Continental Slab-Mantle Interaction: Geochemical Evidence from Post-Collisional Andesitic Rocks in the Dabie Orogen
-
摘要: 俯冲到地幔深度的地壳物质不可避免地在板片-地幔界面与地幔楔发生相互作用,由此形成的超镁铁质交代岩就是造山带镁铁质火成岩的地幔源区.因此,造山带镁铁质火成岩为研究俯冲地壳物质再循环和壳-幔相互作用提供了重要研究对象.为了揭示俯冲陆壳物质再循环的机制和过程,对大别造山带碰撞后安山质火山岩开展了元素和同位素地球化学研究.这些安山质火山岩的SIMS锆石U-Pb年龄为124±3~130±2 Ma,表明其形成于早白垩世.此外,残留锆石的U-Pb年龄为中新元古代和三叠纪,分别对应于大别-苏鲁造山带超高压变火成岩的原岩年龄和变质年龄.它们具有岛弧型微量元素特征、富集的Sr-Nd-Hf同位素组成,以及变化的且大多不同于正常地幔的锆石δ18O值.这些元素和同位素特征指示,这些安山质火山岩是交代富集的造山带岩石圈地幔部分熔融的产物.在三叠纪华南陆块俯冲于华北陆块之下的过程中,俯冲华南陆壳来源的长英质熔体交代了上覆华北岩石圈地幔楔橄榄岩,大陆俯冲隧道内的熔体-橄榄岩反应产生了富沃、富集的镁铁质地幔交代岩.这种地幔交代岩在早白垩世发生部分熔融,就形成了所观察到的安山质火山岩.因此,碰撞造山带镁铁质岩浆岩的地幔源区是通过大陆俯冲隧道内板片-地幔相互作用形成的,而加入地幔楔中长英质熔体的比例决定了这些镁铁质岩浆岩的岩石化学和地球化学成分.Abstract: Crustal material subducted to mantle depths inevitably interacted with the mantle wedge at the slab-mantle interface. This may generate a variety of ultramafic metasomatites that served as the mantle source of mafic igneous rocks in collisional orogens. Therefore, mafic igneous rocks in collisional orogens are the important target to study the recycling of subdcuted crustal materials and its associated crust-mantle interaction. In order to decipher the mechanism and processes of the recycling of subducted continental crustal materials, a combined study of element and isotope geochemistry was performed for post-collisional andesitic volcanics from the Dabie orogen, China. SIMS zircon U-Pb ages for these volcanic rocks are 124±3 to 130±2 Ma, indicating that they formed at Early Cretaceous. In addition, the relict zircons have Middle Neoproterozoic and Triassic U-Pb ages, respectively, corresponding to the ages of protolith formation and ultrahigh-pressure metamorphism (UHP) for UHP metaigenous rocks in the Dabie-Sulu orogenic belt. They have island-arc basalts (IAB)-like trace-element patterns, enriched Sr-Nd-Hf isotope compositions, and variable zircon δ18O values mostly different from the normal mantle. These element and isotope features indicate that the post-collisional andesitic volcanics are the products of partial melting of metasomatically enriched orogenic lithospheric mantle. During the Triassic subduction of the South China block (SCB) beneath the North China block (NCB), the overlying NCB lithospheric mantle wedge peridotite was metasomatized by felsic melts originated from the subdcuted SCB continental crust, the melt-peridotite reaction in the continental subduction channel generated fertile and enriched metasomatites of mafic composition. Partial melting of such metasomatites in the Early Cretaceous gave rise to these andesitic volcanics. Therefore, the mantle sources for post-collisional mafic igneous rocks in collisional orogens would be generated by the slab-mantle interaction in continental subduction channel, and the lithochemical and geochemical composition of these mafic rocks is dictated by the proportion of felsic melts incorporating into the mantle wedge.
