• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    西藏班戈寒武纪辉长闪长岩体的发现及其构造意义

    豆孝芳 陈鑫 郑有业 姜晓佳 王进寿 郑顺利 任欢 杨成 朱继华

    豆孝芳, 陈鑫, 郑有业, 姜晓佳, 王进寿, 郑顺利, 任欢, 杨成, 朱继华, 2020. 西藏班戈寒武纪辉长闪长岩体的发现及其构造意义. 地球科学, 45(6): 2091-2102. doi: 10.3799/dqkx.2019.247
    引用本文: 豆孝芳, 陈鑫, 郑有业, 姜晓佳, 王进寿, 郑顺利, 任欢, 杨成, 朱继华, 2020. 西藏班戈寒武纪辉长闪长岩体的发现及其构造意义. 地球科学, 45(6): 2091-2102. doi: 10.3799/dqkx.2019.247
    Dou Xiaofang, Chen Xin, Zheng Youye, Jiang Xiaojia, Wang Jinshou, Zheng Shunli, Ren Huan, Yang Cheng, Zhu Jihua, 2020. The Newly Discovered Cambrian Gabbro-Diorite in Bange, Tibet and Their Tectonic Implications. Earth Science, 45(6): 2091-2102. doi: 10.3799/dqkx.2019.247
    Citation: Dou Xiaofang, Chen Xin, Zheng Youye, Jiang Xiaojia, Wang Jinshou, Zheng Shunli, Ren Huan, Yang Cheng, Zhu Jihua, 2020. The Newly Discovered Cambrian Gabbro-Diorite in Bange, Tibet and Their Tectonic Implications. Earth Science, 45(6): 2091-2102. doi: 10.3799/dqkx.2019.247

    西藏班戈寒武纪辉长闪长岩体的发现及其构造意义

    doi: 10.3799/dqkx.2019.247
    基金项目: 

    科技部国家重点研发计划“冈底斯中段斑岩成矿系统深部预测评价与找矿示范”课题 2018YFC0604104

    详细信息
      作者简介:

      豆孝芳(1993-), 女, 硕士研究生, 地质工程专业.ORCID:0000-0003-4052-4661.E-mail:1143957890@qq.com

      通讯作者:

      郑有业, E-mail:zhyouye@163.com

    • 中图分类号: P581

    The Newly Discovered Cambrian Gabbro-Diorite in Bange, Tibet and Their Tectonic Implications

    • 摘要: 西藏班戈地区构造单元属北拉萨地体,到目前为止,该地体尚未有寒武纪岩浆活动的报道.本文就班戈地区首次发现的辉长闪长岩体,在野外地质调查、元素地球化学及同位素年代学研究的基础上,得出以下结论:该岩体属高钾钙碱性系列,具有富集大离子亲石元素(如Rb、Ba)和轻稀土元素(La、Ce),亏损Nb、Ta、Zr、Hf和Ti等高场强元素,呈现出安第斯型岛弧岩浆特征,显示该岩体是俯冲沉积物部分熔融形成的熔体交代上覆地幔楔的产物.锆石U-Pb年代学指示其侵入年龄为512 ±3 Ma,形成于寒武纪,为北拉萨地体存在早古生代岩浆活动提供了可靠的年代学证据.综合证实其属于冈瓦纳大陆北缘的一部分,该成果为进一步探讨青藏高原的构造演化提供了新的约束.

       

    • 图  1  (a) 亚欧大陆遥感地质简图及部分早古生代岩浆岩,(b)青藏高原地质简图,(c)班戈研究区地质简图和样品位置

      图a中, BT.宝山地体,TB.腾冲地体,GT.贡山地体.图b中, SL.南拉萨地体,CL.中拉萨地体,NL.北拉萨地体.图a, b据Zhu et al.(2012)修改

      Fig.  1.  (a) Geographic map of Eurasia showing the distributions of Early Paleozoic magmatic rocks, (b) geological map of Qinghai-Tibetan plateau, (c) geological map of Bangge district and sample location

