Formation and Evolution of Nanopores in Highly Matured Shales at Over-Mature Stage: Insights from the Hydrous Pyrolysis Experiments on Cambrain Shuijintuo Shale from the Middle Yangtze Region
-
摘要: 我国中-上扬子地区海相寒武系页岩现今普遍处于过熟阶段,该套页岩储层内地质流体活动相对频繁,然而其对页岩储层孔隙发育影响程度及作用机制尚不清楚.选取中扬子宜昌黄陵隆起区演化程度相对较低的寒武系水井沱组页岩样品进行了封闭体系含水热模拟实验,获得了热成熟度介于Ro=2.26%~4.01%之间的页岩储层样品,对这些页岩样品进行了碳-硫和矿物组成、氮气吸附和扫描电镜观测等分析.实验结果显示:随有机质演化程度增加,页岩TOC变化不明显,硫、无机碳和粘土矿物含量持续减少,长石含量持续增加,在Ro≥2.7%时,石英含量显著降低,透辉石含量显著增加.这表明实验条件下,高演化页岩生排烃能力相对较弱,黄铁矿、碳酸盐岩、粘土矿物和石英均发生了不同程度的溶蚀,与此同时,形成了长石和透辉石等矿物.地质流体作用下,高演化页岩内纳米孔隙发育主要受黄铁矿、碳酸盐岩、粘土矿物和石英等矿物溶蚀控制,矿物溶蚀有利于页岩内介孔,尤其宏孔发育,宏观上表现为矿物含量与总孔和宏孔体积之间具有显著负相关关系;矿物生成对页岩内微孔发育不利,对介孔和宏孔发育较有利,这是矿物溶蚀占据主导地位的进一步体现;烃类生成和排出对高演化页岩纳米孔隙发育影响较小,这与该阶段页岩生排烃能力较弱相吻合.随矿物溶蚀或有机质演化程度增加,微孔丰度、体积和比表面积逐渐降低,并逐步向介孔和宏孔转化,表现为微孔体积和比表面积与介孔和宏孔体积和比表面积呈负相关.该研究成果对于进一步深入认识地质流体作用下高演化页岩储层内纳米孔隙发育机理及主控因素具有重要意义.Abstract: The Cambrian marine shales are currently over-matured in the Middle-Upper Yangtze region. Several phases of geofluids are detected within these shale reservoirs. However, the impacts and relevant mechanisms of geofluids on the occurrence of nanopores within these shale reservoirs are still unclear. A series of pyrolysis experiments were conducted on the highly matured Cambrian shale from the Shuijingtuo Fm. in the Huangling anticline within a closed hydrous system. The measurements of C-S, XRD, N2 adsorption and FE-SEM were done on these pyrolyzed shale samples with thermal maturity of Ro=2.26%-4.01%. The results demonstrate no obvious change of TOC, continuous decrease of sulfur, inorganic carbon and clays and increase of feldspar throughout the experiments as well as the significant decrease of quartz and increase of diopside at Ro≥2.7% with increasing thermal maturity, which indicates the slight hydrocarbon generation and expulsion, the dissolution of pyrite, carbonate, clays and quartz to varying levels and the formation of feldspar and diopside under the experimental conditions. The nanopore formation within highly matured shale reservoirs is regulated mainly by the mineral dissolution with the addition of geofluids, it is feasible for the occurrence of mesopores and macropores as indicated by the strong negative correlations between the mineral contents versus the total pore and macropore volumes; the formation of feldspar and diopside restricts the occurrence of micropores and promotes the development of mesopores and macropores, further implying the predominant effects of mineral dissolution on nanoporosity under the experimental circumstances; hydrocarbon generation and expulsion have the minor impacts on nanopore development due to the limited capability of petroleum generation and expulsion at the over-mature stage. With increasing mineral dissolution or thermal maturity, the abundance, volumes and specific surface areas of micropores gradually decrease and evolve into mesopores and macropores subsequently as suggested by the negative correlations of pore volumes and specific surface areas of micropores versus those of mesopores and macropores. This study should be helpful in the better understanding of the occurrence mechanisms and relevant controlling factors of nanopores within highly matured shale reservoirs with the presence of geofluids in nature.
