Neoproterozoic Oceanic Slab-Mantle Interaction: Geochemical Evidence from Mesozoic Andesitic Rocks in the Middle and Lower Yangtze Valley
-
摘要: 大陆弧安山岩的形成是大洋板片向大陆边缘之下俯冲的结果,但是在具体形成机制上存在很大争议.针对这个问题,对长江中下游地区中生代安山质火山岩及其伴生的玄武质和英安质火山岩进行了系统的岩石地球化学研究,结果对大陆弧安山质火成岩的成因提出了新的机制.分析表明,这些岩石形成于早白垩世,它们不仅表现出典型的岛弧型微量元素分布特征,而且具有高度富集的Sr-Nd-Hf同位素和高的放射成因Pb以及高的氧同位素组成.通过全岩和矿物地球化学成分变化检查发现,地壳混染和岩浆混合作用对其成分的富集特征贡献有限,而其岩浆源区含有丰富的俯冲地壳衍生物质才是其成分富集的根本原因.虽然这些火山岩的喷发年龄为中生代,但是其岩浆源区形成于新元古代早期的华夏洋壳俯冲对扬子克拉通边缘之下地幔楔的交代作用.大陆弧安山岩地幔源区中含有大量俯冲洋壳沉积物部分熔融产生的含水熔体,显著区别于大洋弧玄武岩的地幔源区,其中只含有少量俯冲洋壳来源的富水溶液和含水熔体.正是这些含水熔体交代上覆地幔楔橄榄岩,形成了不同程度富集的超镁铁质-镁铁质地幔源区.在早白垩纪时期,古太平洋俯冲过程的远弧后拉张导致中国东部岩石圈发生部分熔融,其中超镁铁质地幔源区熔融形成玄武质火山岩,镁铁质地幔源区则熔融形成安山质火山岩.因此,大陆弧安山岩成因与大洋弧玄武岩一样,可分为源区形成和源区熔融两个阶段,其中第一阶段对应于俯冲带壳幔相互作用.Abstract: The generation of continental arc andesites is generally attributed to subduction of oceanic slabs beneath continental margins, but the petrogenetic processes of andesites remain widely debated. In order to address this problem, a series of integrated geochemical studies were performed for Mesozoic andesitic volcanics and associated basaltic and dacitic volcanics from the Middle and Lower Yangtze Valley, South China. The results lead to proposition of a new model for the generation of andesites. Laser-ablation inductively coupled mass spectroscopy (LA-ICPMS) zircon U-Pb dating yields consistent ages of Early Cretaceous for the formation of these volcanics, which are characterized by arc-like trace element distribution patterns showing significant enrichment in large ion lithophile element (LILE), Pb and light rare earth element (LREE) but depletion in high field strength element (HFSE) and heavy rare earth element (HREE). They also exhibit relatively enriched Sr-Nd-Hf isotope compositions, high radiogenic Pb isotope compositions and high zircon O isotope composition. Crustal contamination and magma mixing had insignificant contributions to the enriched compositions of these andesites. Instead, the enriched compositions were imparted by incorporating the subducted crust-derived materials into their magma sources. Despite their formation in the Late Mesozoic, their magma sources were generated through the crust-mantle interaction when the Cathaysian oceanic crust was subducted beneath the Yangtze craton in the Early Neoproterozoic. There are large amounts of subducted sediment-derived hydrous melts in the magma sources of continental arc andesites, in contrast to the limited amounts of aqueous solutions and hydrous melts in the magma sources of oceanic arc basalts. It is the hydrous melts that would chemically react with the overlying mantle wedge peridotite to generate mafic-ultramafic metasomatites. In the Early Cretaceous, these metasomatites underwent partial melting due to remote backarc extension owing to westward subduction of the Paleo-Pacific slab beneath the eastern China continent. Whereas partial melting of the ultramafic metasomatite produced basaltic melts, partial melting of the mafic metasomatite produced andesitic melts. In this regard, petrogenesis of both continental arc andesites and oceanic arc basalts shares two-stage processes, in which the first is the generation of mantle sources through subduction zone metasomatism and the second is the partial melting of mantle sources for mafic magmatism, with the first stage corresponds to the slab-mantle interaction in oceanic subduction zones.
