• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    末次冰期以来巽他陆架东北部陆坡区正构烷烃分布特征及其古植被意义

    崔子恒 贺娟 贾国东

    崔子恒, 贺娟, 贾国东, 2021. 末次冰期以来巽他陆架东北部陆坡区正构烷烃分布特征及其古植被意义. 地球科学, 46(1): 331-340. doi: 10.3799/dqkx.2019.246
    引用本文: 崔子恒, 贺娟, 贾国东, 2021. 末次冰期以来巽他陆架东北部陆坡区正构烷烃分布特征及其古植被意义. 地球科学, 46(1): 331-340. doi: 10.3799/dqkx.2019.246
    Cui Ziheng, He Juan, Jia Guodong, 2021. Composition Distribution of n-Alkanes in Slope Sediments of the Northeast Sunda Shelf since the Last Glacial Period and Its Palaeo-Vegetation Significance. Earth Science, 46(1): 331-340. doi: 10.3799/dqkx.2019.246
    Citation: Cui Ziheng, He Juan, Jia Guodong, 2021. Composition Distribution of n-Alkanes in Slope Sediments of the Northeast Sunda Shelf since the Last Glacial Period and Its Palaeo-Vegetation Significance. Earth Science, 46(1): 331-340. doi: 10.3799/dqkx.2019.246

    末次冰期以来巽他陆架东北部陆坡区正构烷烃分布特征及其古植被意义

    doi: 10.3799/dqkx.2019.246
    基金项目: 

    国家重点研发计划“末次冰消期以来碳氮硫循环与全球变化的关系”项目 2016YFA0601104

    详细信息
      作者简介:

      崔子恒(1995-), 男, 硕士研究生, 从事有机地球化学方向研究.ORCID:0000-0002-1396-0399.E-mail:cuizh@tongji.edu.cn

      通讯作者:

      贾国东, ORCID:0000-0002-8360-0460.E-mail:jiagd@tongji.edu.cn

    • 中图分类号: P736.1

    Composition Distribution of n-Alkanes in Slope Sediments of the Northeast Sunda Shelf since the Last Glacial Period and Its Palaeo-Vegetation Significance

    • 摘要: 为了讨论末次冰期以来巽他陆架东北部植被情况及巽他陆架在冰期时的碳循环意义.对位于南海西南部陆坡的18252-3站位岩心柱沉积物中长链正构烷烃组分的平均链长(ACL27-33)、碳优势指数(CPI27-33)、烷烃含量(∑oddC27-C33)、及烷烃比值等指标进行了分析.结果显示:末次冰期以来CPI27-33表现出与海平面变化具有很好的相关性.冰期时,CPI27-33值表现出明显的奇偶优势,指示了叶蜡烷烃新鲜程度很高,应该主要来自附近出露陆架区的近源供应.冰期低海平面时∑oddC27-C33(ng/g)总体高于全新世,也与陆源供应靠近陆坡区有关.ACL27-33自40 ka B.P.以来呈上升趋势,指示草本植被发育增多和/或气候略为变干.从烷烃记录来看,冰期陆架出露时,n-C29n-C31烷烃相对含量相差不大且均远高于n-C33,至全新世n-C29显著降低,而n-C33则显著增高.结合ACL27-33及烷烃比值数据,可以大致推测冰期出露的研究站位附近陆架地区很可能以热带雨林分布为主.将本文数据与巽他陆架东南部陆坡区数据进行综合分析,推测面向南海的巽他陆架东部地区在冰期时呈现热带雨林景观的可能性很大.由于雨林植被具有巨大的碳蓄积量,因此巽他陆架在冰期时很可能会是一个巨大的陆地碳储库.

       

    • 图  1  18252⁃3岩心及文中提及的相关岩心站位位置

      Fig.  1.  Core 18252⁃3 and the relevant core stations mentioned

      ●. 18252⁃3(Kienast et al., 2001);■. MD972151(Zhao et al., 2006);▲. NS07⁃25(Luo et al., 2019);▲. 17962(Sun et al., 2002);▲. 17964(Sun et al., 2000);▲. 18323(Wang et al., 2009);▲. 18300(Wang et al., 2009);▲. 18302(Wang et al., 2009)

      图  4  18252⁃3岩心沉积物中正构烷烃分布特征

      a. 18252⁃3 U37k’⁃SST(深色线. Kienast et al.(2001)结果;浅色线.本文实验结果);b. CPI27⁃33与海平面变化(改绘自Hanebuth et al. (2011));c. ∑oddC27⁃C33(ng/g)与海平面变化(改绘自Hanebuth et al. (2011));d. n⁃C29/n⁃C31;e. n⁃C29/n⁃C33;f. n⁃C29/n⁃C27;g. ACL27⁃33;虚线: MIS1、MIS2及MIS3时期的分割线;阴影部分:YD(Youngest Dryas).新仙女木事件; OD(Oldest Dryas).老仙女木事件)