-
Key words:
- shale reservoir /
- pyrolysis experiment /
- nanopore /
- geofluid /
- mineral dissolution /
- petroleum geology
-
表 1 热模拟实验温度、加热时间和对应的成熟度及岩样和水的用量
Table 1. The conditions of pyrolysis experiments including the heating temperature and time and the corresponding thermal maturity levels and the amounts of used rock and water
序号 温度(℃) 加热时间
(h)岩样(g) 水(g) Ro (%) 演化
阶段1 原始样品 2.26 过熟 2 450 24.0 14.3 14.2 2.29 过熟 3 450 72.0 14.8 14.8 2.47 过熟 4 500 12.0 14.0 14.0 2.70 过熟 5 500 72.0 14.4 14.3 3.00 过熟 6 550 24.0 10.9 10.9 3.67 过熟 7 600 24.0 9.0 9.0 4.01 过熟 表 2 原始页岩样品和热解样品孔隙体积和比表面积相关性分析统计
Table 2. The correlations between pore volumes and specific surface areas of the unheated and pyrolyzed samples
相关系数a 孔体积 微孔
体积介孔
体积宏孔
体积比表面积 微孔
比表面积介孔
比表面积宏孔
比表面积孔体积 1 -0.73 0.55 0.94 -0.72 -0.82 0.09 0.97 微孔体积 -0.73 1 -0.59 -0.64 0.71 0.92 -0.35 -0.62 介孔体积 0.55 -0.59 1 0.23 -0.05 -0.63 0.88 0.35 宏孔体积 0.94 -0.64 0.23 1 -0.84 -0.71 -0.25 0.98 比表面积 -0.72 0.71 -0.05 -0.84 1 0.79 0.31 -0.79 微孔比表面积 -0.82 0.92 -0.63 -0.71 0.79 1 -0.33 -0.75 介孔比表面积 0.09 -0.35 0.88 -0.25 0.31 -0.33 1 -0.14 宏孔比表面积 0.97 -0.62 0.35 0.98 -0.79 -0.75 -0.14 1 表 3 原始页岩样品和热解样品孔隙体积与碳-硫元素和矿物组成相关性分析统计
Table 3. The correlations between pore volumes and C-S and mineral compositions of unheated and pyrolyzed shale samples
相关系数a 孔体积 微孔
体积介孔
体积宏孔
体积TOC S 无机碳 伊利石 绿泥石 透辉石 石英 长石 孔体积 1.00 -0.73 0.55 0.94 -0.29 -0.67 -0.68 -0.49 -0.83 0.56 -0.52 0.69 微孔体积 -0.73 1.00 -0.59 -0.64 0.19 0.29 0.37 0.36 0.42 -0.21 0.04 -0.43 介孔体积 0.55 -0.59 1.00 0.23 0.58 -0.19 -0.11 -0.40 -0.47 0.10 0.27 0.40 宏孔体积 0.94 -0.64 0.23 1.00 -0.59 -0.69 -0.75 -0.40 -0.76 0.60 -0.70 0.64 TOC -0.29 0.19 0.58 -0.59 1.00 0.41 0.45 -0.01 0.17 -0.37 0.75 -0.17 S -0.67 0.29 -0.19 -0.69 0.41 1.00 0.89 0.79 0.91 -0.96 0.82 -0.91 无机碳 -0.68 0.37 -0.11 -0.75 0.45 0.89 1.00 0.84 0.88 -0.94 0.71 -0.94 伊利石 -0.49 0.36 -0.40 -0.40 -0.01 0.79 0.84 1.00 0.81 -0.88 0.34 -0.95 绿泥石 -0.83 0.42 -0.47 -0.76 0.17 0.91 0.88 0.81 1.00 -0.87 0.63 -0.94 透辉石 0.56 -0.21 0.10 0.60 -0.37 -0.96 -0.94 -0.88 -0.87 1.00 -0.75 0.94 石英 -0.52 0.04 0.27 -0.70 0.75 0.82 0.71 0.34 0.63 -0.75 1.00 -0.55 长石 0.69 -0.43 0.40 0.64 -0.17 -0.91 -0.94 -0.95 -0.94 0.94 -0.55 1.00 注:a.相关系数在0.5以上定义为显著相关. -
[1] Barrett E.P., Joyner L.G., Halenda P.P..1951.The Determination of Pore Volume and Area Distributions in Porous Substances.I.Computations from Nitrogen Isotherms.Journal of the American Chemical Society, 73(1):373-380. https://doi.org/10.1021/ja01145a126 [2] Brunauer S., Emmett P.H., Teller E..1938.Adsorption of Gases in Multimolecular Layers.Journal of the American Chemical Society, 60(2):309-319. https://doi.org/10.1021/ja01269a023 [3] Chalmers G.R.L., Ross D.J.K., Bustin R.M..2012.Geological Controls on Matrix Permeability of Devonian Gas Shales in the Horn River and Liard Basins, Northeastern British Columbia, Canada.International Journal of Coal Geology, 