-
Key words:
- andesitic magmatism /
- oceanic crust subduction /
- sediment recycling /
- source mixing /
- mantle metasomatites /
- petrology
-
0. 引言
实验岩石学研究认为,岛弧玄武岩形成的主要机制是俯冲大洋地壳析出流体交代地幔楔橄榄岩使其部分熔融(Grove et al., 2012).地球化学研究发现,岛弧玄武岩中含有显著的地壳组分,其中不仅富含水溶性元素而且富含水不溶性元素,由此提出俯冲洋壳衍生的富水溶液和含水熔体都参与了地幔楔交代作用(Elliott,2003).对俯冲带热结构的分析表明,在板块俯冲压缩阶段,板片与地幔楔之间处于构造耦合状态,弧下深度板片脱水温度显著低于橄榄岩固相线,难以立即引起地幔楔熔融;只有当俯冲板片与地幔楔之间发生构造解耦时,地幔楔底部受到软流圈地幔加热才发生部分熔融引起岛弧岩浆作用(Zheng,2019).因此,对于岛弧玄武岩成因来说,俯冲带流体交代与地幔楔熔融分属两个阶段,根据岛弧玄武岩成分中不同性质元素的丰度和比值能够识别其源区含有的交代介质是富水溶液还是含水熔体.
对于大陆弧安山岩成因机制,早期研究有玄武岩浆结晶分异与地壳混染以及含水地幔橄榄岩直接熔融之分(Gill,1981;Tatsumi and Eggins, 1995;Grove et al., 2012;Lee and Bachmann, 2014).尽管玄武岩浆结晶分异和含水橄榄岩部分熔融都能够产生不同成分的安山质熔体,但是这两个从主要元素成分特征得出的机制不能解释安山岩中的大陆地壳同位素信息(Straub et al., 2011;Gómez⁃Tuena et al., 2014;Kelemen et al., 2014;Chen and Zhao, 2017).为了协调这个矛盾,一般假设幔源玄武岩浆上升到大陆岩石圈莫霍深度后同化地壳岩石(牛晓露等,2018),对此主要有AFC(DePaolo,1981)和MASH(Hildreth and Moorbath, 1988)两种模型.最近,学者们根据计算地球动力学计算结果提出俯冲地壳底辟模型,强调俯冲板片表层构造混杂岩在弧下深度受到刮削后底辟上升至地幔楔核部与橄榄岩混合后发生部分熔融形成安山质熔体(Marschall and Schumacher, 2012;Nielsen and Marschall, 2017;Codillo et al., 2018).所有上述模型都是只考虑安山岩的主要元素或者放射成因同位素,结果导致一个模型能够解释安山岩成分的某个方面,但是不能解释安山岩成分的其他方面.为了解决这个问题,我们将主量元素和微量元素与放射成因同位素和稳定同位素放到一起来综合考虑,结果可以根据大陆弧安山岩地球化学特点来识别其中所含俯冲带流体的性质.
1. 长江中下游地区中生代安山质火山岩
安山质岩浆作用不仅发生在现代活动大陆边缘(同俯冲岩浆作用),而且发生在古大陆边缘(俯冲后岩浆作用).一个典型实例就是华南长江中下游地区中生代安山质岩浆作用(Chen et al., 2014, 2016;孙洋等,2017).尽管同俯冲和俯冲后岩浆作用在地幔楔部分熔融的时间上存在显著差异,但是它们在地幔源区的形成机制上没有显著差别,结果在岩石成分上表现出相似性(Chen and Zhao, 2017).
Chen et al.(2014)的岩石地球化学研究表明,长江中下游庐枞盆地火山岩主要由玄武质粗面安山岩和粗面安山岩组成,伴随有少量的粗面玄武岩和粗面岩.这些岩石具有变化的SiO2(48.66%~63.43%)含量和相对低的MgO(0.39%~4.85%)含量.它们具有岛弧型微量元素分布特征(图 1),表现为富集LILE、Pb和LREE,亏损HFSE,还具有富集的Sr⁃Nd⁃Hf和高的放射成因Pb同位素组成(图 2).锆石U⁃Pb定年给出127±2 Ma至137±1 Ma的岩浆结晶年龄,这些锆石具有高度变化的εHf(t)值以及高的δ18O值(5.3‰~7.6‰)(图 3).虽然庐枞火山岩具有较为演化的成分特征,但是其在Harker图解及La⁃La/Sm比值图解(图 4)中没有显示明显的分离结晶趋势.同时,庐枞火山岩的放射成因同位素组成与分异指标之间没有显著的协变关系(图 5).这些特征表明,庐枞安山质火山岩的主量和微量元素、放射成因同位素以及氧同位素特征主体继承自其地幔源区,其中富集的地球化学成分不是通过地壳混染所获得,而是通过俯冲古地壳沉积物在弧下深度产生大量的含水长英质熔体交代上覆地幔楔来传递的.因此,结合区域构造演化历史,这些中生代安山质火山岩记录了新元古代洋壳衍生流体对地幔楔的交代作用.
