Discovery of Early Permian Island-Arc Type Granodiorites in Wenduermiao Area, Inner Mongolia: Constraints on Timing of Closure of PaleoAsian Ocean
-
摘要: 研究区位于西伯利亚板块与华北板块之间的关键部位,可能代表了古亚洲洋最终闭合的位置.在嘎顺地区首次识别出花岗闪长岩,通过对岩石地球化学、锆石U-Pb年代学和Lu-Hf同位素分析,获得LA-MC-ICP-MS锆石U-Pb年龄为294.8±2.7 Ma,形成于早二叠世.SiO2含量介于64.69%~67.64%;Al2O3含量介于15.00%~15.52%;MgO含量介于1.14%~1.77%;Na2O含量介于1.41%~3.61%;K2O含量介于3.25%~3.98%.∑REE值介于157.89×10-6~174.43×10-6;LREE值介于147.86×10-6~149.55×10-6;HREE值介于9.34×10-6~11.8×10-6;右倾稀土配分曲线,呈轻度负Eu异常,轻重稀土元素分馏程度大,轻稀土相对于重稀土明显富集.明显富集Rb、K,亏损Ba、Sr大离子亲石元素(LILE);富集Th,亏损Nb、Ta、Ti等高场强元素(HFSE).锆石176Hf/177Hf值介于0.282 673~0.282 791;εHf(t)值介于2.7~7.0,其二阶段模式年龄TDM2介于861~1 129 Ma,176Lu/177Hf值介于0.000 486~0.000 734,结合岩石地球化学特征,认为该套岩石形成于岛弧岩浆作用,证实了早二叠世古亚洲洋仍未闭合.Abstract: The study area is located in the key part between the North China and the Siberia plates, which may represent the final closure of the Paleo-Asian Ocean. Granodiorites were recognized in the Gashun area for the first time. According to petrogeochemistry, zircon U-Pb geochronology and Lu-Hf isotope analysis, the granodiorites yield an LA-MC-ICP-MS zircon UPb age of 294.8±2.7 Ma, suggesting that they were formed in the Early Permian. The rocks have SiO2=64.69%-67.64%, Al2O3=15.00%-15.52%, MgO=1.14%-1.77%, Na2O=1.41%-3.61%, and K2O=3.25%-3.98%. The content of ∑ REE varies from 157.89×10-6 to 174.43×10-6, the content of LREE varies from 147.86×10-6 to 149.55×10-6, and the content of HREE vary from 9.34×10-6 to 11.8×10-6. The rocks display rightly-inclined REE distribution curves, slightly negative Eu anomalies, highly fractionated LREE/HREE, and more enriched LREE relative to HREE. In the rocks, Rb and K were obviously enriched, and Ba and Sr (LILE) were depleted; Th was enriched and Nb, Ta and Ti etc. (HFSE) were depleted. Zircon 176Hf/177Hf changes from 0.282 673 to 0.282 791, and εHf(t) varies from 2.7 to 7.0. The two-stage model ages (TDM2) vary from 861 Ma to 1 129 Ma, and 176Lu/177Hf ranges from 0.000 486 to 0.000 734. Combined with petrogeochemical characteristics, this set of granodiorites is considered to be formed by island-arc magmatism, confirming that the Paleo-Asian Ocean was still open in the Early Permian.