103:120-131. https://doi.org/10.1016/j.coal.2012.05.006 [4] Chen J., Xiao X.M..2014.Evolution of Nanoporosity in Organic-Rich Shales during Thermal Maturation.Fuel, 129:173-181. https://doi.org/10.1016/j.fuel.2014.03.058. [5] Chen X.H., Wang C.S., Liu A., et al.2017.The Discovery of the Shale Gas in the Cambrian Shuijingtuo Formation of Yichang Area, Hubei Province.Geology in China, 44 (1):188-189 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201701013 [6] Chen X.H., Wang X.F..2000.Biota and Organic Matter in Late Sinian and Early Cambrian Black Rock Series of West Hunan and Their Significance to Metallization.Geology and Mineral Resources of South China, 16(1):16-23(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200000723592 [7] Chen X.H., Wei K., Zhang B.M., et al.2018.Main Geological Factors Controlling Shale Gas Reservior in the Cambrian Shuijingtuo Formation in Yichang of Hubei Province as Well as Its and Enrichment Patterns.Geology in China, 45(2):207-226(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201802001 [8] Chirită P., Schlegel M.L..2017.Pyrite Oxidation in Air-Equilibrated Solutions:An Electrochemical Study.Chemical Geology, 470:67-74. https://doi.org/10.1016/j.chemgeo.2017.08.023 [9] Cui J.W., Zhu R.K., Cui J.G..2013.Relationship of Porous Evolution and Residual Hydrocarbon:Evidence from Modeling Experiment with Geological Constrains.Acta Geologica Sinica, 87(5):730-736(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201305010.htm [10] Curtis M.E., Cardott B.J., Sondergeld C.H., et al.2012.Development of Organic Porosity in the Woodford Shale with Increasing Thermal Maturity.International Journal of Coal Geology, 103:26-31. https://doi.org/10.1016/j.coal.2012.08.004 [11] Guo H.J., Jia W.L., Peng P.A., et al.2017.Evolution of Organic Matter and Nanometer-Scale Pores in an Artificially Matured Shale Undergoing Two Distinct Types of Pyrolysis:A Study of the Yanchang Shale with Type II Kerogen.Organic Geochemistry, 105:56-66. https://doi.org/10.1016/j.orggeochem.2017.01.004 [12] Hao F., Zou H.Y., Lu Y.C..2013.Mechanisms of Shale Gas Storage:Implications for Shale Gas Exploration in China.AAPG Bulletin, 97(8):1325-1346. https://doi.org/10.1306/02141312091 [13] Hu M.Y., Deng Q.J., Hu, Z.G.2014.Shale Gas Accumulation Conditions of the Lower Cambrian Niutitang Formation in Upper Yangtze Region.Oil & Gas Geology, 35(2):272-279(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz201402017 [14] Hu Z.G., Qin P., Hu M.Y., et al.2018.The Distribution and Heterogeneity Characteristics of Shale Reservoirs in Lower Cambrain Shuijingtuo Formation in Western Hunan-Hubei Region.China Petroleum Exploration, 23(4):39-50(in Chinese with English abstract). [15] Hunt J.M..1996.Petroleum Geochemistry and Geology.W. H. Freeman and Company, New York. [16] Jarvie D.M., Hill R.J., Ruble T.E., et al.2007.Unconventional