Neoproterozoic Oceanic Slab-Mantle Interaction: Geochemical Evidence from Mesozoic Andesitic Rocks in the Middle and Lower Yangtze Valley
-
摘要: 大陆弧安山岩的形成是大洋板片向大陆边缘之下俯冲的结果,但是在具体形成机制上存在很大争议.针对这个问题,对长江中下游地区中生代安山质火山岩及其伴生的玄武质和英安质火山岩进行了系统的岩石地球化学研究,结果对大陆弧安山质火成岩的成因提出了新的机制.分析表明,这些岩石形成于早白垩世,它们不仅表现出典型的岛弧型微量元素分布特征,而且具有高度富集的Sr-Nd-Hf同位素和高的放射成因Pb以及高的氧同位素组成.通过全岩和矿物地球化学成分变化检查发现,地壳混染和岩浆混合作用对其成分的富集特征贡献有限,而其岩浆源区含有丰富的俯冲地壳衍生物质才是其成分富集的根本原因.虽然这些火山岩的喷发年龄为中生代,但是其岩浆源区形成于新元古代早期的华夏洋壳俯冲对扬子克拉通边缘之下地幔楔的交代作用.大陆弧安山岩地幔源区中含有大量俯冲洋壳沉积物部分熔融产生的含水熔体,显著区别于大洋弧玄武岩的地幔源区,其中只含有少量俯冲洋壳来源的富水溶液和含水熔体.正是这些含水熔体交代上覆地幔楔橄榄岩,形成了不同程度富集的超镁铁质-镁铁质地幔源区.在早白垩纪时期,古太平洋俯冲过程的远弧后拉张导致中国东部岩石圈发生部分熔融,其中超镁铁质地幔源区熔融形成玄武质火山岩,镁铁质地幔源区则熔融形成安山质火山岩.因此,大陆弧安山岩成因与大洋弧玄武岩一样,可分为源区形成和源区熔融两个阶段,其中第一阶段对应于俯冲带壳幔相互作用.Abstract: The generation of continental arc andesites is generally attributed to subduction of oceanic slabs beneath continental margins, but the petrogenetic processes of andesites remain widely debated. In order to address this problem, a series of integrated geochemical studies were performed for Mesozoic andesitic volcanics and associated basaltic and dacitic volcanics from the Middle and Lower Yangtze Valley, South China. The results lead to proposition of a new model for the generation of andesites. Laser-ablation inductively coupled mass spectroscopy (LA-ICPMS) zircon U-Pb dating yields consistent ages of Early Cretaceous for the formation of these volcanics, which are characterized by arc-like trace element distribution patterns showing significant enrichment in large ion lithophile element (LILE), Pb and light rare earth element (LREE) but depletion in high field strength element (HFSE) and heavy rare earth element (HREE). They also exhibit relatively enriched Sr-Nd-Hf isotope compositions, high radiogenic Pb isotope compositions and high zircon O isotope composition. Crustal contamination and magma mixing had insignificant contributions to the enriched compositions of these andesites. Instead, the enriched compositions were imparted by incorporating the subducted crust-derived materials into their magma sources. Despite their formation in the Late Mesozoic, their magma sources were generated through the crust-mantle interaction when the Cathaysian oceanic crust was subducted beneath the Yangtze craton in the Early Neoproterozoic. There are large amounts of subducted sediment-derived hydrous melts in the magma sources of continental arc andesites, in contrast to the limited amounts of aqueous solutions and hydrous melts in the magma sources of oceanic arc basalts. It is the hydrous melts that would chemically react with the overlying mantle wedge peridotite to generate mafic-ultramafic metasomatites. In the Early Cretaceous, these metasomatites underwent partial melting due to remote backarc extension owing to westward subduction of the Paleo-Pacific slab beneath the eastern China continent. Whereas partial melting of the ultramafic metasomatite produced basaltic melts, partial melting of the mafic metasomatite produced andesitic melts. In this regard, petrogenesis of both continental arc andesites and oceanic arc basalts shares two-stage processes, in which the first is the generation of mantle sources through subduction zone metasomatism and the second is the partial melting of mantle sources for mafic magmatism, with the first stage corresponds to the slab-mantle interaction in oceanic subduction zones.
