• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    大陆俯冲带大规模的变质流体活动:来自大别造山带超高压硬玉石英岩的记录

    高晓英

    高晓英, 2019. 大陆俯冲带大规模的变质流体活动:来自大别造山带超高压硬玉石英岩的记录. 地球科学, 44(12): 4064-4071. doi: 10.3799/dqkx.2019.242
    引用本文: 高晓英, 2019. 大陆俯冲带大规模的变质流体活动:来自大别造山带超高压硬玉石英岩的记录. 地球科学, 44(12): 4064-4071. doi: 10.3799/dqkx.2019.242
    Gao Xiaoying, 2019. Large-Scale Flow of Metamorphic Fluids in a Continental Subduction Zone: Evidence from Coesite-Bearing Jadeite Quartzite in the Dabie Orogen. Earth Science, 44(12): 4064-4071. doi: 10.3799/dqkx.2019.242
    Citation: Gao Xiaoying, 2019. Large-Scale Flow of Metamorphic Fluids in a Continental Subduction Zone: Evidence from Coesite-Bearing Jadeite Quartzite in the Dabie Orogen. Earth Science, 44(12): 4064-4071. doi: 10.3799/dqkx.2019.242

    大陆俯冲带大规模的变质流体活动:来自大别造山带超高压硬玉石英岩的记录

    doi: 10.3799/dqkx.2019.242
    基金项目: 

    国家“973”项目 2015CB856104

    国家自然科学基金项目 41722203

    国家自然科学基金项目 41572042

    详细信息
      作者简介:

      高晓英(1980-), 女, 特任教授, 主要从事大陆俯冲带矿物学和岩石地球化学

    • 中图分类号: P581

    Large-Scale Flow of Metamorphic Fluids in a Continental Subduction Zone: Evidence from Coesite-Bearing Jadeite Quartzite in the Dabie Orogen

    • 摘要: 硬玉石英岩是一种稀少且与流体作用相关的变质岩,同时出露于高压或超高压洋壳和陆壳俯冲带中.通过对中国东部大别造山带中出露达50 km2的含柯石英的超高压硬玉石英岩进行研究,综合全岩主微量元素、矿物Mg-O同位素和锆石学研究.结果表明,硬玉石英岩的原岩为古元古代TTG岩石,经历过弱化学风化和强物理风化作用,然后在三叠纪时期受到围岩富黑云母片麻岩分解脱水而产生的大量重Mg同位素流体交代,从而形成硬玉石英岩.考虑到这种受流体交代成因的硬玉石英岩在大别山广泛出露,表明其在三叠纪大陆深俯冲过程中存在着大规模的变质流体活动,这项研究首次报道了大陆俯冲带有大规模的流体活动存在,同时也挑战了传统观点认为的大陆俯冲带缺乏岛弧岩浆作用主要原因是缺乏足够量的流体活动.

       

    • 图  1  硬玉富集的岩石全球分布

      修改自Harlow et al.(2015)

      Fig.  1.  World map of jadeite-bearing rock occurrences and tectonic settings

      图  2  大别山超高压硬玉石英岩中锆石显微结构图像(a,b)和Hf同位素特征(c)

      修改自Gao et al.(2015)

      Fig.  2.  Photomicrographs showing the texture and mineral inclusions for zircon from jadeite quartzites in the Dabie orogen

      图  3  大别山硬玉石英岩O同位素(a)和Mg同位素(b)

      修改自Gao et al.(2019)

      Fig.  3.  Mineral and whole-rock O (a) and Mg isotope data (b) for jadeite quartzites in the Dabie orogen

      图  4  (a) 大别山硬玉石英岩地形分布图;(b)在大陆俯冲过程中古元古代TTG岩石受到流体交代形成硬玉石英岩;(c)MgO-Mg同位素两端元混合模拟计算图; (d)俯冲带流体-岩石反应的卡通图

      修改自Gao et al.(2019)