Shale-Gas Systems:The Mississippian Barnett Shale of North-Central Texas as One Model for Thermogenic Shale-Gas Assessment.AAPG Bulletin, 91(4):475-499. https://doi.org/10.1306/12190606068 [17] Ko L.T., Loucks R.G., Zhang T.W., et al.2016.Pore and Pore Network Evolution of Upper Cretaceous Boquillas (Eagle Ford-Equivalent) Mudrocks:Results from Gold Tube Pyrolysis Experiments.AAPG Bulletin, 100(11):1693-1722. https://doi.org/10.1306/04151615092 [18] Li H., Liu A., Luo S.Y., et al.2018.Pore Structure Characteristics and Development Control Factors of Cambrian Shale in the Yichang Area, Western Hubei.Petroleum Geology and Recovery Efficiency, 25(6):16-23(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yqdzycsl201806003 [19] Liang M.L., Wang Z.X., Gao L., et al.2017.Evolution of Pore Structure in Gas Shale Related to Structural Deformation.Fuel, 197:310-319.https://doi.org/10.1016/j.fuel.2017.02.035 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=11aa0e9c43b3e20de0495da1c21adcb0 [20] Liu A., Wei K., Li X.B., et al.2015.Paleo-Fluid Characteristics and Preservation of Hydrocarbons in the Sangzhi-Shimen Synclinorium and Adjacent Areas.Petroleum Geology & Experiment, 37(6):742-750(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sysydz201506010 [21] Liu D.H., Xiao X.M., Tian H., et al.2013.Sample Maturation Calculated Using Raman Spectroscopic Parameters for Solid Organics:Methodology and Geological Applications.Chinese Science Bulletin, 58(11):1285-1298. https://doi.org/10.1007/s11434-012-5535-y [22] Löhr S.C., Baruch E.T., Hall P.A., et al.2015.Is Organic Pore Development in Gas Shales Influenced by the Primary Porosity and Structure of Thermally Immature Organic Matter? Organic Geochemistry, 87:119-132. https://doi.org/10.1016/j.orggeochem.2015.07.010 [23] Loucks R.G., Reed R.M., Ruppel S.C., et al.2009.Morphology, Genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale.Journal of Sedimentary Research, 79(12):848-861. https://doi.org/10.2110/jsr.2009.092 [24] Loucks R.G., Reed R.M., Ruppel S.C., et al.2012.Spectrum of Pore Types and Networks in Mudrocks and a Descriptive Classification for Matrix-Related Mudrock Pores.AAPG Bulletin, 96(6):1071-1098.https://doi.org/10.1306/08171111061 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2b7b6b4b569bed90a064cbc2a6673a7c [25] Ma Z.L., Zheng L.J., Xu X.H., et al.2017.Thermal Simulation Experiment on the Formation and Evolution of Organic Pores in Organic-Rich Shale.Acta Petrolei Sinica, 38(1):23-30 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201701003 [26] Milliken K.L..2003.Late Diagenesis and Mass Transfer in Sandstone-Shale Sequences.Treatise on Geochemistry, 7:159-190. https://www.researchgate.net/publication/234489605_late_diagenesis_and_mass_transfer_in_sandstone_shale_sequences [27] Peng N.J., He S., Hao F., et al.2017.The Pore Structure