      Fig.  4.  Distribution characteristics of alkanes in core 18252⁃3

      图  2  (a) 用于确定年龄控制点的18252⁃3岩心与MD972151岩心的TIC曲线对比; (b)用于确定年龄控制点的18252⁃3岩心与MD972151岩心U37k’温度曲线对比; (c)年龄确定后18252⁃3岩心与MD972151岩心的TIC曲线对比;(d)年龄确定后18252⁃3岩心与MD972151岩心的U37k’温度曲线对比

      MD972151岩心数据来源于Zhao et al.(2006)的实验结果;YD(Youngest Dryas).新仙女木事件;BA(Bolling⁃Allerod).暖事件;OD(Oldest Dryas).老仙女木事件

      Fig.  2.  (a) Age determination of core 18252⁃3 in accordance with TIC data of core MD972151; (b)Age determination of core 18252⁃3 in accordance with U37k'⁃SST data of core MD972151; (c) Comparison of TIC contents versus time for core 18252⁃3 and MD972151; (d) Comparison of U37k' SST versus time for core 18252⁃3 and MD972151

      图  3  18252⁃3岩心n⁃C27n⁃C29n⁃C31n⁃C33烷烃相对含量

      虚线: MIS1、MIS2及MIS3时期的分割线;阴影部分: YD(Youngest Dryas).新仙女木事件、OD(Oldest Dryas).老仙女木事件

      Fig.  3.  Relative content of n⁃C27n⁃C29n⁃C31n⁃C33 of core 18252⁃3

      图  5  ACL27⁃33与CPI27⁃33关系

      Fig.  5.  Relationship between ACL27⁃33 and CPI27⁃33

    • [1] Bird, M. I., Taylor, D., Hunt, C., 2005. Palaeoenvironments of Insular Southeast Asia during the Last Glacial Period:A Savanna Corridor in Sundaland? Quaternary Science Reviews, 24(20/21):2228-2242. https://doi.org/10.1016/j.quascirev.2005.04.004
      [2] Bush, R. T., McInerney, F. A., 2013. Leaf Wax N-Alkane Distributions in and across Modern Plants:Implications for Paleoecology and Chemotaxonomy. Geochimica et Cosmochimica Acta, 117:161-179. https://doi.org/10.1016/j.gca.2013.04.016
      [3] Bush, R. T., McInerney, F. A, 2015. Influence of Temperature and C4 Abundance on N-alkane Chain Length Distributions across the Central USA. Organic Geochemistry, 79:65-73. https://doi.org/10.1016/j.orggeochem.2014.12.003
      [4] Collister, J. W., Rieley, G., Stern, B., et al., 1994. Compound-Specific δ13C Analyses of Leaf Lipids from Plants with Differing Carbon Dioxide Metabolisms. Organic Geochemistry, 21(6/7):619-627. https://doi.org/10.1016/0146-6380(94)90008-6
      [5] Cranwell, P. A., 1972. Chain-Length Distribution of N-Alkanes from Lake Sediments in Relation to Post-Glacial Environmental Change. Freshwater Biology, 3(3):259-265. https://doi.org/10.1111/j.1365-2427.1973.tb00921.x
      [6] De Deckker, P., Tapper, N., Van der Kaars, S., 2003. The Status of the Indo-Pacific Warm Pool and Adjacent Land at the Last Glacial Maximum. Global and Planetary Change, 35(1/2):25-35. https://doi.org/10.1016/s0921-8181(02)00089-9
      [7] Di Nezio, P. N., Timmermann, A., Tierney, J. E., et al., 2016. The Climate Response of the Indo-Pacific Warm Pool to Glacial Sea Level. Paleoceanography, 31(6):866-894. https://doi.org/10.1002/2015pa002890
      [8] Hanebuth, T. J. J., Voris, H. K., Yokoyama, Y., et al., 2011. Formation and Fate of Sedimentary Depocentres on Southeast Asia's Sunda Shelf over the Past Sea-Level Cycle and Biogeographic Implications. Earth-Science Reviews, 104(1/2/3):92-110. https://doi.org/10.1016/j.earscirev.2010.09.006
      [9] Heaney, L. R., 1991. A Synopsis of Climatic and Vegetational Change in Southeast Asia. Tropical Forests and Climate. Dordrecht:Springer Netherlands, 1991:53-61. https://doi.org/10.1007/978-94-017-3608-4_6
      [10] Hope, G., Kershaw, A., Van der Kaars, S., et al., 2004. History of Vegetation and Habitat Change in the Austral-Asian Region. Quaternary International, 118/119:103-126. https://doi.org/10.1016/s1040-6182(03)00133-2
      [11] Hu, J. F., Peng, P. G., Fang, D. Y., et al., 2003. No Aridity in Sunda Land during the Last Glaciation:Evidence from Molecular-Isotopic Stratigraphy of Long-Chain N-Alkanes. Palaeogeography, Palaeoclimatology, Palaeoecology, 201(3/4):269-281. https://doi.org/10.1016/s0031-0182(03)00613-8