-
图 1 大别造山带碰撞后安山质火山岩锆石δ18O值(a)和残留锆石U-Pb年龄(b)统计图
据Dai et al.(2016);正常地幔锆石δ18O为5.3‰±0.3‰(Valley et al., 1998)
Fig. 1. Histograms of zircon δ18O values (a) and relict zircon U-Pb ages (b) for post-collisional andesitic rocks in the Dabie orogen
图 2 大别造山带碰撞后安山质火山岩全岩Na2O+K2O-SiO2(TAS)图(a)、Sr-Nd同位素组成图(b)、稀土(c)和微量元素(d)分布图
据Dai et al., (2016);LM.华北岩石圈地幔;CDB.中大别超高压变质岩;NDB.北大别超高压变质岩;PCMI.大别造山带碰撞后镁铁质-超镁铁质侵入岩;PCG.大别造山带碰撞后花岗岩
Fig. 2. Plots of whole-rock Na2O+K2O-SiO2 (TAS) (a), Sr-Nd isotope compositions (b), REE (c) and trace element (d) distribution patterns for post-collisional andesitic rocks in the Dabie orogen
图 3 大陆俯冲隧道板片-地幔相互作用和大别造山带碰撞后安山质火山作用示意
a.三叠纪,俯冲华南陆壳衍生的长英质熔体与上覆华北岩石圈地幔楔橄榄岩反应,产生镁铁质-超镁铁质地幔交代岩;b.早白垩世,这些交代岩发生部分熔融,形成碰撞后安山质火山岩和镁铁质-超镁铁质侵入岩;UM.超镁铁质交代岩,MM.镁铁质交代岩.据Dai et al.(2016)
Fig. 3. Schematic cartoons illustrating the slab-mantle interaction in continental subduction channel and the post-collisional andesitic volcanism in the Dabie orogen, East-Central China
-
[1] Chen, L., Zhao, Z.F., 2017.Origin of Continental Arc Andesites:The Composition of Source Rocks is the Key.Journal of Asian Earth Sciences, 145:217-232. https://doi.org/10.1016/j.jseaes.2017.04.012 [2] Chen, L., Zhao, Z.F., Zheng, Y.F., 2014.Origin of Andesitic Rocks:Geochemical Constraints from Mesozoic Volcanics in the Luzong Basin, South China.Lithos, 190-191:220-239. https://doi.org/10.1016/j.lithos.2013.12.011 [3] Chopin, C., 1984.Coesite and Pure Pyrope in High-Grade Blueschists of the Western Alps:A First Record and Some Consequences.Contributions to Mineralogy and Petrology, 86(2):107-118. doi: 10.1007/BF00381838 [4] Cloos, M., Shreve, R.L., 1988a.Subduction-Channel Model of Prism Accretion, Melange Formation, Sediment Subduction, and Subduction Erosion at Convergent Plate Margins:1.Background and Description.Pure and Applied Geophysics PAGEOPH, 128(3-4):455-500. doi: 10.1007/BF00874548 [5] Cloos, M., Shreve, R.L., 1988b.Subduction-Channel Model of Prism Accretion, Melange Formation, Sediment Subduction, and Subduction Erosion at Convergent Plate Margins:2.Implications and Discussion.Pure and Applied Geophysics PAGEOPH, 128(3-4):501-545. doi: 10.1007/BF00874549 [6] Dai, F.Q., Zhao, Z.F., Dai, L.Q., et al., 2016.Slab-Mantle Interaction in the Petrogenesis of Andesitic Magmas:Geochemical Evidence from Postcollisional Intermediate Volcanic Rocks in the Dabie Orogen, China.Journal of Petrology, 57(6):1109-1134. https://doi.org/10.1093/petrology/egw034 [7] Dai, F.Q., Zhao, Z.F., Zheng, Y.F., 2017a.Partial Melting of the Orogenic Lower Crust:Geochemical Insights from Post-Collisional Alkaline Volcanics in the Dabie Orogen.Chemical Geology, 454:25-43. https://doi.org/10.1016/j.chemgeo.2017.02.022 [8] Dai, F.Q., Zhao, Z.F., Zheng, Y.F., et al., 2019.The Geochemical Nature of Mantle Sources for Two Types of Cretaceous Basaltic Rocks from Luxi and Jiaodong in East-Central China.Lithos, 344-345:409-424. https://doi.org/10.1016/j.lithos.2019.07.007 [9] Dai, L.Q., Zhao, Z.F., Zheng, Y.F., 2014.Geochemical