and Difference between Wufeng and Longmaxi Shales in Pengshui Area, Southeastern Sichuan.Earth Science, 42(7):1134-1146 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201707010 [28] Shen C.B., Mei L.F., Peng L., et al.2012.LA-ICPMS U-Pb Zircon Age Constraints on the Provenance of Cretaceous Sediments in the Yichang Area of the Jianghan Basin, Central China.Cretaceous Research, 34:172-183. https://doi.org/10.1016/j.cretres.2011.10.016. [29] Sing K.S.W..1985.Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity (Recommendations 1984).Pure and Applied Chemistry, 57(4):603-619. https://doi.org/10.1351/pac198557040603 [30] Sun L.N., Tuo J.C., Zhang M.F., et al.2015.Formation and Development of the Pore Structure in Chang 7 Member Oil-Shale from Ordos Basin during Organic Matter Evolution Induced by Hydrous Pyrolysis.Fuel, 158:549-557. https://doi.org/10.1016/j.fuel.2015.05.061 [31] Thommes M., Kaneko K., Neimark A.V., et al.2015.Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report).Pure and Applied Chemistry, 87(9-10):1051-1069. doi: 10.1515/pac-2014-1117 [32] Tian H., Pan L., Xiao X.M., et al.2013.A Preliminary Study on the Pore Characterization of Lower Silurian Black Shales in the Chuandong Thrust Fold Belt, Southwestern China Using Low Pressure N2 Adsorption and FE-SEM Methods.Marine and Petroleum Geology, 48:8-19. https://doi.org/10.1016/j.marpetgeo.2013.07.008 [33] Wang C., Zhang B.Q., Shu Z.G., et al.2019.Shale Lamination and Its Influence on Shale Reservoir Quality of Wufeng Formation-Longmaxi Formation in Jiaoshiba Area.Earth Science, 44(3):972-982(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201903023 [34] Wang D.F., Wang Y.M., Dong D.Z., et al.2013.Quantitative Characterization of Reservoir Space in the Lower Cambrian Qiongzhusi Shale, Southern Sichuan Basin.Natural Gas Industry, 33(7):1-10(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy201307001 [35] Yan J.F., Men Y.P., Sun Y.Y., et al.2016.Geochemical and Geological Characteristics of the Lower Cambrian Shales in the Middle-Upper Yangtze Area of South China and Their Implication for the Shale Gas Exploration.Marine and Petroleum Geology, 70:1-13. https://doi.org/10.1016/j.marpetgeo.2015.11.010 [36] Yang J.Z., Xia J., Wang S.B., et al.2016.Quartz-Tube Thermal Simulation Study on the Pore Structure Transformation in Over-Matured Shales.Geochimica, 45(4):407-418(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqhx201604006 [37] Yang R., He S., Yi J.Z., et al.2016.Nano-Scale Pore Structure and Fractal Dimension of Organic-Rich Wufeng-Longmaxi Shale from Jiaoshiba Area, Sichuan Basin:Investigations Using FE-SEM, Gas Adsorption and Helium Pycnometry.Marine and Petroleum Geology, 70:27-45. https://doi.org/10.1016/j.marpetgeo.2015.11.019 [38] Zhang H., Wu J., Jin X.L., et al.2018.The Genetic Type and Its Geological Indication Significance