      图  2  (a) SiO2-Na2O+K2O图解, (b) SiO2-K2O图解

      a.据Middlemost(1994);b据Peccerillo and Taylor(1976);Ir.Irvine分界线,上方为碱性,下方为亚碱性.深成岩:1.橄榄辉长岩;2a.碱性辉长岩;2b.亚碱性辉长岩;3.辉长闪长岩;4.闪长岩;5.花岗闪长岩;6.花岗岩;7.硅英岩;8.二长辉长岩;9.二长闪长岩;10.二长岩;11.石英二长岩;12.正长岩;13.副长石辉长岩;14.副长石二长闪长岩;15.副长石二长正长岩;16.副长正长岩;17.副长深成岩;18.霓方钠岩/磷霞岩/粗白榴岩;火山岩:1.苦橄玄武岩;2.玄武岩;3.玄武安山岩;4.安山岩;5.英安岩;6.流纹岩;7.英石岩;8.粗面玄武岩;9.玄武岩质粗面安山岩;10.粗面安山岩;11.粗面英安岩;12.粗面岩;13.碱玄岩;14.响质碱玄岩;15.碱玄质响岩;16.响岩;17.副长火山岩;18.方钠岩/霞石岩/纯白榴岩

      Fig.  2.  (a) SiO2 vs. Na2O+K2O diagram for classification, (b) SiO2 vs. K2O diagram

      图  3  (a) 稀土元素球粒陨石标准化图解, (b)微量元素原始地幔标准化蛛网

      图中洋岛玄武岩(OIB), 异常洋脊玄武岩(E-MORB)和正常洋脊玄武岩(N-MORB).据Sun and McDonough(1989)

      Fig.  3.  Chondrite-normalized REE (a), primitive mantle-normalized trace element spider diagram (b)

      图  4  班戈地区辉长闪长岩锆石CL图像

      Fig.  4.  Zircon CL images of gabbro-diorites from the Bange district

      图  5  (a) 班戈地区辉长闪长岩(BG12-1)中锆石U-Pb谐和图, (b)班戈地区辉长闪长岩(BG12-1)中稀土元素球粒陨石标准化图解

      球粒陨石标准化值据Sun and McDonough(1989)

      Fig.  5.  Zircon U-Pb concordia diagram of gabbro-diorite (BG12-1) from the Bange in Tibet (a), Chondrite-normalized REE of gabbro-diorite (BG12-1) from the Bange in Tibet (b)

      图  6  (a) Zr/Y-Zr图解,(b) Th/Yb-Nb/Yb图解,(c, d)IAB-MORB-CRB+OIB and TiO2/10-MnO-P2O5图解

      1.中拉萨地体变玄武岩(~492 Ma);2.高喜马拉雅Mandi玄武岩(~496 Ma);3.SW Turkey弧后盆地玄武岩(~535 Ma);4.Siberian Traps; 5.Kalkarindji玄武岩(~506 Ma);6.Middle Okinawa Trough弧后盆地玄武岩;7.峨眉山大陆溢流玄武岩;8.安第斯型岛弧玄武岩;9.辉长闪长岩;OIT.洋岛拉斑玄武岩;OIA.洋岛碱性玄武岩;MORB.洋中脊玄武岩;IAT.岛弧拉斑玄武岩;CAB.钙碱性玄武岩; IAB.岛弧玄武岩;CRB.大陆裂谷玄武岩.数据来源: Mandi玄武岩(Miller et al., 2001),Kalkarindji玄武岩(Glass and Phillips, 2006Evins et al., 2009),SW Turkey弧后盆地玄武岩(Gürsu and Göncüoglu,2005),Middle Okinawa Trough弧后盆地玄武岩(Shinjo et al., 1999),安第斯型岛弧玄武岩(Hickey et al., 1986),峨眉山大陆溢流玄武岩(Xiao et al., 2004),and Siberian Traps(http://georoc.mpch-mainz.gwdg.de/georoc/Entry.html).a据Pearce and Norry(1979), 弧后盆地玄武岩范围来自Floyd et al.(1991);b据Pearce and Peate(1995);c据Agrawal et al.(2008)

      Fig.  6.  Zr/Y-Zr diagram (a), Th/Yb-Nb/Yb diagrams showing the tectonic setting of the gabbro-diorite (b), IAB-MORB-CRB+OIB and TiO2/10-MnO-P2O5 diagrams (c, d)