图 1 长江中下游地区庐枞盆地火山岩原始地幔标准化的微量元素分布图据Chen et al.(2014);GLOSS.全球俯冲沉积物平均组成(Plank and Langmuir, 1998);CAA.大陆弧安山岩(Kelemen et al., 2014);OAB.大洋弧玄武岩(Kelemen et al., 2014).原始地幔微量元素组成根据McDonough and Sun (1995)Fig. 1. Primitive mantle⁃normalized trace element patterns for the Luzong volcanics in the Middle⁃Lower Yangtze River belt, South China图 2 长江中下游地区庐枞盆地火山岩初始Sr⁃Nd⁃Hf⁃Pb同位素组成图解同位素初始值回算到130 Ma;据Chen et al.(2014)Fig. 2. The initial Sr and Nd, Hf and Pb isotope correlation diagrams for the Luzong volvanics in the Middle⁃Lower Yangtze River belt, South China图 3 长江中下游地区庐枞盆地火山岩锆石δ18O值统计据Chen et al.(2014);正常地幔锆石δ18O为5.3‰±0.3‰ (Valley et al., 1998)Fig. 3. Histogram of zircon δ18O values for Luzong volvanics in the Middle⁃Lower Yangtze River belt, South China为了验证上述古洋壳俯冲带板片-地幔楔相互作用机制,Chen et al.(2016)对宁芜盆地安山质火山岩进行了系统的岩石地球化学研究.根据其截然不同的成分特征,可将这些火山岩分为两组.相对于第二组样品,第一组样品具有更为富集的Sr⁃Nd⁃Hf和更高的放射成因Pb同位素组成和相对低的熔体活动性元素含量.对这些地球化学特征的综合分析表明,第一组为富集程度较高、含有大量金云母的地幔源区经历较高程度部分熔融的产物.相反,第二组形成于富集程度相对较低、金云母含量较少的地幔源区较低程度的部分熔融.这一结果再次表明,含有大量俯冲沉积物来源熔体的地幔源区控制了安山质火山岩的地球化学成分,从而验证了对庐枞盆地安山质火山岩的研究结果,表明我们提出的新机制在区域上具有普适性.
我们注意到,宁芜盆地火山岩具有不平衡的岩石学和矿物学特征,表明岩浆混合作用可能对其形成具有一定的贡献.为了评估岩浆过程对安山岩成分的影响,Chen et al.(2018a, 2018b)对宁芜火山岩中的单斜辉石斑晶进行了系统岩石学和地球化学研究,结果对宁芜火山岩的岩浆演化过程有了系统的认识.研究发现,这些斑晶具有复杂的结构和成分环带,且不同的环带对应于不同的REE配分形式.根据其截然不同的REE配分模式,可以将这些单斜辉石分为三类.第一类具有平坦的REE配分模式和强烈的Eu负异常,第二类具有LREE⁃MREE富集的右倾的REE配分模式以及中等程度的Eu负异常,第三类具有MREE亏损的REE配分模式和强烈的Eu负异常.第一类单斜辉石只出现在大王山组样品中,呈独立斑晶形式存在.第二类和第三类单斜辉石在大王山和娘娘山组火山岩中均有分布.值得注意的是,所有具有反环带特征的单斜辉石斑晶的边部均为第二类辉石,而其核部均为第三类辉石.这三类辉石呈现出两种截然不同的成分演化趋势,指示它们结晶自两种截然不同的熔体.其中第一类单斜辉石结晶自由REE富集程度较弱的初始熔体演化形成的熔体,第二类和第三类辉石则结晶自由REE富集程度较高的初始熔体演化形成的熔体.该结果表明,由源区混合导致的源区成分不均一以及同源岩浆之间的混合作用控制了宁芜盆地安山岩的岩石学以及全岩和矿物的地球化学特征.