Insights into the Role of Metasomatic Hornblendite in Generating Alkali Basalts.Geochemistry, Geophysics, Geosystems, 15(10):3762-3779. https://doi.org/10.1002/2014gc005486 [10] Dai, L.Q., Zhao, Z.F., Zheng, Y.F., 2015.Tectonic Development from Oceanic Subduction to Continental Collision:Geochemical Evidence from Postcollisional Mafic Rocks in the Hong'an-Dabie Orogens.Gondwana Research, 27(3):1236-1254. doi: 10.1016/j.gr.2013.12.005 [11] Dai, L.Q., Zhao, Z.F., Zheng, Y.F., et al., 2011.Zircon Hf-O Isotope Evidence for Crust-Mantle Interaction during Continental Deep Subduction.Earth and Planetary Science Letters, 308(1):229-244. https://doi.org/10.1016/j.epsl.2011.06.001. [12] Dai, L.Q., Zhao, Z.F., Zheng, Y.F., et al., 2012.The Nature of Orogenic Lithospheric Mantle:Geochemical Constraints from Postcollisional Mafic-Ultramafic Rocks in the Dabie Orogen.Chemical Geology, 334:99-121. https://doi.org/10.1016/j.chemgeo.2012.10.009 [13] Dai, L.Q., Zhao, Z.F., Zheng, Y.F., et al., 2017b.Geochemical Distinction between Carbonate and Silicate Metasomatism in Generating the Mantle Sources of Alkali Basalts.Journal of Petrology, 58(5):863-884. https://doi.org/10.1093/petrology/egx038 [14] Dai, L.Q., Zheng, F., Zhao, Z.F., et al., 2017c.Recycling of Paleotethyan Oceanic Crust:Geochemical Record from Postcollisional Mafic Igneous Rocks in the Tongbai-Hong'an Orogens.Geological Society of America Bulletin, 129(1-2):179-192. https://doi.org/10.1130/b31461.1 [15] Fan, W.M., Guo, F., Wang, Y.J., et al., 2004.Late Mesozoic Volcanism in the Northern Huaiyang Tectono-Magmatic Belt, Central China:Partial Melts from a Lithospheric Mantle with Subducted Continental Crust Relicts beneath the Dabie Orogen? Chemical Geology, 209(1-2):27-48. https://doi.org/10.1016/j.chemgeo.2004.04.020 [16] Gómez-Tuena, A., Straub, S.M., Zellmer, G.F., 2014.An Introduction to Orogenic Andesites and Crustal Growth.Geological Society, London, Special Publications, 385(1):1-13. https://doi.org/10.1144/sp385.16 [17] Hacker, B.R., Kelemen, P.B., Behn, M.D., 2011.Differentiation of the Continental Crust by Relamination.Earth and Planetary Science Letters, 307(3-4):501-516. https://doi.org/10.1016/j.epsl.2011.05.024 [18] Hawkesworth, C.J., Hergt, J.M., Ellam, R.M., et al., 1991.Element Fluxes Associated with Subduction Related Magmatism.Philosophical Transactions of the Royal Society, 335(1638):393-405. https://doi.org/10.1098/rsta.1991.0054 [19] Hildreth, W., Moorbath, S., 1988.Crustal Contributions to Arc Magmatism in the Andes of Central Chile.Contributions to Mineralogy and Petrology, 98(4):455-489. https://doi.org/10.1007/BF00372365 [20] Hirose, K., 1997.Melting Experiments on Lherzolite KLB-1 under Hydrous Conditions and Generation of High Magnesian Andesitic Melts.Geology, 25(1):42-44. doi: 10.1130/0091-7613(1997)025<0042:MEOLKU>2.3.CO;2 [21] Hofmann, A.W., 1988.Chemical Differentiation of the Earth:The Relationship between Mantle, Continental Crust, and Oceanic Crust.Earth and Planetary