      图  7  锆石微量元素U/Yb-Y图解(据Grimes et al., 2007)和U/Yb-Nb/Yb图解(据Grimes et al., 2015)

      Fig.  7.  Zircon trace-element of U/Yb-Y (a) (after Grimes et al., 2007) and U/Yb-Nb/Yb (b) (after Grimes et al., 2015) diagrams for the gabbro-diorite

      图  8  (a) 辉长闪长岩的La/Yb-Sm/Yb(据Johnson et al., 1990),(b)(Sm/Yb)N-(La/Sm)N (据D’orazio et al., 2001),(c)Ba/La-Th/Nd;(d)Ba/Th-(La/Sm)N图解

      Fig.  8.  Plots of (a) La/Yb vs. Sm/Yb (after Johnson et al., 1990), (b) (Sm/Yb)N vs. (La/Sm)N (after D'orazio et al., 2001), (c) Ba/La vs. Th/Nd, (d) Ba/Th vs. (La/Sm)N for representative gabbro-diorite samples

    • [1] Agrawal, S., Guevara, M., Verma, S.P., 2008.Tectonic Discrimination of Basic and Ultrabasic Rocks through Log-transformed Ratios of Immobile Trace Elements.International Geology Review, 50(12):1057-1079. https://doi.org/10.2747/0020-6814.50.12.1057
      [2] Cawood, P.A., Johnson, M.R.W., Nemchin.A.A., 2007.Early Palaeozoic Orogenesis along the Indian Margin of Gondwana:Tectonic Response to Gondwana Assembly.Earth and Planetary Science Letters, 255(1-2):70-84. https://doi.org/10.1016/j.epsl.2006.12.006
      [3] Dong, C.Y., Li, C., Wan, Y.S, et al., 2011.Detrital Zircon Age Model of Ordovician Wenquan Quartzite South of Lungmuco-Shuanghu Suture in the Qiangtang Area, Tibet:Constraint on Tectonic Affinity and Source Regions.Science China:Earth Sciences, 41(3):299-308(in Chinese). http://cn.bing.com/academic/profile?id=5d0f524a0e43d8facb45e1a798273a8a&encoded=0&v=paper_preview&mkt=zh-cn
      [4] Dong, X., Zhang, Z.M., 2015.Cambrian Granitoids from the Southeastern Tibetan Plateau:Research on Petrology and Zircon Hf Isotope.Acta Petrologica Sinica, 31(5):1183-1199(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201505001
      [5] D'orazio, M., Agostini, S., Innocenti, F., et al., 2001.Slab Window-Related Magmatism from Southernmost South America:The Late Miocene Mafic Volcanics from the Estancia Glencross Area (Similar to 52°S, Argentina-Chile).Lithos, 57(2-3):67-89. https://doi.org/10.1016/s0024-4937(01)00040-8
      [6] Ducea, M.N., Saleeby, J.B., Bergantz, G., 2015.The Architecture, Chemistry, and Evolution of Continenta-l Magmatic Arcs.Annual Review of Earth and Planetary Sciences, 43(1):299-331. https://doi.org/10.1146/annurev-earth-060614-105049
      [7] Evins, L.Z., Jourdan, F., Phillips, D., 2009.The Cambrian Kalkarindji Large Igneous Province:Extent and Characteristics Based on New 40Ar/39Ar and Geochemical Data.Lithos 110(1-4):294-304. https://doi.org/10.1016/j.lithos.2009.01.014
      [8] Floyd, P.A., Castillo, P.R., Pringle, M., 1991.Tholeiitic and Alkalic Basalts of the Oldest Pacific-Ocean Crust.Terra Nova, 3(3):257-264. https://doi.org/10.1111/j.1365-3121.1991.tb00143.x
      [9] Gao, S.B., Zheng, Y.Y., Wang, J.S., et al., 2011.The Geochronology and Geochemistry of Intrusive Rocks in Bange Area:Constraints on the Evolution Time of the Bangong Lake-Nujiang Ocean Basin.Acta Petrologica Sinica, 27(7):1973-1982(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201107006
      [10] Gehrels, G., Kapp, P., DeCelles, P., et al., 2011.Detrital Zircon Geochronology of Pre-Tertiary Strata in the Tibetan-Himalayan Orogen.Tectonics, 30(5). https://doi.org/10.1029/2011tc002868