尽管上述研究对长江中下游地区安山质火山岩记录的俯冲带壳幔相互作用有了一定的认识,但是它们与区域玄武岩之间的成因联系以及对整个长江中下游地区晚中生代火山岩成因的意义有待研究.为此,Chen and Zhao(2017)通过统计文献发表的相关数据,系统对比分析了该地区玄武岩质和安山岩质火山岩.结果发现,长江中下游地区早白垩世镁铁质火山岩均具有岛弧型微量元素分布特征、富集的Sr⁃Nd⁃Hf和更高的放射成因Pb同位素特征.总体上,安山岩具有显著高于玄武岩的Th和U的含量,安山岩具有类似于玄武岩的Sr和Pb同位素组成,但其Nd和Hf同位素组成比玄武岩显著富集.同时,安山岩具有低的Ba/Th比值和高的La/Sm比值,玄武岩则具有高的Ba/Th比值和低的La/Sm比值.这些特征表明,安山岩的地幔源区受到了沉积物来源的含水熔体为主、富水溶液为辅的俯冲地壳来源物质的交代,而玄武岩地幔源区则恰恰相反.据此我们提出,玄武岩和安山岩在大陆弧的密切共生可能不是分异演化的结果,而是来自高度不均一地幔源区的部分熔融,富水溶液交代地幔的部分熔融倾向于形成高镁低硅的玄武质熔体,而含水熔体交代地幔的熔融则倾向于形成低镁高硅的安山质熔体(Sobolev et al., 2007).因此,长江中下游地区中生代岛弧型玄武质-安山质岩浆作用实质上是新元古代古安第斯型俯冲带形成的地幔源区在中生代的再活化,这个地幔源区的形成机制与现代活动大陆边缘类似,但是再活化时间滞后了700 Ma以上.
2. 亟待解决的问题
2.1 含水富硅辉石岩部分熔融熔体特征
上述研究表明,如果大量俯冲沉积物来源熔体交代地幔楔橄榄岩形成镁铁质岩浆源区,就可以解释安山岩在微量元素、放射成因以及氧同位素方面的地球化学特征(Chen et al., 2014, 2016;Chen and Zhao, 2017).在这个机制中,一个关键假设就是:俯冲地壳来源熔体与地幔楔橄榄岩反应形成了一种镁铁质地幔交代岩,可能是含水富硅的辉石岩,由此部分熔融直接产生安山质熔体.但是,交代成因辉石岩部分熔融能否能够再现安山岩的主量元素特征,目前还不是十分清楚.由于大量板片来源熔体的加入,交代成因的含水富硅辉石岩在岩石学上与橄榄岩有很大区别(Wyllie and Sekine, 1982;Hirschmann and Stolper, 1996;Lambart et al., 2009).因此,其熔融产物在成分上也理应与橄榄岩有很大区别.Sobolev et al.(2007)对无水的交代成因辉石岩的部分熔融行为进行了实验岩石学研究,结果表明交代辉石岩部分熔融可以形成SiO2 > 60%、MgO < 5%、Mg# < 55的安山质熔体.然而,很多学者依然坚持交代辉石岩来源的初始熔体应该具有与地幔橄榄石和辉石平衡的高Mg#(Straub et al., 2011, 2014;Gómez⁃Tuena et al., 2014, 2018),这实际上要求辉石岩本身及部分熔融产生的熔体与地幔楔橄榄岩之间达到化学平衡.但是,熔体-橄榄岩反应时周围温度相对较低(Zheng and Chen, 2016),因此,交代反应并不一定能够达到铁镁交换平衡.其次,由于地幔楔中存在不同比例的镁铁质-超镁铁质岩石,他们在受到加热时发生的是不一致熔融而不是一致熔融,因此易熔岩石产生的熔体不可能与难熔岩石之间达到化学平衡.这个预测与天然出露交代辉石岩和熔体-橄榄岩反应产物辉石岩中辉石的分析结果一致,即交代成因辉石较反应残留辉石具有低得多的Mg#(Rapp et al., 1999;Berly et al., 2006).前人研究发现,反应产生的辉石Mg#与反应时的有效熔体/橄榄岩比例有关(Rapp et al., 1999).因此,交代辉石岩来源的熔体可以具有安山质的主量元素成分特征,但一般并不具有类似地幔橄榄岩来源熔体的高Mg#.
2.2 地幔楔中辉石岩的比例
对弧下地幔块体及弧岩石中的地幔包体的研究发现,辉石岩虽然在弧下地幔中普遍存在,但是其体积比却非常有限(< 10%)(Brooker et al., 2004;Berly et al., 2006).这不得不让人怀疑是否有充足的交代辉石岩供应安山质岩浆作用.Qian et al.(2018)在上地幔压力和温度条件下,用局部密度近似法对顽火辉石弹性特性进行了第一性原理计算,结果表明地幔楔低的VP/VS特征要求其中含有 > 40%的斜方辉石.对于弧下地幔楔斜方辉石的富集,一般认为是熔体-橄榄岩反应的结果(Kelemen et al., 1992, 1998;Rapp et al., 1999, 2010; Gervasoni et al., 2017).对于上述地质学和地球物理学观察的矛盾最合理解释就是,交代辉石岩由于其富集富沃的特征,相对橄榄岩具有更低的固相线温度,更容易发生大比例熔融,因此在地幔楔中的居留时间较短(Wyllie and Sekine, 1982;Hirschmann and Stolper, 1996;Lambart et al., 2009).从这个角度来说,现今出露的弧下地幔块体以及地幔包体中辉石岩的比例只是地幔楔中辉石岩比例的最小估计,因为出露的这些块体及包体很大可能是熔融的残留物,其中绝大部分辉石岩已经在熔融过程中消耗殆尽(Chen and Zhao, 2017).
