shi H.S., Li H., et al.2018.Sequence Architecture, Depositional Evolution and Controlling Processes of Continental Slope in Pearl River Mouth Basin, Northern South China Sea.Earth Science, 43(10):3407-3422(in Chinese with English abstract).https://doi.org/10.3799/dqkx.2018.311 http://d.old.wanfangdata.com.cn/Periodical/dqkx201810007
      [19] Liu B.B., Yu X.H., Wu J.F., et al.2015.Research on Half-Graben Types and Sedimentary Filling Modes of Northern Continental Margin Basin of the South China Sea.Journal of China University of Mining & Technology, 44(3):498-507(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zgkydxxb201503015
      [20] Liu F.L., Wang F., Liu P.H., et al.2013.Multiple Metamorphic Events Revealed by Zircons from the Diancang Shan-Ailao Shan Metamorphic Complex, Southeastern Tibetan Plateau.Gondwana Research, 24(1):429-450. https://doi.org/10.1016/j.gr.2012.10.016
      [21] Liu Y.Q., Wu Z.P., Cheng Y.J., et al.2019.Spatial and Temporal Difference of Paleogene Rift Structure and Its Controlling Factors in the Northern South China Sea:A Case Study of Pearl River Mouth Basin.Journal of China University of Mining & Technology, 48(2):142-151(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zgkydxxb201902015
      [22] Longley I.M..1997.The Tectonostratigraphic Evolution of SE Asia.Geological Society, London, Special Publications, 126(1):311-339.https://doi.org/10.1144/gsl.sp.1997.126.01.19 doi: 10.1144/GSL.SP.1997.126.01.19
      [23] Lü C.L., Zhang G.C., Yang D.S..2017.Differential Structure and Dynamic Mechanism of Wenchang Formation in the Zhu II Depression of the Pearl River Mouth Basin.Earth Science Frontiers, 24(6):333-341(in Chinese with English abstract).
      [24] Meng J., Coe R.S., Wang C.S., et al.2017.Reduced Convergence within the Tibetan Plateau by 26 Ma? Geophysical Research Letters, 44(13):6624-6632.https://doi.org/10.1002/2017gl074219 doi: 10.1002/2017GL074219
      [25] Meng J., Gilder S.A., Wang C.S., et al.2019.Defining the Limits of Greater India.Geophysical Research Letters, 46(8):4182-4191.https://doi.org/10.1029/2019gl082119 doi: 10.1029/2019GL082119
      [26] Meng J., Wang C.S., Zhao X.X., et al.2012.India-Asia Collision Was at 24°N and 50 Ma:Palaeomagnetic Proof from Southernmost Asia.Scientific Reports, 2:925. https://doi.org/10.1038/srep00925
      [27] Miyazaki T., Kimura J.I., Senda R., et al.2015.Missing Western Half of the Pacific Plate:Geochemical Nature of the Izanagi-Pacific Ridge Interaction with a Stationary Boundary between the Indian and Pacific Mantles.Geochemistry, Geophysics, Geosystems, 16(9):3309-3332.https://doi.org/10.1002/2015gc005911 doi: 10.1002/2015GC005911
      [28] Ren, J Y..2018.Genetic Dynamics of China Offshore Cenozoic Basins.Earth Science, 43(10):3337-3361(in Chinese with English abstract).https://doi.org/10.3799/dqkx.2018.330 http://d.old.wanfangdata.com.cn/Periodical/dqkx201810002
      [29] Singsoupho S., Bhongsuwan T., Elming S.A..2014.Tectonic Evaluation of the Indochina Block during Jurassic-Cretaceous from Palaeomagnetic Results of Mesozoic Redbeds in Central and Southern Lao PDR.Journal of Asian Earth Sciences, 92:18-35. https://doi.org/10.1016/j.jseaes.2014.06.001
      [30] Tang Q.S., Zheng C..2013.Crust and Upper Mantle Structure and Its Tectonic Implications in the South China Sea and Adjacent Regions.Journal of Asian Earth Sciences, 62:510-525. https://doi.org/10.1016/j.jseaes.2012.10.037