-
Key words:
- andesitic magmatism /
- oceanic crust subduction /
- sediment recycling /
- source mixing /
- mantle metasomatites /
- petrology
-
图 1 长江中下游地区庐枞盆地火山岩原始地幔标准化的微量元素分布图
据Chen et al.(2014);GLOSS.全球俯冲沉积物平均组成(Plank and Langmuir, 1998);CAA.大陆弧安山岩(Kelemen et al., 2014);OAB.大洋弧玄武岩(Kelemen et al., 2014).原始地幔微量元素组成根据McDonough and Sun (1995)
Fig. 1. Primitive mantle⁃normalized trace element patterns for the Luzong volcanics in the Middle⁃Lower Yangtze River belt, South China
图 2 长江中下游地区庐枞盆地火山岩初始Sr⁃Nd⁃Hf⁃Pb同位素组成图解
同位素初始值回算到130 Ma;据Chen et al.(2014)
Fig. 2. The initial Sr and Nd, Hf and Pb isotope correlation diagrams for the Luzong volvanics in the Middle⁃Lower Yangtze River belt, South China
图 3 长江中下游地区庐枞盆地火山岩锆石δ18O值统计
据Chen et al.(2014);正常地幔锆石δ18O为5.3‰±0.3‰ (Valley et al., 1998)
Fig. 3. Histogram of zircon δ18O values for Luzong volvanics in the Middle⁃Lower Yangtze River belt, South China
图 4 长江中下游地区庐枞盆地火山岩全岩La和(La/Sm)N图解
Fig. 4. Whole⁃rock La contents versus (La/Sm)N ratios for the Luzong volcanics in the Middle⁃Lower Yangtze River belt, South China
图 5 长江中下游地区庐枞盆地火山岩全岩SiO2含量和初始Nd同位素组成相关图
Fig. 5. Correlation diagrams between SiO2 content and initial Nd isotope ratio for the Luzong volcanics in the Middle⁃Lower Yangtze River belt, South China
-
[1] Berly, T, J., Arculus, R, J., Lapierre, H., et al., 2006.Supra⁃Subduction Zone Pyroxenites from San Jorge and Santa Isabel (Solomon Islands).Journal of Petrology, 47(8):1531-1555. doi: 10.1093/petrology/egl019 [2] Brooker, R, A., James, R, H., Blundy, J, D., 2004.Trace Elements and Li Isotope Systematics in Zabargad Peridotites: Evidence of Ancient Subduction Processes in the Red Sea Mantle.Chemical Geology 212(1-2):179-204. https://doi.org/10.1016/j.chemgeo.2004.08.007 [3] Chen, L., Zhao, Z, F., 2017.Origin of Continental Arc Andesites: The Composition of Source Rocks is the Key.Journal of Asian Earth Sciences, 145: 217-232, https://doi.org/10.1016/j.jseaes.2017.04.012 [4] Chen, L., Zhao, Z, F., Zheng, Y, F., 2014.Origin of Andesitic Rocks: Geochemical Constraints from Mesozoic Volcanics in the Luzong Basin, South China.Lithos, 190-191: 220-239. doi: 10.1016/j.lithos.2013.12.011 [5] Chen, L., Zheng, Y, F., Zhao, Z, F., 2016.Geochemical Constraints on the Origin of Late Mesozoic Andesites from the Ningwu Basin in the Middle⁃Lower Yangtze Valley, South China.Lithos, 254-255:94-117. doi: 10.1016/j.lithos.2016.03.012 [6] Chen, L., Zheng, Y, F., Zhao, Z, F., 2018a.Geochemical Insights from Clinopyroxene Phenocrysts into the Effect of Magmatic Processes on Petrogenesis of Intermediate Volcanics.Lithos, 316-317:137-153 doi: 10.1016/j.lithos.2018.07.014 [7] Chen, L., Zheng, Y, F., Zhao, Z, F., 2018b.A Common Crustal Component in the Sources of Bimodal Magmatism: Geochemical Evidence from Mesozoic Volcanics in the Middle⁃Lower Yangtze Valley, South China.GSA Bulletin, 130:1959-1980. [8] Codillo, E, A., Le Roux, V., Marschall, H, R., 2018.Arc⁃Like Magmas Generated by Mélange⁃Peridotite Interaction in the Mantle Wedge.Nature Communications, 9:2864. doi: 10.1038/s41467-018-05313-2 [9] DePaolo, D, J., 1981.Trace Element and Isotopic Effects of Combined Wallrock Assimilation and Fractional Crystallization.Earth and Planetary Science Letters, 53(2):189-202. doi: 10.1016/0012-821X(81)90153-9 [10] Elliott, T., 2003.Tracers of the Slab.Geophysical Monograph, 138: 23-46. http://cn.bing.com/academic/profile?id=c621c866e63da84110e4b4c02a4893fd&encoded=0&v=paper_preview&mkt=zh-cn [11] England, P, C., Katz, R, F., 2010.Melting above the Anhydrous Solidus Controls the Location of Volcanic Arcs.Nature, 467: 