2.3 辉石岩部分熔融机制
对现今俯冲带热结构的研究表明,交代辉石岩在俯冲板片和地幔楔界面之上形成时应具有低于其固相线的温度,因此需要后续的加热过程来诱发熔融(Zheng and Chen, 2016).我们对长江中下游地区安山质火山岩的研究也证实,交代辉石岩从形成到熔融,中间可以间隔几百个百万年(Chen et al., 2014, 2016;Chen and Zhao, 2017).对于地幔楔受热机制,文献中还存在不同看法.有的学者认为,交代辉石岩本身由于低密度而发生的底辟作用可以使得其上升到浅部热的地幔楔从而发生部分熔融(Hall and Kincaid, 2001;England and Katz, 2010),但是在地幔楔浅部是否存在高的温度值得推敲.有的学者认为,俯冲板片的拖曳作用可以将交代辉石岩带到更高压、高温的区域从而诱发熔融(Ionov and Hofmann, 1995;Tatsumi and Eggins, 1995;Grove et al., 2009, 2012),但是拖曳过程本身可能发生在低热梯度而不是高热梯度条件下,即使受热也需要拉张体制.还有学者认为,板片回卷所引发的软流圈上涌可以有效加热这些交代辉石岩,使其发生部分熔融(Kincaid and Griffiths, 2003;Zheng and Chen, 2016),这里实际上是板片回卷导致其与地幔楔之间发生拉张.虽然交代辉石岩的熔融机制问题是一个很重要但尚未得到很好解决的问题,但是在地球动力学机制上构造拉张是必不可少的条件.
3. 结语
作为俯冲带最典型也是最复杂的一种岩石类型,大陆弧安山岩的成因一直受到广泛关注,也因此存在巨大争议.安山岩高度富集的地球化学特征到底是源自俯冲隧道及地幔楔中的深部壳幔相互作用还是源自亏损的幔源岩浆与富集的地壳岩石之间的浅部混染反应,一直是安山岩成因争论的焦点.我们通过对长江中下游地区俯冲后安山岩及伴生岩石的系统研究发现,安山岩的成分特征主体继承自其前寒武纪地幔源区.安山岩的地幔源区中含有大量再循环的、以古地壳沉积物来源熔体为主的地壳物质,这些熔体的加入将地幔楔橄榄岩改造成为含水的、富硅的辉石岩或者类似的富集含水矿物和辉石的岩石.对含水交代辉石岩熔融行为的实验岩石学研究及其在俯冲带形成之后造山带岩石圈熔融机制的研究,将是未来研究俯冲带壳幔相互作用对安山岩成因贡献的重点.
-
图 1 长江中下游地区庐枞盆地火山岩原始地幔标准化的微量元素分布图
据Chen et al.(2014);GLOSS.全球俯冲沉积物平均组成(Plank and Langmuir, 1998);CAA.大陆弧安山岩(Kelemen et al., 2014);OAB.大洋弧玄武岩(Kelemen et al., 2014).原始地幔微量元素组成根据McDonough and Sun (1995)
Fig. 1. Primitive mantle⁃normalized trace element patterns for the Luzong volcanics in the Middle⁃Lower Yangtze River belt, South China
图 2 长江中下游地区庐枞盆地火山岩初始Sr⁃Nd⁃Hf⁃Pb同位素组成图解
同位素初始值回算到130 Ma;据Chen et al.(2014)
Fig. 2. The initial Sr and Nd, Hf and Pb isotope correlation diagrams for the Luzong volvanics in the Middle⁃Lower Yangtze River belt, South China
图 3 长江中下游地区庐枞盆地火山岩锆石δ18O值统计
据Chen et al.(2014);正常地幔锆石δ18O为5.3‰±0.3‰ (Valley et al., 1998)
Fig. 3. Histogram of zircon δ18O values for Luzong volvanics in the Middle⁃Lower Yangtze River belt, South China
图 4 长江中下游地区庐枞盆地火山岩全岩La和(La/Sm)N图解
Fig. 4. Whole⁃rock La contents versus (La/Sm)N ratios for the Luzong volcanics in the Middle⁃Lower Yangtze River belt, South China
图 5 长江中下游地区庐枞盆地火山岩全岩SiO2含量和初始Nd同位素组成相关图
Fig. 5. Correlation diagrams between SiO2 content and initial Nd isotope ratio for the Luzong volcanics in the Middle⁃Lower Yangtze River belt, South China
-
[1] Berly, T, J., Arculus, R, J., Lapierre, H., et al., 2006.Supra⁃Subduction Zone Pyroxenites from San Jorge and Santa Isabel (Solomon Islands).Journal of Petrology, 47(8):1531-1555. doi: 10.1093/petrology/egl019 [2] Brooker, R, A., James, R, H., Blundy, J, D., 2004.Trace Elements and Li Isotope Systematics in Zabargad Peridotites: Evidence of Ancient Subduction Processes in the Red Sea Mantle.Chemical Geology 212(1-2):179-204. https://doi.org/10.1016/j.chemgeo.2004.08.007 [3] Chen, L., Zhao, Z, F., 2017.Origin of Continental Arc Andesites: The Composition of Source Rocks is the Key.Journal of Asian Earth Sciences, 145: 217-232, https://doi.org/10.1016/j.jseaes.2017.04.012 [4] Chen, L., Zhao, Z, F., Zheng, Y, F., 2014.Origin of Andesitic Rocks: Geochemical Constraints from Mesozoic Volcanics in the Luzong Basin, South China.Lithos, 190-191: 220-239. doi: 10.1016/j.lithos.2013.12.011 [5] Chen, L., Zheng, Y, F., Zhao, Z, F., 2016.Geochemical Constraints on the Origin of Late Mesozoic Andesites from the Ningwu Basin in the Middle⁃Lower Yangtze Valley, South China.Lithos, 254-255:94-117. doi: 10.1016/j.lithos.2016.03.012 [6] Chen, L., Zheng, Y, F., Zhao, Z, F., 2018a.Geochemical Insights from Clinopyroxene Phenocrysts into the Effect of Magmatic Processes on Petrogenesis of Intermediate Volcanics.Lithos, 316-317:137-153 doi: 10.1016/j.lithos.2018.07.014 [7] Chen, L., Zheng, Y, F., Zhao, Z, F., 2018b.A Common Crustal Component in the Sources of Bimodal Magmatism: Geochemical Evidence from Mesozoic Volcanics in the Middle⁃Lower Yangtze Valley, South China.GSA Bulletin, 130:1959-1980. [8] Codillo, E, A., Le Roux, V., Marschall, H, R., 2018.Arc⁃Like Magmas Generated by Mélange⁃Peridotite Interaction in the Mantle Wedge.Nature Communications, 9:2864. doi: 10.1038/s41467-018-05313-2 [9] DePaolo, D, J., 1981.Trace Element and Isotopic Effects of Combined Wallrock Assimilation and Fractional Crystallization.Earth and Planetary Science Letters, 53(2):189-202. doi: 10.1016/0012-821X(81)90153-9 [10] Elliott, T., 2003.Tracers of the Slab.Geophysical Monograph, 138: 23-46. http://cn.bing.com/academic/profile?id=c621c866e63da84110e4b4c02a4893fd&encoded=0&v=paper_preview&mkt=zh-cn [11] England, P, C., Katz, R, F., 2010.Melting above the Anhydrous Solidus Controls the Location of Volcanic Arcs.Nature, 467: 700-703. https://doi.org/10.1038/nature09417 [12] Gervasoni, F., Klemme, S., Rohrbach, A., et al., 2017.Experimental Constraints on Mantle Metasomatism Caused by Silicate and Carbonate Melts.Lithos, 282-283:173-186, https://doi.org/10.1016/j.lithos.2017.03.004 [13] Gill, J.B., 1981.Orogenic Andesites and Plate Tectonics.Springer⁃Verlag, New York, 390. [14] Gómez⁃Tuena, A., Mori, L., Straub, S.M., 2018.Geochemical and Petrological Insights into the Tectonic Origin of the Transmexican Volcanic Belt.Earth⁃Science Reviews, 183:153-181. https://doi.org/10.1016/j.earscirev.2016.12.006 [15] Gómez⁃Tuena, A., Straub, S.M., Zellmer, G.F., 2014.An Introduction to Orogenic Andesites and Crustal Growth.Geological Society, London, Special Publications, 385(1):1-13. doi: 10.1144/SP385.16 [16] Grove, T.L., Till, C.B., Lev, E., et al., 2009.Kinematic Variables and Water Transport Control the Formation and Location of Arc Volcanoes.Nature, 459: 694-697, https://doi.org/10.1038/nature08044 [17] Grove, T.L., Till, C.B., Krawczynski, M.J., 2012.The Role of H2O in Subduction Zone Magmatism.Annual Review of Earth and Planetary Sciences, 40(1):413-439. doi: 10.1146/annurev-earth-042711-105310 [18] Hall, P.S., Kincaid, C., 2001.Diapiric Flow at Subduction Zones: A Recipe for Rapid Transport.Science, 292(5526): 2472-2475. doi: 10.1126/science.1060488 [19] Hildreth, W., Moorbath, S., 1988.Crustal Contributions to Arc Magmatism in the Andes of Central Chile.Contributions to Mineralogy and Petrology, 98(4):455-489. doi: 10.1007/BF00372365 [20] Hirschmann, M.M., Stolper, E.M., 