      Fig.  4.  (a) Topographic map of jadeite quartzite distribution in the Central Dabie mid-T/UHP eclogite-facies zone; (b) schematic diagram showing the large-scale formation of jadeite quartzites due to metasomatism of TTG-derived sediments by metamorphic fluids during the continental subduction in the Dabie orogen; (c) binary mixing modal calculations based on MgO contents and Mg isotopes in jadeite quartzites; (d) schematic diagram showing fluid-rock interaction in a continental subduction channel

    • [1] Ayers, J.C., Dunkle, S., Gao, S., et al., 2002.Constraints on Timing of Peak and Retrograde Metamorphism in the Dabie Shan Ultrahigh-Pressure Metamorphic Belt, East-Central China, Using U-Th-Pb Dating of Zircon and Monazite.Chemical Geology, 186(3-4):315-331. https://doi.org/10.1016/s0009-2541(02)00008-6
      [2] Bebout, G.E., 2007.Metamorphic Chemical Geodynamics of Subduction Zones.Earth and Planetary Science Letters, 260(3-4):373-393. https://doi.org/10.1016/j.epsl.2007.05.050
      [3] Chen, Y.X., Schertl, H.P., Zheng, Y.F., et al., 2016.Mg-O Isotopes Trace the Origin of Mg-Rich Fluids in the Deeply Subducted Continental Crust of Western Alps.Earth and Planetary Science Letters, 456:157-167. https://doi.org/10.1016/j.epsl.2016.09.010
      [4] Chopin, C., 1984.Coesite and Pure Pyrope in High-Grade Blueschists of the Western Alps:A First Record and Some Consequences.Contributions to Mineralogy and Petrology, 86(2):107-118. https://doi.org/10.1007/bf00381838
      [5] Gao, X.Y., Wang, L., Chen, Y.X., et al., 2019.Geochemical Evidence from Coesite-Bearing Jadeite Quartzites for Large-Scale Flow of Metamorphic Fluids in a Continental Subduction Channel.Geochimica et Cosmochimica Acta, 265:354-370. https://doi.org/10.1016/j.gca.2019.09.006
      [6] Gao, X.Y., Zheng, Y.F., Chen, Y.X., et al., 2015.Zircon Geochemistry Records the Action of Metamorphic Fluid on the Formation of Ultrahigh-Pressure Jadeite Quartzite in the Dabie Orogen.Chemical Geology, 419:158-175. https://doi.org/10.1016/j.chemgeo.2015.10.043
      [7] Harlow, G.E., Sorensen, S.S., Sisson, V.B., 2007.Jade.In: Lee, A., ed., The Geology of Gem Deposits.Short Course Handbook Series.Mineral. Asso.. Canada, Quebec, 207-254.
      [8] Harlow, G.E., Tsujimori, T., Sorensen, S.S., 2015.Jadeitites and Plate Tectonics.Annual Review of Earth and Planetary Sciences, 43(1):105-138. https://doi.org/10.1146/annurev-earth-060614-105215
      [9] Hermann, J., Spandler, C.J., 2007.Sediment Melts at Sub-Arc Depths:An Experimental Study.Journal of Petrology, 49(4):717-740. https://doi.org/10.1093/petrology/egm073
      [10] Moyen, J.F., Martin, H., 2012.Forty Years of TTG Research.Lithos, 148:312-336. https://doi.org/10.1016/j.lithos.2012.06.010
      [11] Nesbitt, H.W., Young, G.M., 1982.Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites.Nature, 299(5885):715-717. https://doi.org/10.1038/299715a0
      [12] Schertl, H.P., Maresch, W.V., Stanek, K.P., et al., 2012.New Occurrences of Jadeitite, Jadeite Quartzite and Jadeite-Lawsonite Quartzite in the Dominican Republic, Hispaniola:Petrological and Geochronological Overview.European Journal of Mineralogy, 24(2):199-216. https://doi.org/10.1127/0935-1221/2012/0024-2201