      [11] Glass, L.M., Phillips, D., 2006.The Kalkarindji Continental Flood Basalt Province:A New Cambrian Large Igneous Province in Australia with Possible Links to Faunal Extinctions.Geology, 34(6):461-464. https://doi.org/10.1130/G22122.1
      [12] Gorton, M.P., Schandl, E.S., 2000.From Continents to Island Arcs:A Geochemical Index of Tectonic Setting for Arc-Related and Within-Plate Felsic to Intermediate Volcanic Rocks.Canadian Mineralogist, 38(5):1065-1073. https://doi.org/10.2113/gscanmin.38.5.1065
      [13] Grimes, C.B., Wooden, J.L., Cheadle, M.J., et al., 2015."Fingerprinting" Tectono-Magmatic Provenance Using Trace Elements in Igneous Zircon.Contributions to Mineralogy and Petrology, 170(5-6):46-71. https://doi.org/10.1007/s00410-015-1199-3
      [14] Grimes, C.B., John, B.E., Kelemen, P.B., et al., 2007.Trace Element Chemistry of Zircons from Oceanic Crust:A Method for Distinguishing Detrital Zircon Provenance.Geology, 35(7):643-646. http://cn.bing.com/academic/profile?id=0b3749c5e6d31eb45a51659d67cc70f2&encoded=0&v=paper_preview&mkt=zh-cn
      [15] Gürsu, S., Göncüoglu, M.C., 2005.Early Cambrian Back-Arc Volcanism in the Western Taurides, Turkey:Implications for Rifting along the Northern Gondwanan Margin.Geological Magazine, 142(5):617-631. https://doi.org/10.1017/S0016756805000919
      [16] Hickey, R.L., Frey, F.A., Gerlach, C., 1986.Multiple Sources for Basaltic Arc Rocks from the Southern Zone of the Andes:Trace Element and Isotopic Evidence for Contributions from Subducted Oceanic Crust, Mantle, and Continental Crust.Journal of Geophysical Research, 91(B6):5963-5983. http://cn.bing.com/academic/profile?id=6ac81b71839bac9a7a4fc5ef0fb6e166&encoded=0&v=paper_preview&mkt=zh-cn
      [17] Ji, W.H., Chen, S.J., Zhao, Z.M., et al., 2009.Discovery of the Cambrian Volcanic Rocks in the Xainza Area, Gangdese Orogenic Belt, Tibet, China and Its Significance.Geological Bulletin of China, 28(9):1350-1354(in Chinese with English abstract). https://www.zhangqiaokeyan.com/academic-journal-cn_geological-bulletin-china_thesis/0201252286657.html
      [18] Johnson, K.T.M., Dick, H.J.B., Shimizu, N., 1990.Melting in the Oceanic Upper Mantle:An Ion Microprobe Study of Diopsides in Abyssal Peridotites.Journal of Geophysical Research:Solid Earth, 95(B3):2661-2678. http://cn.bing.com/academic/profile?id=d27f5b6bfa230d849723f316ab2fb97f&encoded=0&v=paper_preview&mkt=zh-cn
      [19] Li, C., Wu, Y.W., Wang, M., et al., 2010.Significant Progress on Pan-African and Early Paleozoic Orogenic Events in Qinghai-Tibet Plateau-Discovery of Pan-African Orogenic Unconformity and Cambrian System in the Gangdise Area, Tibet, China.Geological Bulletin of China, 29(12):1733-1736(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201012001
      [20] Liu, Y.S., Gao, S., Hu, Z.C., et al., 2010.Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons of Mantle Xenoliths.Journal of Petrology, 51(1-2):537-571. https://doi.org/10.1093/petrology/egp082
      [21] Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008.In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard.Chemical Geology, 257(1-2):34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