1996.A Possible Role for Garnet Pyroxenite in the Origin of the "Garnet Signature" in MORB.Contributions to Mineralogy and Petrology, 124(2):185-208. doi: 10.1007/s004100050184 [21] Ionov, D.A., Hofmann, A.W., 1995.Nb⁃Ta⁃Rich Mantle Amphiboles and Micas: Implications for Subduction⁃Related Metasomatic Trace Element Fractionations.Earth and Planetary Science Letters, 131(3-4):341-356, https://doi.org/10.1016/0012⁃821x(95)00037⁃d [22] Kelemen, P.B., Dick, H.J., Quick, J, E., 1992.Formation of Harzburgite by Pervasive Melt/Rock Reaction in the Upper Mantle.Nature, 358:635-641. doi: 10.1038/358635a0 [23] Kelemen, P.B., Hart, S.R., Bernstein, S., 1998.Silica Enrichment in the Continental Upper Mantle Via Melt/Rock Reaction.Earth and Planetary Science Letters, 164(1-2):387-406. doi: 10.1016/S0012-821X(98)00233-7 [24] Kelemen, P.B., Hanghoj, K., Greene, A.R., 2014.One View of the Geochemistry of Subduction⁃Related Magmatic Arcs, with an Emphasis on Primitive Andesite and Lower Crust.Treatise on Geochemistry, 3:593-659. http://adsabs.harvard.edu/abs/2003TrGeo...3..593K [25] Kincaid, C., Griffiths, R.W., 2003.Laboratory Models of the Thermal Evolution of the Mantle during Rollback Subduction.Nature, 425:58-62, https://doi.org/10.1038/nature01923 [26] Lambart, S., Laporte, D., Schiano, P., 2009.An Experimental Study of Pyroxenite Partial Melts at 1 and 1.5 GPa: Implications for the Major⁃Element Composition of Mid⁃Ocean Ridge Basalts.Earth and Planetary Science Letters, 288(1-2):335-347. doi: 10.1016/j.epsl.2009.09.038 [27] Lee, C.T.A., Bachmann, O., 2014.How Important is the Role of Crystal Fractionation in Making Intermediate Magmas? Insights from Zr and P Systematics.Earth and Planetary Science Letters, 393:266-274, https://doi.org/10.1016/j.epsl.2014.02.044 [28] Marschall, H.R., Schumacher, J.C., 2012.Arc Magmas Sourced from Mélange Diapirs in Subduction Zones.Nature Geoscience, 5: 862-867. doi: 10.1038/ngeo1634 [29] McDonough, W.F., Sun, S., 1995.The Composition of the Earth.Chemical Geology, 120(3-4):223-253. doi: 10.1016/0009-2541(94)00140-4 [30] Nielsen, S.G., Marschall, H.R., 2017.Geochemical Evidence for Mélange Melting in Global Arcs.Science Advances, 3(4):e1602402. doi: 10.1126/sciadv.1602402 [31] Niu, X.L., Liu, F., Feng, G.Y., et al., 2018.Discovery and Significance of Early Silurian Andesites in Wuwamen Area, Southern Margin of Central Tianshan Block.Earth Science, 43(4): 1350-1366(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201804027 [32] Plank, T., Langmuir, C.H., 1998.The Chemical Composition of Subducting Sediment and Its Consequences for the Crust and Mantle.Chemical Geology, 145:323-394. doi: 10.1016-S0009-2541(97)00150-2/ [33] Qian, W., Wang, W., Zou, F., et al., 2018.Elasticity of Orthoenstatite at High Pressure and Temperature: Implications for the Origin of Low VP/VS Zones in the Mantle Wedge.Geophysical Research Letters, 45:665-673. doi: 10.1002/2017GL075647 [34] Rapp, R.P., Norman, M.D., Laporte, D., et al., 2010.Continent Formation in the