• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    饶阳凹陷沙一下亚段优质烃源岩地球化学特征及成藏贡献

    杨帆 王权 郝芳 郭柳汐 邹华耀

    杨帆, 王权, 郝芳, 郭柳汐, 邹华耀, 2021. 饶阳凹陷沙一下亚段优质烃源岩地球化学特征及成藏贡献. 地球科学, 46(1): 172-185. doi: 10.3799/dqkx.2019.249
    引用本文: 杨帆, 王权, 郝芳, 郭柳汐, 邹华耀, 2021. 饶阳凹陷沙一下亚段优质烃源岩地球化学特征及成藏贡献. 地球科学, 46(1): 172-185. doi: 10.3799/dqkx.2019.249
    Yang Fan, Wang Quan, Hao Fang, Guo Liuxi, Zou Huayao, 2021. Biomarker Characteristics of Lower Sub-Member of the First Member of the Shahejie Formation and Its Accumulation Contribution in Raoyang Depression, Jizhong Sub-Basin. Earth Science, 46(1): 172-185. doi: 10.3799/dqkx.2019.249
    Citation: Yang Fan, Wang Quan, Hao Fang, Guo Liuxi, Zou Huayao, 2021. Biomarker Characteristics of Lower Sub-Member of the First Member of the Shahejie Formation and Its Accumulation Contribution in Raoyang Depression, Jizhong Sub-Basin. Earth Science, 46(1): 172-185. doi: 10.3799/dqkx.2019.249

    饶阳凹陷沙一下亚段优质烃源岩地球化学特征及成藏贡献

    doi: 10.3799/dqkx.2019.249
    基金项目: 

    国家重大基金项目 41690134

    国家自然科学基金项目 U1663210

    中国石油华北油田科技项目"饶阳-霸县凹陷环境-生物协同演化与优质烃源岩发育分布及其成藏贡献研究" HBYT-YJY-2014-JS

    详细信息
      作者简介:

      杨帆(1993-), 男, 博士研究生, 主要从事油气地球化学, 油气成藏等研究.ORCID:0000-0002-9838-9450.E-mail:chinaofjz@163.com

    • 中图分类号: P632

    Biomarker Characteristics of Lower Sub-Member of the First Member of the Shahejie Formation and Its Accumulation Contribution in Raoyang Depression, Jizhong Sub-Basin

    • 摘要: 为了研究饶阳凹陷沙一下亚段优质源岩的地球化学特征及其成藏贡献.基于有机碳、热解、生烃模拟实验评价源岩生烃潜力;基于源岩GC-MS实验和生烃潜力评价结果,描述源岩分子地球化学及有机相特征,利用多元数理统计方法,建立油-岩关系并定量计算原油中各源岩贡献率,总结了沙一下亚段成藏贡献规律.研究表明:沙一下亚段源岩的生烃潜力在凹陷内发育的3套源岩中最大,并且ω(伽马蜡烷)/ω(C30藿烷)、ω(甾烷)/ω(藿烷)等生物标志物参数与其他两套源岩有明显区别.原油样品可以划分为沙一下亚段来源,沙一下和沙三段混源和沙三上和下段混源3种成因类型.成藏贡献计算结果显示沙一下亚段源岩总贡献率达到58%,对东营组、馆陶和明化镇组原油贡献达到77%,对沙河街组原油贡献达到66%.饶阳凹陷沙一下亚段源岩是一套非常优质的烃源岩,成藏贡献大,应得到更多关注.沙一下亚段源岩高贡献区分布受到地质条件、成藏模式和源岩有机相控制,古近系和新近系储层原油主要来源于沙一下亚段源岩.