      [31] Tapponnier P., Peltzer G., Armijo R..1986.On the Mechanics of the Collision between India and Asia.Geological Society, London, Special Publications, 19(1):113-157.https://doi.org/10.1144/gsl.sp.1986.019.01.07 doi: 10.1144/GSL.SP.1986.019.01.07
      [32] Yan Q.S., Shi X.F., Castillo P.R..2014.The Late Mesozoic-Cenozoic Tectonic Evolution of the South China Sea:A Petrologic Perspective.Journal of Asian Earth Sciences, 85:178-201. https://doi.org/10.1016/j.jseaes.2014.02.005
      [33] Zhang Y.Z., Qi, J F., Wu J.F..2019.Cenozoic Faults Systems and Its Geodynamics of the Continental Margin Basins in the Northern of the South China Sea.Earth Science, 44(2):603-625(in Chinese with English abstract).https://doi.org/10.3799/dqkx.2018.542 http://d.old.wanfangdata.com.cn/Periodical/dqkx201902020
      [34] Zhou H.M., Xiao L., Dong Y.X., et al.2009.Geochemical and Geochronological Study of the Sanshui Basin Bimodal Volcanic Rock Suite, China:Implications for Basin Dynamics in Southeastern China.Journal of Asian Earth Sciences, 34(2):178-189. https://doi.org/10.1016/j.jseaes.2008.05.001
      [35] Zhou J.X., Zhang B., Xu Q..2016.Effects of Lateral Friction on the Structural Evolution of Fold-and-Thrust Belts:Insights from Sandbox Experiments with Implications for the Origin of Landward-Vergent Thrust Wedges in Cascadia.Geological Society of America Bulletin, 128(3-4):669-683.https://doi.org/10.1130/b31320.1 doi: 10.1130/B31320.1
      [36] Zhu B., Q., Wang H.F., Chen Y.W., et al.2005.Geochronological and Geochemical Constraint on the Cenozoic Extension of Cathaysian Lithosphere and Tectonic Evolution of the Border Sea Basins in East Asia.Journal of Asian Earth Sciences, 24(2):163-175.https://doi.org/10.1016/j.jseaes.2003.10.006
      [37] 包汉勇, 郭战峰, 张罗磊, 等.2013.太平洋板块形成以来的中国东部构造动力学背景.地球科学进展, 28(3):337-346. http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201303005
      [38] 崔宇驰, 曹立成, 乔培军, 等.2018.南海北部古近纪沉积物碎屑锆石U-Pb年龄及物源演化.地球科学, 43(1):4169-4179. doi: 10.3799/dqkx.2017.594
      [39] 葛家旺, 朱筱敏, 张向涛, 等.2018.珠江口盆地陆丰凹陷文昌组构造-沉积演化模式.中国矿业大学学报, 47(2):308-322. http://d.old.wanfangdata.com.cn/Periodical/zgkydxxb201802012
      [40] 何文刚, 周建勋.2018.川东南马尾状褶皱带特征与形成机制的物理模拟.地球科学, 43(6):2133-2148. doi: 10.3799/dqkx.2017.619
      [41] 雷超, 任建业, 张静.2015.南海构造变形分区及成盆过程.地球科学, 40(4):744-762. doi: 10.3799/dqkx.2015.062
      [42] 李付成, 孙珍, 张江阳.2018.大洋板块运动方向反转控制活动陆缘岩石圈张裂过程数值模拟.地球科学, 43(10):3762-3777. doi: 10.3799/dqkx.2018.581
      [43] 李三忠, 索艳慧, 刘鑫, 等.2012.南海的盆地群与盆地动力学.海洋地质与第四纪地质, 32(6):55-78. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201206006
      [44] 林畅松, 施和生, 李浩, 等.2018.南海北部珠江口盆地陆架边缘斜坡带层序结构和沉积演化及控制作用.地球科学, 43(10):3407-3422. doi: 10.3799/dqkx.2018.311
      [45] 刘蓓蓓, 于兴河, 吴景富, 等.2015.南海北部陆缘盆地半地堑类型及沉积充填模式.中国矿业大学学报, 44(3):498-507. http://d.old.wanfangdata.com.cn/Periodical/zgkydxxb201503015
      [46] 刘雨晴, 吴智平, 程燕君, 等.2019.南海北缘古近纪裂陷结构时空差异及控制因素——以珠江口盆地为例.中国矿业大学学报, 48(2):367-376. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkydxxb201902015
      [47] 吕彩丽, 张功成, 杨东升.2017.珠江口盆地珠二坳陷文昌组构造差异性与动力学成因机制.地学前缘, 24(6):333-341. http://d.old.wanfangdata.com.cn/Periodical/dxqy201706026
      [48] 任建业.2018.中国近海海域新生代成盆动力机制分析.地球科学, 43(10):3337-3361. doi: 10.3799/dqkx.2018.330
      [49] 张远泽, 漆家福, 吴景富.2019.南海北部新生代盆地断裂系统及构造动力学影响因素.地球科学, 44(2):603-625. doi: 10.3799/dqkx.2018.542
    • 加载中
    图(9)
    计量
    • 文章访问数:  610
    • HTML全文浏览量:  149
    • PDF下载量:  44
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-07-18
    • 刊出日期:  2020-06-15

    目录

      /

      返回文章
      返回