      [13] Shen, B., Jacobsen, B., Lee, C.T.A., et al., 2009.The Mg Isotopic Systematics of Granitoids in Continental Arcs and Implications for the Role of Chemical Weathering in Crust Formation.Proceedings of the National Academy of Sciences, 106(49):20652-20657. https://doi.org/10.1073/pnas.0910663106
      [14] Spandler, C., Mavrogenes, J., Hermann, J., 2007.Experimental Constraints on Element Mobility from Subducted Sediments Using High-P Synthetic Fluid/Melt Inclusions.Chemical Geology, 239(3-4):228-249. https://doi.org/10.1016/j.chemgeo.2006.10.005
      [15] Su, W., Ji, Z.P., Ye, K., et al., 2004.Distribution of Hydrous Components in Jadeite of the Dabie Mountains.Earth and Planetary Science Letters, 222(1):85-100. https://doi.org/10.1016/j.epsl.2004.02.028
      [16] Teng, F.Z., 2017.Magnesium Isotope Geochemistry.Reviews in Mineralogy and Geochemistry, 82(1):219-287. https://doi.org/10.2138/rmg.2017.82.7
      [17] Touret, J.L.R., 2001.Fluids in Metamorphic Rocks.Lithos, 55(1-4):1-25. https://doi.org/10.1016/s0024-4937(00)00036-0
      [18] Tsujimori, T., Harlow, G.E., 2012.Petrogenetic Relationships between Jadeitite and Associated High-Pressure and Low-Temperature Metamorphic Rocks in Worldwide Jadeitite Localities:A Review.European Journal of Mineralogy, 24(2):371-390. https://doi.org/10.1127/0935-1221/2012/0024-2193
      [19] Valley, J.W., Kinny, P.D., Schulze, D.J., et al., 1998.Zircon Megacrysts from Kimberlite:Oxygen Isotope Variability among Mantle Melts.Contributions to Mineralogy and Petrology, 133(1-2):1-11. https://doi.org/10.1007/s004100050432
      [20] Wang, L., Jin, Z.M., Kusky, T., et al., 2010.Microfabric Characteristics and Rheological Significance of Ultra-High-Pressure Metamorphosed Jadeite-Quartzite and Eclogite from Shuanghe, Dabie Mountains, China.Journal of Metamorphic Geology, 28(2):163-182. https://doi.org/10.1111/j.1525-1314.2009.00859.x
      [21] Xu, S.T., Okay, A.I., Ji, S.Y., et al., 1992.Diamond from the Dabie Shan Metamorphic Rocks and Its Implication for Tectonic Setting.Science, 256(5053):80-82. https://doi.org/10.1126/science.256.5053.80
      [22] Zheng, Y.F., 2009.Fluid Regime in Continental Subduction Zones:Petrological Insights from Ultrahigh-Pressure Metamorphic Rocks.Journal of the Geological Society, 166(4):763-782. https://doi.org/10.1144/0016-76492008-016r
      [23] Zheng, Y.F., 2019.Subduction Zone Geochemistry.Geoscience Frontiers, 10(4):1223-1254. https://doi.org/10.1016/j.gsf.2019.02.003
      [24] Zheng, Y.F., Fu, B., Gong, B., et al., 2003.Stable Isotope Geochemistry of Ultrahigh Pressure Metamorphic Rocks from the Dabie-Sulu Orogen in China:Implications for Geodynamics and Fluid Regime.Earth-Science Reviews, 62(1-2):105-161. https://doi.org/10.1016/s0012-8252(02)00133-2
      [25] Zheng, Y.F., Hermann, J., 2014.Geochemistry of Continental Subduction-Zone Fluids.Earth, Planets and Space, 66(1):93. https://doi.org/10.1186/1880-5981-66-93
      [26] Zheng, Y.F., Zhao, Z.F., Chen, R.X., 2018.Ultrahigh-Pressure Metamorphic Rocks in the Dabie-Sulu Orogenic Belt:Compositional Inheritance and Metamorphic Modification.Geological Society, London, Special Publications, 474(1):89-132. https://doi.org/10.1144/sp474.9
    • 加载中
    图(4)
    计量
    • 文章访问数:  3944
    • HTML全文浏览量:  1234
    • PDF下载量:  98
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-08-29
    • 刊出日期:  2019-12-15

    目录

      /

      返回文章
      返回