       

    • 图  1  饶阳凹陷主要洼槽、油田分布

      Fig.  1.  Primary sags and the location of oil fields of Raoyang depression

      图  2  饶阳凹陷沙一下亚段Tmax(℃)和HI(hydrogen index)(mg HC/g TOC)的关系

      Fig.  2.  Relationship of Tmax (℃) vs. HI (mg HC/g TOC) for the E2s3L in the Raoyang depression

      图  3  饶阳凹陷沙一下亚段TOC(%)和S1+S2 (mg HC/g Rock)的关系图

      Fig.  3.  Relationship of TOC(%) vs. S1+S2 (mg HC/g Rock) for the E2s3L in the Raoyang depression

      图  4  饶阳凹陷与渤海湾盆地源岩样品热模拟产物与Easy%Ro关系

      Fig.  4.  Relationship between products of pyrolysis and Easy%Ro of source rock samples in the Raoyang depression and Bohai Bay basin

      图  5  饶阳凹陷典型源岩的萜烷(m/z=191)和甾烷(m/z=217)质量色谱图

      Fig.  5.  Representative mass chromatograms of terpane (m/z=191) and sterane (m/z=217) series of saturate fractions for the three sets of source rocks intervals in the Raoyang depression

      图  6  饶阳凹陷烃源岩生物标志物参数组合特征

      Fig.  6.  Characteristics of biomarker parameter assemblages of source rocks in the Raoyang depression

      图  7  饶阳凹陷原油成因类型划分

      Fig.  7.  Division of crude oil genetic tapes in the Raoyang depression

      图  8  饶阳凹陷原油ALS-C分析结果

      B代表八里庄油田, D代表大王庄油田, G代表高阳油田, H代表河间油田, LB代表留北油田, LC代表留楚油田, LX代表留西油田, N代表南马庄油田, R代表任丘油田, S代表肃宁油田, X代表西柳油田;层位1代表了东营组、馆陶和明化镇组储层; 层位2代表沙河街组储层,层位3代表前第三系储层主要包括潜山储层包括奥陶系、寒武系、蓟县系雾迷山组

      Fig.  8.  Analytic results of crude oil in the Raoyang depression by using ALS-C

      图  9  饶阳凹陷原油ALS-C计算端元生物标志物比值与源岩比值关系

      Fig.  9.  Relationship between caculated by ALS-C biomarker ratio of crude oils and ratio of source rocks in the Raoyang depression

      图  10  饶阳凹陷源岩成藏贡献分布特征

      Fig.  10.  Distribution charcteristics of accumulation contribution of source rocks in the Raoyang depression

      表  1  饶阳凹陷烃源岩生物标志物参数

      Table  1.   Biomarker parameters of source rocks in the Raoyang depression

      井名 层位 深度(m) C19/C23TT C24TET/C26TT S/H Pr/Ph G/H C27DiaST/C27ST C35/C34SH ETR
      西63 E2s1L 3 175.5 0.24 1.63 2.65 0.35 0.29 0.13 0.46 0.59
      西63 E2s1L 3 207.5 0.15 1.41 2.22 0.29 0.29 0.07 0.54 0.66
      西63 E2s1L 3 214.0 0.17 1.44 2.41 0.31 0.31 0.07 0.54 0.60
      西63 E2s1L 3 227.0 0.17 1.60 2.73 0.20 0.44 0.06 0.57 0.63
      西63 E2s1L 3 242.0 0.19 1.51 2.99 0.26 0.37 0.06 0.48 0.60
      西63 E2s1L 3 278.0 0.13 1.32 2.16 0.29 0.40 0.09 0.50 0.58
      西63 E2s1L 3 262.5 0.12 1.22 2.90 0.27 0.60 0.09 0.58 0.71
      西63 E2s1L 3 288.0 0.16 1.01 3.02 0.28 0.47 0.07 0.56 0.65
      西63 E2s1L 3 307.5 0.14 1.20 2.79 0.26 0.43 0.08 0.54 0.64
      西63 E2s1L 3 323.0 0.17 1.18 2.70 0.32 0.58 0.09 0.57 0.79
      阳探1 E2s1L 4 036.0 0.34 1.45 2.16 0.58 0.31 0.17 0.48 0.65
      阳探1 E2s1L 4 129.0 0.21 0.65 2.03 0.54 0.43 0.13 0.46 0.74
      阳探1 E2s1L 4 190.5 0.19 0.59 2.99 0.51 0.36 0.25 0.63 0.67
      楚深1 E2s1L 3 849.7 0.11 0.39 1.64 0.49 0.35 0.18 0.50 0.66
      西37 E2s1L 3 165.7 0.11 1.09 2.51 0.27 0.84 0.08 0.56 0.63
      西9 E2s1L 2 721.2 0.21 1.63 5.51 0.20 0.35 0.05 0.89 0.61
      西柳11 E2s1L 3 424.4 0.16 1.24 3.83 0.19 0.62 0.06 0.49 0.78
      西63 E2s3U 3 615.0 0.22 0.81 1.47 0.64 0.27 0.26 0.46 0.45
      西63 E2s3U 3 710.0 0.19 0.83 1.29 0.49 0.20 0.31 0.54 0.51
      西63 E2s3U 3 723.5 0.23 0.99 1.17 0.45 0.22 0.29 0.46 0.47
      西63 E2s3U 3 744.0 0.16 0.91 1.51 0.42 0.35 0.35 0.48 0.48
      阳探1 E2s3U 4 410.0 0.24 0.53 0.92 0.56 0.24 0.30 0.53 0.55
      阳探1 E2s3U 4 553.5 0.23 0.60 1.04 0.64 0.21 0.23 0.53 0.57
      阳探1 E2s3U 4 603.5 0.25 0.46 1.09 0.49 0.19 0.28 0.53 0.60
      阳探1 E2s3U 4 675.5 0.26 0.68 1.06 0.57 0.20 0.29 0.55 0.55
      阳探1 E2s3U 4 734.0 0.16 0.63 1.05 0.59 0.18 0.26 0.55 0.51
      宁302 E2s3U 4 131.1 0.38 0.88 1.12 0.67 0.11 0.29 0.40 0.36
      宁35 E2s3U 3 748.5 0.20 0.47 0.99 0.64 0.19 0.29 0.50 0.44
      马99 E2s3L 4 012.0 0.38 1.46 0.80 0.41 0.09 0.14 0.39 0.37
      马99 E2s3L 4 042.0 0.31 1.23 0.88 0.30 0.14 0.08 0.42 0.41
      下载: 导出CSV