      [12] Huang, Y., 2001. Climate Change as the Dominant Control on Glacial-Interglacial Variations in C3 and C4 Plant Abundance. Science, 293(5535):1647-1651. https://doi.org/10.1126/science.1060143
      [13] Jia, G. D., 2018. Exposed Sunda Shelf during the Glacial Times:an Important Component of the Terrestrial Carbon Reservoir? Advances in Earth Science, 32(11):1157-1162 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DXJZ201711008.htm
      [14] Kennicutt, M. C. II, Barker, C., Brooks, J. M., et al., 1987. Selected Organic Matter Source Indicators in the Orinoco, Nile and Changjiang Deltas. Organic Geochemistry, 11(1):41-51. https://doi.org/10.1016/0146-6380(87)90050-7
      [15] Kienast, M., 2001. Synchronous Tropical South China Sea SST Change and Greenland Warming during Deglaciation. Science, 291(5511):2132-2134. https://doi.org/10.1126/science.1057131
      [16] Li, L., Li, Q. Y., Li, J. R., et al., 2015. A Hydroclimate Regime Shift around 270 ka in the Western Tropical Pacific Inferred from a Late Quaternary N-Alkane Chain-Length Record. Palaeogeography, Palaeoclimatology, Palaeoecology, 427:79-88. https://doi.org/10.1016/j.palaeo.2015.03.025
      [17] Liu, Z. F., Zhao, Y. L., Colin, C., et al., 2016. Source-to-Sink Transport Processes of Fluvial Sediments in the South China Sea. Earth-Science Reviews, 153:238-273. https://doi.org/10.1016/j.earscirev.2015.08.005
      [18] Luo, C. X., Haberle, S., Zheng, Z., et al., 2019. Environmental Changes in the North-East Sunda Region over the Last 40 000 Years. Journal of Quaternary Science, 34(3):245-257. https://doi.org/10.1002/jqs.3093.
      [19] Meyers, P. A., Ishiwatari, R., 1993. Lacustrine Organic Geochemistry:an Overview of Indicators of Organic Matter Sources and Diagenesis in Lake Sediments. Organic Geochemistry, 20(7):867-900. https://doi.org/10.1016/0146-6380(93)90100-p
      [20] Mohtadi, M., Steinke, S., Lückge, A., et al., 2010. Glacial to Holocene Surface Hydrography of the Tropical Eastern Indian Ocean. Earth and Planetary Science Letters, 292(1/2):89-97. https://doi.org/10.1016/j.epsl.2010.01.024
      [21] Pancost, R. D., Boot, C. S., 2004. The Palaeoclimatic Utility of Terrestrial Biomarkers in Marine Sediments. Marine Chemistry, 92(1/2/3/4):239-261. https://doi.org/10.1016/j.marchem.2004.06.029
      [22] Raes, N., Cannon, C. H., Hijmans, R. J., et al., 2014. Historical Distribution of Sundaland's Dipterocarp Rainforests at Quaternary Glacial Maxima. Proceedings of the National Academy of Sciences of the United States of America, 111(47):16790-16795. https://doi.org/10.1073/pnas.1403053111
      [23] Rao, Z. G., Wu, Y., Zhu, Z. Y., et al., 2011. Is the Maximum Carbon Number of Long-Chain N-Alkanes an Indicator of Grassland or Forest? Evidence from Surface Soils and Modern Plants. Chinese Science Bulletin, 56(16):1714-1720. https://doi.org/10.1007/s11434-011-4418-y
      [24] Rommerskirchen, F., Plader, A., Eglinton, G., et al., 2006. Chemotaxonomic Significance of Distribution and Stable Carbon Isotopic Composition of Long-Chain Alkanes and Alkan-1-ols in C4 Grass Waxes. Organic Geochemistry, 37(10):1303-1332. https://doi.org/10.1016/j.orggeochem.2005.12.013
      [25] Stimpson, C. M., 2012. Local Scale, Proxy Evidence for the Presence of Closed Canopy Forest in North-Western Borneo in the Late Pleistocene:Bones of Strategy I Bats from the Archaeological Record of the Great Cave of Niah, Sarawak. Palaeogeography, Palaeoclimatology, Palaeoecology, 331/332:136-149. https://doi.org/10.1016/j.palaeo.2012.03.007
      [26] Sun, X. J., Li, X., Luo, Y. L., et al., 2000. The Vegetation and Climate at the Last Glaciation on the Emerged Continental Shelf of the South China Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 160(3/4):301-316. https://doi.org/10.1016/s0031-0182(00)00078-x