700-703. https://doi.org/10.1038/nature09417 [12] Gervasoni, F., Klemme, S., Rohrbach, A., et al., 2017.Experimental Constraints on Mantle Metasomatism Caused by Silicate and Carbonate Melts.Lithos, 282-283:173-186, https://doi.org/10.1016/j.lithos.2017.03.004 [13] Gill, J.B., 1981.Orogenic Andesites and Plate Tectonics.Springer⁃Verlag, New York, 390. [14] Gómez⁃Tuena, A., Mori, L., Straub, S.M., 2018.Geochemical and Petrological Insights into the Tectonic Origin of the Transmexican Volcanic Belt.Earth⁃Science Reviews, 183:153-181. https://doi.org/10.1016/j.earscirev.2016.12.006 [15] Gómez⁃Tuena, A., Straub, S.M., Zellmer, G.F., 2014.An Introduction to Orogenic Andesites and Crustal Growth.Geological Society, London, Special Publications, 385(1):1-13. doi: 10.1144/SP385.16 [16] Grove, T.L., Till, C.B., Lev, E., et al., 2009.Kinematic Variables and Water Transport Control the Formation and Location of Arc Volcanoes.Nature, 459: 694-697, https://doi.org/10.1038/nature08044 [17] Grove, T.L., Till, C.B., Krawczynski, M.J., 2012.The Role of H2O in Subduction Zone Magmatism.Annual Review of Earth and Planetary Sciences, 40(1):413-439. doi: 10.1146/annurev-earth-042711-105310 [18] Hall, P.S., Kincaid, C., 2001.Diapiric Flow at Subduction Zones: A Recipe for Rapid Transport.Science, 292(5526): 2472-2475. doi: 10.1126/science.1060488 [19] Hildreth, W., Moorbath, S., 1988.Crustal Contributions to Arc Magmatism in the Andes of Central Chile.Contributions to Mineralogy and Petrology, 98(4):455-489. doi: 10.1007/BF00372365 [20] Hirschmann, M.M., Stolper, E.M., 1996.A Possible Role for Garnet Pyroxenite in the Origin of the "Garnet Signature" in MORB.Contributions to Mineralogy and Petrology, 124(2):185-208. doi: 10.1007/s004100050184 [21] Ionov, D.A., Hofmann, A.W., 1995.Nb⁃Ta⁃Rich Mantle Amphiboles and Micas: Implications for Subduction⁃Related Metasomatic Trace Element Fractionations.Earth and Planetary Science Letters, 131(3-4):341-356, https://doi.org/10.1016/0012⁃821x(95)00037⁃d [22] Kelemen, P.B., Dick, H.J., Quick, J, E., 1992.Formation of Harzburgite by Pervasive Melt/Rock Reaction in the Upper Mantle.Nature, 358:635-641. doi: 10.1038/358635a0 [23] Kelemen, P.B., Hart, S.R., Bernstein, S., 1998.Silica Enrichment in the Continental Upper Mantle Via Melt/Rock Reaction.Earth and Planetary Science Letters, 164(1-2):387-406. doi: 10.1016/S0012-821X(98)00233-7 [24] Kelemen, P.B., Hanghoj, K., Greene, A.R., 2014.One View of the Geochemistry of Subduction⁃Related Magmatic Arcs, with an Emphasis on Primitive Andesite and Lower Crust.Treatise on Geochemistry, 3:593-659. http://adsabs.harvard.edu/abs/2003TrGeo...3..593K [25] Kincaid, C., Griffiths, R.W., 2003.Laboratory Models of the Thermal Evolution of the Mantle during Rollback Subduction.Nature, 425:58-62, https://doi.org/10.1038/nature01923 [26] Lambart, S., Laporte, D., Schiano, P., 2009.An Experimental Study of Pyroxenite Partial Melts at 1 and 1.5 GPa: Implications for the Major⁃Element Composition of Mid⁃Ocean Ridge Basalts.Earth and Planetary Science Letters, 288(1-2):335-347. doi: 10.1016/j.epsl.2009.09.038 [27] Lee, C.T.A., Bachmann, O., 2014.How Important is the Role of Crystal Fractionation in Making Intermediate Magmas? Insights from Zr and P Systematics.Earth and Planetary Science Letters, 393:266-274, https://doi.org/10.1016/j.epsl.2014.02.044 [28] Marschall, H.R., Schumacher, J.C., 2012.Arc Magmas Sourced from Mélange Diapirs in Subduction Zones.Nature Geoscience, 5: 862-867. doi: 10.1038/ngeo1634 [29] McDonough, W.F., Sun, S., 1995.The Composition of the Earth.Chemical Geology, 120(3-4):223-253. doi: 