      表  2  饶阳凹陷沙一下亚段有机相划分(Chen et al., 2018

      Table  2.   The classification of organic facies of Es1L in the Raoyang depression(Chen et al., 2018)

      有机相类型 A B C
      沉积环境 深湖-半深湖 半深湖-浅湖 滨岸-浅湖
      氧化还原条件 强还原 还原-弱还原 弱还原-弱氧化
      有机质来源 水生生物 混合较少陆源植物的水生生物 以陆源植物为主
      TOC(%) > 2 1.5~4.0 0.7~2.6
      S1+S2 (mg/g rock) > 15 5~20 2~10
      HI (mg/g TOC) > 450 300~500 130~350
      干酪根类型 Ⅰ-Ⅱ Ⅱ-Ⅲ
      烃类产物 主要油,少量气 油和气
      下载: 导出CSV

      表  3  饶阳凹陷原油生物标志物参数

      Table  3.   Biomarker parameters of crude oils in the Raoyang depression

      编号 井号 层位 油田 R1 R2 R3 R4 R5 R6 R7 R8
      1 高30-211斜井 E2s1 高阳 0.14 0.86 3.93 0.22 0.47 0.08 0.52 0.71
      2 西柳1 E2s1 西柳 0.13 1.05 4.18 0.22 0.42 0.07 0.48 0.65
      3 西柳10-25斜井 E2s2 西柳 0.16 0.95 4.18 0.22 0.45 0.07 0.56 0.74
      4 高9-1井 E2s2 高阳 0.14 1.03 4.86 0.18 0.50 0.06 0.54 0.72
      5 路32-5井 Nm 大王庄 0.16 0.84 2.59 0.25 0.39 0.09 0.48 0.68
      6 路36-30斜1井 Ng 留西 0.16 0.83 2.85 0.25 0.39 0.10 0.48 0.66
      7 路27-18井 Ng 留北 0.15 0.81 2.69 0.27 0.40 0.10 0.47 0.69
      8 高30-226斜井 E3d 高阳 0.12 0.73 2.61 0.26 0.38 0.09 0.51 0.74
      9 留414井 E3d 大王庄 0.14 0.84 2.96 0.24 0.42 0.11 0.54 0.67
      10 间9井 E3d 八里庄 0.17 0.85 2.57 0.25 0.40 0.09 0.46 0.66
      11 宁49-5斜井 E3d 西柳 0.13 0.70 2.31 0.28 0.37 0.09 0.50 0.72
      12 任121井 E2s3 任丘 0.29 1.17 1.79 0.29 0.31 0.11 0.51 0.60
      13 任111井 E2s1 任丘 0.22 1.30 1.82 0.30 0.35 0.13 0.52 0.61
      14 马95-28井 E3d 南马庄 0.23 1.23 2.08 0.28 0.33 0.18 0.46 0.62
      15 宁81井 E2s1 八里庄 0.26 0.91 1.49 0.53 0.38 0.16 0.47 0.49
      16 西6-9斜井 E2s1 南马庄 0.30 1.39 1.59 0.30 0.29 0.19 0.50 0.63
      17 马425井 E2s2 南马庄 0.24 1.32 1.98 0.32 0.33 0.12 0.49 0.63
      18 西36-18井 E3d 南马庄 0.31 1.45 1.45 0.32 0.27 0.10 0.48 0.61
      19 西20井 Jxw 南马庄 0.35 1.32 1.44 0.33 0.28 0.15 0.46 0.65
      20 任4井 Jxw 任丘 0.20 1.14 1.82 0.30 0.35 0.08 0.50 0.53
      21 西31斜井 E2s2 八里庄 0.30 1.24 2.00 0.28 0.36 0.13 0.49 0.59
      22 路47-12井 E2s1 留西 0.15 0.88 1.91 0.42 0.28 0.15 0.44 0.67
      23 留416-7井 E2s3 留西 0.16 0.88 2.02 0.41 0.33 0.17 0.49 0.67
      24 留70-303斜井 E2s1 大王庄 0.18 0.74 1.42 0.40 0.23 0.14 0.47 0.53
      25 留70-137井 E2s3 大王庄 0.19 0.57 1.60 0.42 0.43 0.20 0.53 0.53
      26 楚107井 E3d 留楚 0.19 0.72 1.72 0.38 0.38 0.15 0.48 0.53
      27 间213斜井 E3d 河间 0.25 0.86 1.78 0.50 0.32 0.11 0.45 0.49
      28 宁93斜井 E2s1 肃宁 0.16 0.64 1.38 0.35 0.23 0.11 0.44 0.48
      29 强65斜井 E2s1 武强 0.28 0.95 1.35 0.40 0.31 0.25 0.61 0.47
      30 强2-34井 E2s2 武强 0.33 1.13 1.41 0.42 0.34 0.22 0.54 0.49
      31 强49-9井 Ng 武强 0.29 1.01 0.92 0.41 0.22 0.23 0.51 0.48
      32 马15井 Pt1 八里庄 0.31 1.25 1.02 0.40 0.15 0.19 0.46 0.43