Science Letters, 90(3):297-314. doi: 10.1016/0012-821X(88)90132-X [22] Hofmann, A.W., 1997.Mantle Geochemistry:The Message from Oceanic Volcanism.Nature, 385:219-229. https://doi.org/10.1038/385219a0 [23] Kelemen, P.B., Hanghøj, K., Greene, A.R., 2007.One View of the Geochemistry of Subduction-Related Magmatic Arcs, with an Emphasis on Primitive Andesite and Lower Crust.Treatise on Geochemistry, 3:1-70. https://doi.org/10.1016/b0-08-043751-6/03035-8 [24] Lee, C.T.A., 2014.Physics and Chemistry of Deep Continental Crust Recycling.Treatise on Geochemistry, 4:423-456. https://doi.org/10.1016/b978-0-08-095975-7.00314-4 [25] Lee, C.T.A., Morton, D.M., Kistler, R.W., et al., 2007.Petrology and Tectonics of Phanerozoic Continent Formation:From Island Arcs to Accretion and Continental Arc Magmatism.Earth and Planetary Science Letters, 263(3-4):370-387. https://doi.org/10.1016/j.epsl.2007.09.025 [26] Niu, Y.L., Zhao, Z.D., Zhu, D.C., et al., 2013.Continental Collision Zones are Primary Sites for Net Continental Crust Growth:A Testable Hypothesis.Earth-Science Reviews, 127:96-110. https://doi.org/10.1016/j.earscirev.2013.09.004 [27] Peacock, S.M., 1993.The Importance of Blueschist-Eclogite Dehydration Reactions in Subducting Oceanic Crust.Geological Society of America Bulletin, 105(5):684-694. doi: 10.1130/0016-7606(1993)105<0684:TIOBED>2.3.CO;2 [28] Reubi, O., Blundy, J., 2009.A Dearth of Intermediate Melts at Subduction Zone Volcanoes and the Petrogenesis of Arc Andesites.Nature, 461:1269-1273. https://doi.org/10.1038/nature08510 [29] Rudnick, R.L., Gao, S., 2014.Composition of the Continental Crust.Treatise on Geochemistry.4:1-51. https://doi.org/10.1016/b978-0-08-095975-7.00301-6 [30] Rumble, D., Liou, J.G., Jahn, B.M., 2003.Continental Crust Subduction and Ultrahigh Pressure Metamorphism.Treatise on Geochemistry.3:293-319. https://doi.org/10.1016/b0-08-043751-6/03158-3 [31] Straub, S.M., Zellmer, G.F., Gómez-Tuena, A., et al., 2014.A Genetic Link between Silicic Slab Components and Calc-Alkaline Arc Volcanism in Central Mexico.Geological Society, London, Special Publications, 385(1):31-64. https://doi.org/10.1144/sp385.14 [32] Tatsumi, Y., Eggins, S., 1995.Subduction Zone Magmatism.Blackwell Science, Oxford, 211. [33] Valley, J.W., Kinny, P.D., Schulze, D.J., et al., 1998.Zircon Megacrysts from Kimberlite:Oxygen Isotope Variability among Mantle Melts.Contributions to Mineralogy and Petrology, 133(1-2):1-11. https://doi.org/10.1007/s004100050432 [34] Wang, Y., Zhao, Z.F., Zheng, Y.F., et al., 2011.Geochemical Constraints on the Nature of Mantle Source for Cenozoic Continental Basalts in East-Central China.Lithos, 125(3-4):940-955. doi: 10.1016/j.lithos.2011.05.007 [35] Xu, S.T., Su, W., Liu., Y.C., et al., 1992.Diamond from the Dabie Shan Metamorphic Rocks and Its Implication for Tectonic Setting.Science, 256(5053):80-82. https://doi.org/10.1126/science.256.5053.80 [36] Xu, Z., Zhao, Z.F., Zheng, Y.F., 2012.Slab-Mantle Interaction for Thinning of Cratonic Lithospheric