      [27] Sun, X. J., Li, X., Luo, Y. L., 2002. Vegetation and Climate on the Sunda Shelf of the South China Sea during the Last Glaciation-Pollen Results from Station 17962. Acta Botanica Sinica, 44(6):746-752. http://europepmc.org/abstract/cba/374602
      [28] Van der Kaars, S., Bassinot, F., de Deckker, P., et al., 2010. Changes in Monsoon and Ocean Circulation and the Vegetation Cover of Southwest Sumatra through the Last 83 000 Years:The Record from Marine Core BAR94-42. Palaeogeography, Palaeoclimatology, Palaeoecology, 296(1/2):52-78. https://doi.org/10.1016/j.palaeo.2010.06.015
      [29] Vogts, A., Moossen, H., Rommerskirchen, F., et al., 2009. Distribution Patterns and Stable Carbon Isotopic Composition of Alkanes and Alkan-1-ols from Plant Waxes of African Rain Forest and Savanna C3 Species. Organic Geochemistry, 40(10):1037-1054. https://doi.org/10.1016/j.orggeochem.2009.07.011
      [30] Vogts, A., Schefuß, E., Badewien, T., et al., 2012. N-Alkane Parameters from a Deep Sea Sediment Transect off Southwest Africa Reflect Continental Vegetation and Climate Conditions. Organic Geochemistry, 47:109-119. https://doi.org/10.1016/j.orggeochem.2012.03.011
      [31] Wang, P. X., Wang, L., Bian, Y. H., et al., 1995. Late Quaternary Paleoceanography of the South China Sea:Surface Circulation and Carbonate Cycles. Marine Geology, 127(1/2/3/4):145-165. https://doi.org/10.1016/0025-3227(95)00008-m
      [32] Wang, P.X., 2018. The Sunda Shelf:A Submerged Amazon Basin? Advances in Earth Science, 32(11):1119-1125 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DXJZ201711004.htm
      [33] Wang, X. M., Sun, X. J., Wang, P. X., et al., 2008. The Records of Coastline Changes Reflected by Mangroves on the Sunda Shelf since the Last 40 ka. Science Bulletin, 53(13):2069-2076. https://doi.org/10.1007/s11434-008-0278-5
      [34] Wang, X. M., Sun, X. J., Wang, P. X., et al., 2009. Vegetation on the Sunda Shelf, South China Sea, during the Last Glacial Maximum. Palaeogeography, Palaeoclimatology, Palaeoecology, 278(1/2/3/4):88-97. https://doi.org/10.1016/j.palaeo.2009.04.008
      [35] Wurster, C. M., Bird, M. I., Bull, I. D., et al., 2010. Forest Contraction in North Equatorial Southeast Asia during the last Glacial Period. Proceedings of the National Academy of Sciences of the United States of America, 107(35):15508-15511. https://doi.org/10.1073/pnas.1005507107
      [36] Zhao, M. X., Huang, C. Y., Wang, C. C., et al., 2006. A Millennial-Scale U37K' Sea-Surface Temperature Record from the South China Sea (8°N) over the Last 150 Ka:Monsoon and Sea-Level Influence. Palaeogeography, Palaeoclimatology, Palaeoecology, 236(1/2):39-55. https://doi.org/10.1016/j.palaeo.2005.11.033
      [37] Zhou, B., Zheng, H.B., Yang, W.G., et al., 2011. Organic Carbon Records since the Last Glacial Period in the Northern South China Sea Sediments:Implications for Vegetation and Environmental Changes. Quaternary Sciences, 31(3):498-505 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_quaternary-sciences_thesis/0201253124695.html
      [38] 贾国东, 2018.冰期出露的巽他陆架:重要的陆地碳储库?地球科学进展, 32(11):1157-1162. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201711008.htm
      [39] 汪品先, 2018.巽他陆架——淹没的亚马逊河盆地?地球科学进展, 32(11):1119-1125. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201711004.htm
      [40] 周斌, 郑洪波, 杨文光, 等, 2011.末次冰期以来南海北部沉积有机碳记录及其古植被环境信息.第四纪研究, 31(3):498-505. doi: 10.3969/j.issn.1001-7410.2011.03.13
    • 加载中
    图(5)
    计量
    • 文章访问数:  618
    • HTML全文浏览量:  111
    • PDF下载量:  41
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-09-29
    • 刊出日期:  2021-01-15

    目录

      /

      返回文章
      返回