      33 马851-3井 Jxw 河间 0.25 0.74 1.28 0.42 0.20 0.17 0.48 0.49
      34 留67斜1井 Jxw 留北 0.23 0.66 1.13 0.48 0.17 0.20 0.51 0.44
      35 任802 任丘 0.28 1.31 0.90 0.43 0.17 0.20 0.45 0.40
      36 宁古8-3斜1井 Jxw 肃宁 0.45 1.27 0.72 0.38 0.07 0.15 0.43 0.36
      37 任85井 O 任丘 0.35 1.61 0.63 0.35 0.12 0.12 0.44 0.38
      注:O代表奥陶系; ∈代表寒武系; Jxw代表中元古蓟县系; Pt1代表古元古界;R1代表C19/C23TT; R2代表C24TET/C26TT; R3代表S/H; R4代表Pr/Ph; R5代表G/H; R6代表C27DiaST/C27ST; R7代表C35/C34 SH; R8代表ETR
      下载: 导出CSV
    • [1] Clark, J.P., Philp, R.P., 1989. Geochemical Characterization of Evaporite and Carbonate Depositional Environments and Correlation of Associated Crude Oils in the Black Creek Nasin, Alberta. Canadian Petroleum Geologists Bulletin, 37:401-416. http://bcpg.geoscienceworld.org/content/37/4/401
      [2] Chen, X. Y., Hao, F., Guo, L. X., et al., 2018. Characteristic of Source Rocks and Origin of Crude Oils in the Raoyang Sag and Baxian Sag, Bohai Bay Basin, China: Insights from Geochemical and Geological Analyses. Marine and Petroleum Geology, 97: 407-421. https://doi.org/10.1016/j.marpetgeo.2018.07.015
      [3] Dai, J. X., Chen, J. F., Zhong, N. N., et al., 2003. Large Sized Gas Fields and their Sources. Science Press, Beijing, 15(in Chinese).
      [4] Gong, Z. G., Guo, J. X., Zhao, X. Y., 2011. Palaeoecological Analysis of Paleogene Shahejie Formation in North Central Raoyang Sag of Central Hebei Depression. Journal of Earth Sciences and Environment, 33(4):358-363(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-XAGX201104005.htm
      [5] Hao, F., Zou, H. Y., Gong, Z. S., et al., 2007. Petroleum Migration and Accumulation in the Bozhong Sub-Basin, Bohai Bay Basin, China: Significance of Preferential Petroleum Migration Pathways (PPMP) for the Formation of Large Oilfields in Lacustrine Fault Basins. Marine and Petroleum Geology, 24(1): 1-13. https://doi.org/10.1016/j.marpetgeo.2006.10.007
      [6] Hao, F., Zhou, X. H., Zhu, Y. M., et al., 2009. Charging of the Neogene Penglai 19-3 Field, Bohai Bay Basin, China: Oil Accumulation in a Young Trap in an Active Fault Zone. AAPG Bulletin, 93(2): 155-179. https://doi.org/10.1306/09080808092
      [7] Hao, F., Zhou, X. H., Zhu, Y. M., et al., 2010. Charging of Oil Fields Surrounding the Shaleitian Uplift from Multiple Source Rock Intervals and Generative Kitchens, Bohai Bay Basin, China. Marine and Petroleum Geology, 27(9): 1910-1926. https://doi.org/10.1016/j.marpetgeo.2010.07.005
      [8] Hao, F., Zhou, X. H., Zhu, Y. M., et al., 2012. Lacustrine Source Rock Deposition in Response to Co-Evolution of Environments and Organisms Controlled by Tectonic Subsidence and Climate, Bohai Bay Basin, China. Organic Geochemistry, 42(4): 323-339. https://doi.org/10.1016/j.orggeochem.2011.01.010