Mantle in North China:Geochemical Evidence from Cenozoic Continental Basalts in Central Shandong.Lithos, 146-147:202-217. https://doi.org/10.1016/j.lithos.2012.05.019 [37] Xu, Z., Zheng, Y.F., 2017.Continental Basalts Record the Crust-Mantle Interaction in Oceanic Subduction Channel:A Geochemical Case Study from Eastern China.Journal of Asian Earth Sciences, 145:233-259. https://doi.org/10.1016/j.jseaes.2017.03.010 [38] Yang, Q.L., Zhao, Z.F., Zheng, Y.F., 2012a.Modification of Subcontinental Lithospheric Mantle above Continental Subduction Zone:Constraints from Geochemistry of Mesozoic Gabbroic Rocks in Southeastern North China.Lithos, 146-147:164-182. https://doi.org/10.1016/j.lithos.2012.05.005 [39] Yang, Q.L., Zhao, Z.F., Zheng, Y.F., 2012b.Slab-Mantle Interaction in Continental Subduction Channel:Geochemical Evidence from Mesozoic Gabbroic Intrusives in Southeastern North China.Lithos, 155:442-460. https://doi.org/10.1016/j.lithos.2012.10.003 [40] Zhang, J., Zhao, Z.F., Zheng, Y.F., et al., 2010.Postcollisional Magmatism:Geochemical Constraints on the Petrogenesis of Mesozoic Granitoids in the Sulu Orogen, China.Lithos, 119(3):512-536. https://doi.org/10.1016/j.lithos.2010.08.005. [41] Zhang, J., Zhao, Z.F., Zheng, Y.F., et al., 2012.Zircon Hf-O Isotope and Whole-Rock Geochemical Constraints on Origin of Postcollisional Mafic to Felsic Dykes in the Sulu Orogen.Lithos, 136-139:225-245. https://doi.org/10.1016/j.lithos.2011.06.006 [42] Zhang, J.J., Zheng, Y.F., Zhao, Z.F., 2009.Geochemical Evidence for Interaction between Oceanic Crust and Lithospheric Mantle in the Origin of Cenozoic Continental Basalts in East-Central China.Lithos, 110(1-4):305-326. https://doi.org/10.1016/j.lithos.2009.01.006 [43] Zhao, Z.F., Dai, L.Q., Zheng, Y.F., 2013.Postcollisional Mafic Igneous Rocks Record Crust-Mantle Interaction during Continental Deep Subduction.Scientific Reports, 3:3413. https://doi.org/10.1038/srep03413 [44] Zhao, Z.F., Dai, L.Q., Zheng, Y.F., 2015.Two Types of the Crust-Mantle Interaction in Continental Subduction Zones.Science China:Earth Sciences, 45(7):900-915(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-JDXG201508004.htm [45] Zhao, Z.F., Liu, Z.B., Chen, Q., 2017b.Melting of Subducted Continental Crust:Geochemical Evidence from Mesozoic Granitoids in the Dabie-Sulu Orogenic Belt, East-Central China.Journal of Asian Earth Sciences, 145:260-277. https://doi.org/10.1016/j.jseaes.2017.03.038 [46] Zhao, Z.F., Zheng, Y.F., 2009.Remelting of Subducted Continental Lithosphere:Petrogenesis of Mesozoic Magmatic Rocks in the Dabie-Sulu Orogenic Belt.Science in China:Earth Science, 52(9):1295-1318. https://doi.org/10.1007/s11430-009-0134-8 [47] Zhao, Z.F., Zheng, Y.F., Chen, Y.X., et al., 2017a.Partial Melting of Subducted Continental Crust:Geochemical Evidence from Synexhumation Granite in the Sulu Orogen.GSA Bulletin, 129(11-12):1692-1707. https://doi.org/10.1130/b31675.1 [48] Zhao, Z.F., Zheng, Y.F., Zhang, J., et al., 2012.Syn-Exhumation