Archean and Chemical Evolution of the Cratonic Lithosphere: Melt⁃Rock Reaction Experiments at 3-4 GPa and Petrogenesis of Archean Mg⁃Diorites (Sanukitoids).Journal of Petrology, 51:1237-1266, https://doi.org/10.1093/petrology/egq017 [35] Rapp, R.P., Shimizu, N., Norman, M.D., et al., 1999.Reaction between Slab⁃Derived Melts and Peridotite in the Mantle Wedge: Experimental Constraints at 3.8 GPa.Chemical Geology, 160:335-356. doi: 10.1016/S0009-2541(99)00106-0 [36] Sobolev, A.V., Hofmann, A.W., Kuzmin, D.V., et al., 2007.The Amount of Recycled Crust in Sources of Mantle⁃Derived Melts.Science, 316:412-417. doi: 10.1126/science.1138113 [37] Straub, S.M., Gómez⁃Tuena, A., Stuart, F.M., et al., 2011.Formation of Hybrid Arc Andesites beneath Thick Continental Crust.Earth and Planetary Science Letters, 303(3-4):337-347. doi: 10.1016/j.epsl.2011.01.013 [38] Straub, S.M., Zellmer, G.F., Gómez⁃Tuena, A., et al., 2014.A Genetic Link between Silicic Slab Components and Calc⁃Alkaline Arc Volcanism in Central Mexico.Geological Society, London, Special Publications, 385(1):31-64. doi: 10.1144/SP385.14 [39] Sun, Y., Ma, C.Q., Liu, B, 2017.Record of Late Yanshanian Mafic Magmatic Activity in the Middle⁃Lower Yangtze River Metallogenic Belt.Earth Science, 42(6): 891-908(in Chinese with English abstract), http://gateway.proquest.com/openurl?res_dat=xri:pqm&ctx_ver=Z39.88-2004&rfr_id=info:xri/sid:baidu&rft_val_fmt=info:ofi/fmt:kev:mtx:article&genre=article&jtitle=Earth%20Science&atitle=Record%20of%20Late%20Yanshanian%20Mafic%20Magmatic%20Activity%20in%20the%20Middle-Lower%20Yangtze%20River%20Metallogenic%20Belt [40] Tatsumi, Y., Eggins, S., 1995.Subduction Zone Magmatism, Blackwell Science, Oxford, 211. [41] Valley, J.W., Kinny, P.D., Schulze, D.J., et al., 1998.Zircon Metacrysts from Kimberlite: Oxygen Isotope Variability among Mantle Melts.Contributions to Mineralogy and Petrology, 133(1-2):1-11. doi: 10.1007/s004100050432 [42] Wyllie, P, J., Sekine, T., 1982.The Formation of Mantle Phlogopite in Subduction Zone Hybridization.Contributions to Mineralogy and Petrology, 79(4):375-380. doi: 10.1007/BF01132067 [43] Zheng, Y, F., 2019.Subduction Zone Geochemistry.Geoscience Frontiers, 10:1223-1254. doi: 10.1016/j.gsf.2019.02.003 [44] Zheng, Y.F., Chen, Y.X., 2016.Continental versus Oceanic Subduction Zones.National Science Review, 3(4):495-519. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0220896643/ [45] 牛晓露, 刘飞, 冯光英, 等, 2018.中天山南缘乌瓦门早志留世安第斯型安山岩的发现及意义.地球科学, 43(4):1350-1366. doi: 10.3799/dqkx.2018.725 [46] 孙洋, 马昌前, 刘彬, 2017.长江中下游地区燕山晚期基性岩浆活动的记录.地球科学, 42(6):891-908. doi: 10.3799/dqkx.2017.077 期刊类型引用(4)
1. 杨昕,唐菊兴,杨宗耀,谢富伟,郝金月,吴鑫,宋壮壮. 西藏斯弄多地区晚白垩世埃达克岩:岩石成因及成矿潜力指示. 地球科学. 2021(05): 1597-1612 . 本站查看
2. 刘桂春,陈光艳,李静,陈棵,孙柏东,马进华,钱鑫,赵天宇. 扬子西缘祥云响水花岗岩体的成因:锆石U-Pb年代学、岩石地球化学和Sr-Nd同位素制约. 地球科学. 2020(07): 2426-2440 . 本站查看
3. 张靖怡,张舒,张赞赞,蔡晓兵,岳运华,魏国辉. 安徽庐枞盆地黄屯地区岩浆侵入活动时限及元素地球化学特征. 地球科学与环境学报. 2020(05): 584-602 . 百度学术
4. 郑洪伟,李廷栋,贺日政. 长江中下游成矿带深部结构层析成像图像揭示华北板块的东南向俯冲. 地球科学. 2020(11): 4187-4197 . 本站查看
其他类型引用(2)
-