      [9] Hu, J. Y., Huang, D. F., et al., 1991. The Elementary Theory of Continental Petroleum Geology in China. Petroleum Industry Press, Beijing(in Chinese).
      [10] Jiang, Y. L., Liu, P., Song, G. Q., et al., 2015. Late Cenozoic Faulting Activities and Their Influence upon Hydrocarbon Accumulations in the Neogene in Bohai Bay Basin. Oil and Gas Geology, 36(4): 525-533(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT201504002.htm
      [11] Liu, 1 H., Jiang, Y. l., Xu, H. Q., et al., 2011. Accumulation Mechanisms and Modes of Neogene Hydrocarbons in Jizhong Depression. Acta Petrolei Sinica, 32(6):928-936(in Chinese with English abstract). http://www.researchgate.net/publication/287678100_Accumulation_mechanisms_and_modes_of_Neogene_hydrocarbons_in_Jizhong_Depression
      [12] Peters, K. E., Walters, C.C., Moldowan, J. M., 2005. The Biomarker Guide, Biomarkers and Isotopes in Petroleum Exploration and Earth History. Cambridge University Press, Cambridge, 566-567.
      [13] Peters, K. E., Scott Ramos, L., Zumberge, J. E., et al., 2008. De-Convoluting Mixed Crude Oil in Prudhoe Bay Field, North Slope, Alaska. Organic Geochemistry, 39(6): 623-645. https://doi.org/10.1016/j.orggeochem.2008.03.001
      [14] Tian, F. Q., 2008. The Study on Classification and Origin of Crude Oils. Journal of Oil and Gas Technology (2):51-52+66(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DLYJ200801012.htm
      [15] Tang, Q. Y., Zhang, M. J., Zhang, T. W., et al., 2013. A Review on Pyrolysis Experimentation on Hydrocarbon Generation. Journal of Southwest Petroleum University(Science & Technology Edition), 35(1):52-62(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XNSY201301006.htm
      [16] Wang, J., Ma, S. P., Li, X., et al., 2009. Characteristics of Crude Oils and Oil-Source Rock Correlation. Inner Mongolia Petrochemical Industry, 35(9):117-120(in Chinese with English abstract).
      [17] Xu, J. Y., Zhu, X. F., Song, Y., et al., 2019. Geochemical Characteristics and Oil-Source Correlation of Paleogene Source Rocks in the South Yellow Sea Basin. Earth Science, 44(3):848-858(in Chinese with English abstract). http://www.researchgate.net/publication/333043206_Geochemical_Characteristics_and_Oil-Source_Correlation_of_Paleogene_Source_Rocks_in_the_South_Yellow_Sea_Basin
      [18] Yang, F., 2016. The Organic Geochemical Characteristics of Source Rocks and Origin of Oil and Gas in Baxian and Raoyang Depression (Dissertation). China University of Petroleum, Beijing(in Chinese with English abstract).