      [22] Ludwig, K.R., 2003.User's Manual for Isoplot/Ex Version 3.00: A Geochronology Toolkit for Microsoft Excel.Center Special Publication Isoplot v.3.0: A Geochronological Toolkit for Microsoft Excel.Berkeley Geochronology Center Special Publication 4, Berkeley.
      [23] Middlemost, E.A., 1994.Naming Materials in the Magma/Igneous Rock System.Earth-Science Reviews, 37(3-4):215-224. https://doi.org/10.1016/0012-8252(94)90029-9
      [24] Miller, C., Thöni, M., Frank, W., et al., 2001.The Early Palaeozoic Magmatic Event in the Northwest Himalaya, India:Source, Tectonic Setting and Age of Emplacement.Geological Magazine 138(3):237-251. https://doi.org/10.1017/s0016756801005283
      [25] Münker, C., 1998.Nb/Ta Fractionation in a Cambrian Arc Back Arc System, New Zealand:Source Constraints and Application of Refined ICPMS Techniques.Chemical Geology 144(1-2):23-45. https://doi.org/10.1016/s0009-2541(97)00105-8
      [26] Pan, G.T., Mo, X.X., Hou, Z.Q., et al., 2006.Spatial-Temporal Framework of the Gangdese Orogenic Belt and Its Evolution.Acta Petrologica Sinica, 22(3):521-533(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200603001
      [27] Pearce, J.A., Norry, M.J., 1979.Petrogenetic Implications of Ti, Zr, Y and Nb Variations in Volcanic Rocks.Contributions to Mineralogy and Petrology, 69(1):33-47. https://doi.org/10.1007/bf00375192
      [28] Pearce, J.A., Peate, D.W., 1995.Tectonic Implications of the Composition of Volcanic Arc Magmas.Annual Review of Earth and Planetary Sciences 23(1):251-285. https://doi.org/10.1146/annurev.earth.23.1.251
      [29] Peccerillo, A., Taylor, S.R., 1976.Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey.Contributions to Mineralogy and Petrology, 58(1):63-81.https://doi.org/0.1007/bf00384745 doi: 10.1007-BF00384745/
      [30] Plank, T., Langmuir, C.H., 1998.The Chemical Composition of Subducting Sediment and Its Consequences for the Crust and Mantle.Chemical Geology, 145(3-4):325-394. https://doi.org/10.1016/s0009-2541(97)00150-2
      [31] Shinjo, R., Chung, S.L., Kato, Y., et al., 1999.Geochemical and Sr-Nd Isotopic Characteristics of Volcanic Rocks from the Okinawa Trough and Ryukyu Arc:Implications for the Evolution of a Young, Intracontinental Back Arc Basin.Journal of Geophysical Research, 104(B5):10591-10608. https://doi.org/10.1029/1999jb900040
      [32] Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      [33] Taylor, S.R., McLennan, S.M., 1985.The Continental Crust: Its Composition and Evolution.Blackwell Scientific Publications, United States, 27.
      [34] Tian, K., Zheng, Y.Y., Gao, S.B., et al., 2018.Petrogenesis and Geological Implications of Late Cretaceous Intrusion from Bangbule Pb⁃Zn⁃Cu Deposit, Western Gangdese, Tibet.Earth Science, 44(6):1905-1922(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201906012
      [35] Xiao, L., Xu, Y.G., Mei, H.J., et al., 2004.Distinct Mantle Sources of Low-Ti and High-Ti Basalts from the Western Emeishan Large Igneous Province, SW China:Implications for Plume-Lithosphere Interaction.Earth and Planetary Science Letters, 228(3-4):525-546. https://doi.org/10.1016/j.epsl.2004.10.002
      [36] Xu, Z.Q., Yang, J.S., Liang, F.H., et al., 2005.Pan-Afriean and Early Paleozoic Orogenic Events in the Himalaya Terrane:Inference from SHRIMP U-Pb Zircon Ages.Acta Petrologica Sinica, 21(l):1-12(in Chinese with English abstract). doi: 10.3321/j.issn:1000-0569.2005.01.001