of Shale Minerals in Niutitang Formation.Coal Geology & Exploration, 46(2):61-67. http://d.old.wanfangdata.com.cn/Periodical/mtdzykt201802010 [39] Zhao M.S., Wang Y., Tian J.C., et al.2013.A Sedimentary Environment Analysis of Black Shales Based on Fossil Assemblage Characteristics:A Case Study of Cambrian Niutitang Formation in Changyang Area, Western Hubei.Geology in China, 40(5):1484-1492(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201305013 [40] Zhu H.J., Ju Y.W., Qi Y., et al.2018.Impact of Tectonism on Pore Type and Pore Structure Evolution in Organic-Rich Shale:Implications for Gas Storage and Migration Pathways in Naturally Deformed Rocks.Fuel, 228:272-289. https://doi.org/10.1016/j.fuel.2018.04.137 [41] Zou C.N., Dong D.Z., Wang Y.M., et al.2015.Shale Gas in China:Characteristics, Challenges and Prospects (I).Petroleum Exploration and Development, 42(6):689-701(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SKYK201602003.htm [42] 陈孝红, 王传尚, 刘安, 等.2017.湖北宜昌地区寒武系水井沱组探获页岩气.中国地质, 44(1):188-189. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201701013 [43] 陈孝红, 汪啸风.2000.湘西地区晚震旦世:早寒武世黑色岩系的生物和有机质及其成矿作用.华南地质与矿产, 16(1):16-23. http://d.old.wanfangdata.com.cn/Periodical/dqxb199901012 [44] 陈孝红, 危凯, 张保民, 等.2018.湖北宜昌寒武系水井沱组页岩气藏主控地质因素和富集模式.中国地质, 45(2):207-226. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201802001 [45] 崔景伟, 朱如凯, 崔京钢.2013.页岩孔隙演化及其与残留烃量的关系:来自地质过程约束下模拟实验的证据.地质学报, 87(5):730-736 http://d.old.wanfangdata.com.cn/Periodical/dizhixb201305010 [46] 胡明毅, 邓庆杰, 胡忠贵.2014.上扬子地区下寒武统牛蹄塘组页岩气成藏条件.石油与天然气地质, 35(2):272-279. doi: 10.11743/ogg20140215 [47] 胡忠贵, 秦鹏, 胡明毅, 等.2018.湘鄂西地区下寒武统水井沱组页岩储层分布及非均质性特征.中国石油勘探, 23(4):39-50. doi: 10.3969/j.issn.1672-7703.2018.04.005 [48] 李海, 刘安, 罗胜元, 等.2018.鄂西宜昌地区寒武系页岩孔隙结构特征及发育主控因素.油气地质与采收率, 25(6):16-23. http://d.old.wanfangdata.com.cn/Periodical/yqdzycsl201806003 [49] 刘安, 危凯, 李旭兵, 等.2015.桑植-石门复向斜及邻区古流体特征与油气保存意义.石油实验地质, 37(6):742-750. http://d.old.wanfangdata.com.cn/Periodical/sysydz201506010 [50] 马中良, 郑伦举, 徐旭辉, 等.2017.富有机质页岩有机孔隙形成与演化的热模拟实验.石油学报, 38(1):23-30. http://d.old.wanfangdata.com.cn/Periodical/syxb201701003 [51] 彭女佳, 何生, 郝芳, 等.2017.川东南彭水地区五峰组-龙马溪组页岩孔隙结构及差异性.地球科学, 42(7):1134-1146. doi: 10.3799/dqkx.2017.092 [52] 王超, 张柏桥, 舒志国, 等.2019.焦石坝地区五峰组-龙马溪组页岩纹层发育特征及其储集意义.地球科学, 44(3):972-982. doi: 10.3799/dqkx.2019.018 [53] 王道富, 王玉满, 董大忠, 等.2013.川南下寒武统筇竹寺组页岩储集空间定量表征.天然气工业, 33(7):1-10. http://d.old.wanfangdata.com.cn/Periodical/trqgy201307001 [54] 杨金朝, 夏嘉, 王思波, 等.2016.过成熟页岩孔隙结构变化的石英管热模拟研究.地球化学, 45(4):407-418. doi: 10.3969/j.issn.0379-1726.2016.04.006 [55] 张慧, 吴静, 晋香兰, 等.2018.牛蹄塘组页岩矿物的成因类型及其地质指示意义.煤田地质与勘探, 46(2):61-67. doi: 10.3969/j.issn.1001-1986.2018.02.010 [56] 赵明胜, 王约, 田景春, 等.2013.从生物化石组合特征剖析黑色页岩的沉积环境:以鄂西长阳地区寒武系牛蹄塘组为例.中国地质, 40(5):1484-1492. doi: 10.3969/j.issn.1000-3657.2013.05.013 [57] 邹才能, 董大忠, 王玉满, 等.2015.中国页岩气特征、挑战及前景(一).石油勘探与开发, 42(6):689-701. doi: 10.11698/PED.2015.06.01