Magmatism during Continental Collision:Evidence from Alkaline Intrusives of Triassic Age in the Sulu Oroge.Chemical Geology, 328:70-88. https://doi.org/10.1016/j.chemgeo.2011.11.002 [49] Zheng, Y.F., 2012.Metamorphic Chemical Geodynamics in Continental Subduction Zones.Chemical Geology, 328:5-48. https://doi.org/10.1016/j.chemgeo.2012.02.005 [50] Zheng, Y.F., 2019.Subduction Zone Geochemistry.Geoscience Frontiers, 10:1223-1254. https://doi.org/10.1016/j.gsf.2019.02.003 [51] Zheng, Y.F., Chen, R.X., Xu, Z., et al., 2016.The Transport of Water in Subduction Zones.Science China:Earth Sciences, 59(4):651-682. https://doi.org/10.1007/s11430-015-5258-4 [52] Zheng, Y.F., Chen, R.X., Zhao, Z.F., 2009.Chemical Geodynamics of Continental Subduction-Zone Metamorphism:Insights from Studies of the Chinese Continental Scientific Drilling (CCSD) Core Samples.Tectonophysics, 475(2):327-358. https://doi.org/10.1016/j.tecto.2008.09.014 [53] Zheng, Y.F., Chen, Y.X., 2016.Continental versus Oceanic Subduction Zones.National Science Review, 3:495-519. https://doi.org/10.1093/nsr/nww049 [54] Zheng, Y.F., Chen, Y.X., Dai, L.Q., et al., 2015.Developing Plate Tectonics Theory from Oceanic Subduction Zones to Collisional Orogens.Science China:Earth Sciences, 58(7):1045-1069. https://doi.org/10.1007/s11430-015-5097-3 [55] Zheng, Y.F., Fu, B., Gong, B., et al., 2003.Stable Isotope Geochemistry of Ultrahigh Pressure Metamorphic Rocks from the Dabie-Sulu Orogen in China:Implications for Geodynamics and Fluid Regime.Earth-Science Reviews, 62(1-2):105-161. https://doi.org/10.1016/s0012-8252(02)00133-2 [56] Zheng, Y.F., Hermann, J., 2014.Geochemistry of Continental Subduction-Zone Fluids.Earth, Planets and Space, 66(1):93. https://doi.org/10.1186/1880-5981-66-93 [57] Zheng, Y.F., Xia, Q.X., Chen, R.X., et al., 2011.Partial Melting, Fluid Supercriticality and Element Mobility in Ultrahigh-Pressure Metamorphic Rocks during Continental Collision.Earth-Science Reviews, 107(3-4):342-374. https://doi.org/10.1016/j.earscirev.2011.04.004 [58] Zheng, Y.F., Xu, Z., Zhao, Z.F., et al., 2018.Mesozoic Mafic Magmatism in North China:Implications for Thinning and Destruction of Cratonic Lithosphere.Science China:Earth Sciences, 61(4):353-385. https://doi.org/10.1007/s11430-017-9160-3 [59] Zheng, Y.F., Zhao, Z.F., 2017.Introduction to the Structures and Processes of Subduction Zones.Journal of Asian Earth Sciences, 145:1-15. https://doi.org/10.1016/j.jseaes.2017.06.034 [60] Zheng, Y.F., Zhao, Z.F., Chen, R.X., 2019.Ultrahigh-Pressure Metamorphic Rocks in the Dabie-Sulu Orogenic Belt:Compositional Inheritance and Metamorphic Modification.Geological Society, London, Special Publications, 474(1):89-132. doi: 10.1144/SP474.9 [61] Zindler, A., Hart, S., 1986.Chemical Geodynamics.Annual Review of Earth and Planetary Sciences, 14:493-571. https://doi.org/10.1146/annurev.ea.14.050186.002425 [62] 赵子福, 戴立群, 郑永飞, 2015.大陆俯冲带两类壳幔相互作用.中国科学:地球科学, 45(7):900-915. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201507002