      [37] Zhai, Q.G., Wang, J., Li, C., et al., 2010.SHRIMP U-Pb Dating and Hf Isotopic Analyses of Middle Ordovician Meta-Cumulate Gabbro in Central Qiangtang, Northern Tibetan Plateau.Science China:Earth Sciences, 40(5):565-573(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-ed201005004
      [38] Zheng, Y.F., Chen, Y.X., Dai, L.Q., et al., 2015.Developing Plate Tectonics Theory from Oceanic Subduction Zones to Collisional Orogens.Science China:Earth Sciences, 45(6):711-735(in Chinese). http://cn.bing.com/academic/profile?id=62a82d2cf07cd36bdd7703163af47c38&encoded=0&v=paper_preview&mkt=zh-cn
      [39] Zheng, Y.Y., Ci, Q., Wu, S., et al., 2017.The Discovery and Signifiance of Rongga Porphyry Mo Deposit in the Bangong-Nujiang Metallogenic Belt, Tibet.Earth Science, 42(9):1441-1453(in Chinese with English abstract). doi: 10.3799/dqkx.2017.109
      [40] Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2011.The Lhasa Terrane:Record of a Microcontinent and Its Histories of Drift and Growth.Earth and Planetary Science Letters, 301(1-2):241-255. https://doi.org/10.1016/j.epsl.2010.11.005
      [41] Zhu, D.C., Zhao, Z.D., Niu, Y.L., 2012.Cambrian Bimodal Volcanism in the Lhasa Terrane, Southern Tibet:Record of an Early Paleozoic Andean-Type Magmatic Arc in the Australian Proto-Tethyan Margin.Chemical Geology, 328:290-308. https://doi.org/10.1016/j.chemgeo.2011.12.024
      [42] 董春艳, 李才, 万渝生, 等, 2011.西藏羌塘龙木错-双湖缝合带南侧奥陶纪温泉石英岩碎屑锆石年龄分布模式:构造归属及物源区制约.中国科学:地球科学, 41(3):299-308. http://www.cnki.com.cn/Article/CJFDTotal-JDXK201103003.htm
      [43] 董昕, 张泽明, 2015.青藏高原东南部寒武纪花岗岩类:岩石学和锆石Hf同位素研究.岩石学报, 31(5):1183-1199. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201505001
      [44] 高顺宝, 郑有业, 王进寿, 等, 2011.西藏班戈地区侵入岩年代学和地球化学:对班公湖-怒江洋盆演化时限的制约.岩石学报, 27(7):1973-1982. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201107006
      [45] 计文化, 陈守建, 赵振明, 等, 2009.西藏冈底斯构造带申扎一带寒武系火山岩的发现及其地质意义.地质通报, 28(9):1350-1354. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200909026
      [46] 李才, 吴彦旺, 王明, 等, 2010.青藏高原泛非-早古生代造山事件研究重大进展:冈底斯地区寒武系和泛非造山不整合的发现.地质通报, 29(12):1733-1736. http://d.old.wanfangdata.com.cn/Periodical/zgqydz201012001
      [47] 潘桂棠, 莫宣学, 侯增谦, 等, 2006.冈底斯造山带的时空结构及演化.岩石学报, 22(3):521-533. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200603001
      [48] 田坎, 郑有业, 高顺宝, 等, 2018.西藏冈底斯西段帮布勒Pb-Zn-Cu矿床晚白垩世岩浆岩成因及意义.地球科学, 44(6):1905-1922. doi: 10.3799/dqkx.2018.349
      [49] 许志琴, 杨经绥, 梁凤华, 等, 2005.喜马拉雅地体的泛非-早古生代造山事件年龄记录.岩石学报, 21(1):1-12. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200501001
      [50] 翟庆国, 王军, 李才, 等, 2010.青藏高原羌塘中部中奥陶世变质堆晶辉长岩锆石SHRIMP年代学及Hf同位素特征.中国科学:地球科学, 40(5):565-573. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201005005
      [51] 郑永飞, 陈伊翔, 戴立群, 等, 2015.发展板块构造理论:从洋壳俯冲带到碰撞造山带.中国科学:地球科学, 45(6):711-735. http://d.old.wanfangdata.com.cn/Periodical/zgmtdz200403001
      [52] 郑有业, 次琼, 吴松, 等, 2017.西藏班公湖-怒江成矿带荣嘎斑岩型钼矿床的发现及意义.地球科学, 42(9):1441-1453. doi: 10.3799/dqkx.2017.109
    • dqkx-45-6-2091-Table1-3.pdf
    • 加载中
    图(8)
    计量
    • 文章访问数:  1029
    • HTML全文浏览量:  132
    • PDF下载量:  57
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-06-08
    • 刊出日期:  2020-06-15

    目录

      /

      返回文章
      返回