10.1016/0009-2541(94)00140-4 [30] Nielsen, S.G., Marschall, H.R., 2017.Geochemical Evidence for Mélange Melting in Global Arcs.Science Advances, 3(4):e1602402. doi: 10.1126/sciadv.1602402 [31] Niu, X.L., Liu, F., Feng, G.Y., et al., 2018.Discovery and Significance of Early Silurian Andesites in Wuwamen Area, Southern Margin of Central Tianshan Block.Earth Science, 43(4): 1350-1366(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201804027 [32] Plank, T., Langmuir, C.H., 1998.The Chemical Composition of Subducting Sediment and Its Consequences for the Crust and Mantle.Chemical Geology, 145:323-394. doi: 10.1016-S0009-2541(97)00150-2/ [33] Qian, W., Wang, W., Zou, F., et al., 2018.Elasticity of Orthoenstatite at High Pressure and Temperature: Implications for the Origin of Low VP/VS Zones in the Mantle Wedge.Geophysical Research Letters, 45:665-673. doi: 10.1002/2017GL075647 [34] Rapp, R.P., Norman, M.D., Laporte, D., et al., 2010.Continent Formation in the Archean and Chemical Evolution of the Cratonic Lithosphere: Melt⁃Rock Reaction Experiments at 3-4 GPa and Petrogenesis of Archean Mg⁃Diorites (Sanukitoids).Journal of Petrology, 51:1237-1266, https://doi.org/10.1093/petrology/egq017 [35] Rapp, R.P., Shimizu, N., Norman, M.D., et al., 1999.Reaction between Slab⁃Derived Melts and Peridotite in the Mantle Wedge: Experimental Constraints at 3.8 GPa.Chemical Geology, 160:335-356. doi: 10.1016/S0009-2541(99)00106-0 [36] Sobolev, A.V., Hofmann, A.W., Kuzmin, D.V., et al., 2007.The Amount of Recycled Crust in Sources of Mantle⁃Derived Melts.Science, 316:412-417. doi: 10.1126/science.1138113 [37] Straub, S.M., Gómez⁃Tuena, A., Stuart, F.M., et al., 2011.Formation of Hybrid Arc Andesites beneath Thick Continental Crust.Earth and Planetary Science Letters, 303(3-4):337-347. doi: 10.1016/j.epsl.2011.01.013 [38] Straub, S.M., Zellmer, G.F., Gómez⁃Tuena, A., et al., 2014.A Genetic Link between Silicic Slab Components and Calc⁃Alkaline Arc Volcanism in Central Mexico.Geological Society, London, Special Publications, 385(1):31-64. doi: 10.1144/SP385.14 [39] Sun, Y., Ma, C.Q., Liu, B, 2017.Record of Late Yanshanian Mafic Magmatic Activity in the Middle⁃Lower Yangtze River Metallogenic Belt.Earth Science, 42(6): 891-908(in Chinese with English abstract), http://gateway.proquest.com/openurl?res_dat=xri:pqm&ctx_ver=Z39.88-2004&rfr_id=info:xri/sid:baidu&rft_val_fmt=info:ofi/fmt:kev:mtx:article&genre=article&jtitle=Earth%20Science&atitle=Record%20of%20Late%20Yanshanian%20Mafic%20Magmatic%20Activity%20in%20the%20Middle-Lower%20Yangtze%20River%20Metallogenic%20Belt [40] Tatsumi, Y., Eggins, S., 1995.Subduction Zone Magmatism, Blackwell Science, Oxford, 211. [41] Valley, J.W., Kinny, P.D., Schulze, D.J., et al., 1998.Zircon Metacrysts from Kimberlite: Oxygen Isotope Variability among Mantle Melts.Contributions to Mineralogy and Petrology, 133(1-2):1-11. doi: 10.1007/s004100050432 [42] Wyllie, P, J., Sekine, T., 1982.The Formation of Mantle Phlogopite in Subduction Zone Hybridization.Contributions to Mineralogy and Petrology, 79(4):375-380. doi: 10.1007/BF01132067 [43] Zheng, Y, F., 2019.Subduction Zone Geochemistry.Geoscience Frontiers, 10:1223-1254. doi: 10.1016/j.gsf.2019.02.003 [44] Zheng, Y.F., Chen, Y.X., 2016.Continental versus Oceanic Subduction Zones.National Science Review, 3(4):495-519. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0220896643/ [45] 牛晓露, 刘飞, 冯光英, 等, 2018.中天山南缘乌瓦门早志留世安第斯型安山岩的发现及意义.地球科学, 43(4):1350-1366. doi: 10.3799/dqkx.2018.725 [46] 孙洋, 马昌前, 刘彬, 2017.长江中下游地区燕山晚期基性岩浆活动的记录.地球科学, 42(6):891-908. doi: 10.3799/dqkx.2017.077