      [19] Yang, Y. H., Zhang, G. C., Shen, P., et al., 2018. Formation Conditions and Exploration Direction of Large Gas Field in Bozhong Sag of Bohai Bay Basin. Acta Petrolei Sinica, 39(11):1199-1210(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SYXB201811001.htm
      [20] Yi, S. W., Jiang, Y. L., Fan, B. D., et al., 2010. Neogene Petroleum Source and Characteristic of Paleogene Hydrocarbon Source Rock in the Raoyang Sag, Bohai Bay Basin. Petroleum Geology and Experiment, 32(5):475-479(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD201005014.htm
      [21] Yin, J. Wang, Q., 2017. Using Seismic and Log Information to Identify and Predict High-Quality Source Rocks: A Case Study of the First Member of Shahejie Formation in Raoyang Sag, Bohai Bay Basin. Natural Gas Geoscience, 28(11):1761-1770(in Chinese with English abstract). http://www.researchgate.net/publication/324122842_Using_seismic_and_log_information_to_identify_and_predict_high-quality_source_rocks_A_case_study_of_the_first_member_of_Shahejie_Formation_in_Raoyang_Sag_Bohai_Bay_Basin
      [22] Yin, J., Wang, Q., Hao, F., et al., 2017. PalaeolakeEnvironment and Depositional Model of Source Rocks of the Lower Submember of Sha1 in Raoyang Sag, Bohai Bay Basin. Earth Science, 42(7):1209-1222(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201707015.htm
      [23] Yin, J., Wang, Q., Hao, F., et al., 2018. Palaeoenvironmental Reconstruction of Lacustrine Source Rocks in the Lower 1st Member of the Shahejie Formation in the Raoyang Sag and the Baxian Sag, Bohai Bay Basin, Eastern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 495: 87-104. https://doi.org/10.1016/j.palaeo.2017.12.032
      [24] Zhan, Z. W., 2016. De-Convoluting the Marine Crude Oil Mixtures in the Taibei Uplift, Tarim Basin, NW China (Dissertation). University of Chinese Academy of Sciences, Guangzhou(in Chinese with English abstract).
      [25] Zhao, L. J., Jiang, Y. L., Liu, H., et al., 2012b. Characteristics of Neogene Formation Water and Its Response to Hydrocarbon Distribution in Liuxi-Liubei Area of Raoyang Sag. Journal of Earth Sciences and Environment, 36(5):25-31(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XAGX201202010.htm
      [26] Zhao, L. J., Jiang, Y. L., Pang, Y. M., et al., 2012a. Sealing Ability of Cap Rock and Its Relationship with Hydrocarbon Distribution of Neogene in Raoyang Sag. Journal of China University of Petroleum(Edition of Natural Science), 36(5):25-31(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYDX201205007.htm
      [27] Zhao, X. Z., Jiang, Y. L., Jin, F. M., 2017. Hydrocarbon Accumulation Mechanism and Model of Sub-Sags in Hydrocarbon-Rich Sag: aCase Study of RaoyangSag in Jizhong Depression. Acta Petrolei Sinica, 38(1):67-76(in Chinese with English abstract). http://www.researchgate.net/publication/316927558_Hydrocarbon_accumulation_mechanism_and_model_of_sub-sags_in_hydrocarbon-rich_sag_a_case_study_of_Raoyang_sag_in_Jizhong_depression
      [28] 戴金星, 陈践发, 钟宁宁, 等, 2003.中国大气田及其气源.北京:科学出版社, 15.
      [29] 胡见义, 黄第藩, 等, 1991.中国陆相石油地质理论基础.北京:石油工业出版社.
      [30] 蒋有录, 刘培, 宋国奇, 等, 2015.渤海湾盆地新生代晚期断层活动与新近系油气富集关系.石油与天然气地质, 36(4): 525-533. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201504002.htm
      [31] 刘华, 蒋有录, 徐昊清, 等, 2011.冀中坳陷新近系油气成藏机理与成藏模式.石油学报, 32(6):928-936. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201106003.htm
      [32] 田福清, 2008.饶阳凹陷武强地区原油族群划分与油源研究.石油天然气学报, (2):51-52+66. https://www.cnki.com.cn/Article/CJFDTOTAL-JHSX200802012.htm
      [33] 汤庆艳, 张铭杰, 张同伟, 等. 2013.生烃热模拟实验方法述评.西南石油大学学报(自然科学版), 35(1):52-62. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201301006.htm
      [34] 王建, 马顺平, 李欣, 等, 2009.饶阳凹陷原油特征及油源对比.内蒙古石油化工, 35(9):117-120. https://www.cnki.com.cn/Article/CJFDTOTAL-NMSH200909051.htm
      [35] 袭著纲, 国景星, 赵晓颖, 2011.冀中坳陷饶阳凹陷中北部古近纪沙河街组古生态分析.地球科学与环境学报, 33(4):358-363. doi: 10.3969/j.issn.1672-6561.2011.04.005
      [36] 徐建永, 朱祥峰, 宋宇, 等, 2019.南黄海盆地古近系烃源岩地球化学特征及油源对比.地球科学, 44(3):848-858. doi: 10.3799/dqkx.2018.377
      [37] 谢玉洪, 张功成, 沈朴, 等, 2018.渤海湾盆地渤中凹陷大气田形成条件与勘探方向.石油学报, 39(11):1199-1210. doi: 10.7623/syxb201811001
      [38] 杨帆, 2016.饶阳-霸县凹陷烃源岩有机地球化学特征与油气来源(硕士学位论文).北京: 中国石油大学.
      [39] 易士威, 蒋有录, 范炳达, 等, 2010.渤海湾盆地饶阳凹陷古近系源岩特征与新近系油气来源.石油实验地质, 32(5):475-479. doi: 10.3969/j.issn.1001-6112.2010.05.012
      [40] 殷杰, 王权, 2017.利用测井和地震信息识别和预测优质烃源岩——以渤海湾盆地饶阳凹陷沙一段为例.天然气地球科学, 28(11):1761-1770. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201711016.htm
      [41] 殷杰, 王权, 郝芳, 等, 2017.渤海湾盆地饶阳凹陷沙一下亚段古湖泊环境与烃源岩发育模式.地球科学, 42(7):1209-1222. doi: 10.3799/dqkx.2017.098
      [42] 詹兆文, 2016.塔里木盆地塔北隆起带海相混源油地球化学解析(博士学位论文).广州: 中国科学院研究生院.
      [43] 赵利杰, 蒋有录, 庞玉茂, 等, 2012a.饶阳凹陷新近系盖层质量及其与油气分布的关系.中国石油大学学报(自然科学版), 36(5):25-31. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201205007.htm
      [44] 赵利杰, 蒋有录, 刘华, 等, 2012b.饶阳凹陷留西——留北地区新近系地层水特征及其与油气分布的关系.地球科学与环境学报, 34(2):57-63. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX201202010.htm
      [45] 赵贤正, 蒋有录, 金凤鸣, 等, 2017.富油凹陷洼槽区油气成藏机理与成藏模式——以冀中坳陷饶阳凹陷为例.石油学报, 38(1):67-76. doi: 10.3969/j.issn.1671-4067.2017.01.022
    • 加载中
    图(10) / 表(3)
    计量
    • 文章访问数:  654
    • HTML全文浏览量:  90
    • PDF下载量:  47
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-09-29
    • 刊出日期:  2021-01-15

    目录

      /

      返回文章
      返回