-
Key words:
- island-arc type granodiorite /
- Paleo-Asian Ocean /
- Wenduermiao area /
- petrology
-
图 1 研究区地质图
a.研究区大地构造位置;b.朱日和俯冲增生杂岩分布图;c.研究区地质成果简图.图a, b据初航等(2013)改编; 图c引自内蒙古自治区地质调查院(2018)内蒙古锡林郭勒盟朱日和等三幅1:5万地质矿产综合调查成果报告.图a中:①南蒙活动陆缘;②贺根山蛇绿岩-岛弧增生杂岩;③宝力道岛弧增生杂岩;④二道井增生杂岩;⑤温都尔庙俯冲增生杂岩;⑥白乃庙岛弧带
Fig. 1. Geological map of study area
图 3 花岗闪长岩岩石类型判别图解
a.TAS图解;b.A/NK-A/CNK图解.图a据MacDonald and Katsura(1964)和Le Maitre et al.(2002);图b据Maniar and Piccoli(1989)
Fig. 3. Granodiorite type discrimination diagrams
图 4 花岗闪长岩稀土配分曲线(a)和微量元素蛛图解(b)
球粒陨石REE数据、原始地幔数据据Sun and McDonough(1989)
Fig. 4. REE distribution curves(a) and trace element spidergrams(b) of granodiorite
图 7 构造环境判别图解
a.Nb-Y图; b.Rb-(Yb+Ta)图.引自Pearce et al.(1984)
Fig. 7. Discrimination diagrams of tectonic environment
图 9 埃达克岩与经典岛弧岩石判别图解
a.(La / Yb)N-YbN图;b.Sr/Y-Y图.据Martin(1999)
Fig. 9. Discrimination diagrams of adakite and representative island-arc magmatic rocks
表 1 花岗闪长岩全岩主量(%)、微量元素(10-6)分析结果
Table 1. Whole rock major and trace element analysis results of granodiorites
样品号 D9038-1 D9038-2 D9038-3 D9038-4 D9038-5 SiO2 64.69 67.16 66.83 67.64 66.58 TiO2 0.47 0.49 0.55 0.52 0.51 Al2O3 15.25 15.00 15.12 15.52 15.22 Fe2O3 2.47 2.85 2.59 2.83 2.69 FeO 0.29 0.16 0.34 0.18 0.24 TFeO 2.79 3.03 2.96 3.03 2.95 MnO 0.04 0.04 0.04 0.04 0.04 MgO 1.77 1.35 1.29 1.14 1.39 CaO 2.98 1.97 2.23 1.61 2.20 Na2O 2.32 1.41 3.61 2.95 2.57 K2O 3.41 3.98 3.65 3.25 3.57 P2O5 0.13 0.13 0.14 0.13 0.13 ∑ 96.49 97.44 99.22 98.71 97.96 LOI 3.50 2.50 0.70 1.20 1.98 Mg# 0.53 0.44 0.44 0.40 0.45 A/CNK 1.18 1.47 1.08 1.37 1.28 A/NK 2.03 2.26 1.53 1.85 1.92 DI 69.59 74.35 82.82 80.60 76.84 SI 17.50 14.11 11.38 11.20 13.55 AR 1.68 1.93 2.43 2.05 2.02 Hy 5.98 5.13 4.47 4.40 5.00 La 37.60 40.00 36.80 36.80 37.80 Ce 72.20 68.90 71.30 74.20 71.65 Pr 7.76 8.00 7.83 7.52 7.78 Nd 27.40 27.30 26.50 25.00 26.55 Sm 4.50 4.49 4.52 4.29 4.45 Eu 1.01 0.86 0.91 0.74 0.88 Gd 4.30 4.20 3.65 3.44 3.90 Tb 0.59 0.57 0.46 0.42 0.51 Dy 2.93 2.70 2.49 2.18 2.58 Ho 0.56 0.53 0.47 0.44 0.50 Er 1.72 1.35 1.29 1.20 1.39 Tm 0.21 0.24 0.19 0.18 0.21 Yb 1.62 1.55 1.41 1.28 1.47 Lu 0.26 0.24 0.21 0.20 0.23 Y 14.70 13.50 13.00 11.80 13.25 ∑REE 177.40 174.43 158.03 157.89 166.94 LREE 150.50 149.55 147.86 148.55 149.12 HREE 12.19 11.38 10.17 9.34 10.77 LR/HR 12.34 13.14 14.54 15.90 13.98 δEu 0.69 0.60 0.66 0.57 0.63 δCe 0.97 0.88 0.96 1.02 0.96 LaN 121.30 129.03 118.71 118.71 121.94 YbN 7.75 7.42 6.75 6.12 7.01 La/Yb 23.21 25.81 26.10 28.75 25.97 (La/Yb)N 15.65 17.39 17.59 19.40 17.51 Cd 0.081 0.064 0.044 0.014 0.050 Li 2.60 3.72 23.40 9.40 9.78 Rb 136.00 169.00 166.00 140.00 152.75 Cs 6.75 14.90 9.17 10.40 10.31 Sr 84.50 74.60 264.00 92.40 128.88 Ba 401 312 573 366 413 Sc 6.95 7.55 11.70 6.96 8.29 Nb 9.85 9.41 9.77 9.29 9.58 Ta 1.02 0.78 0.71 0.68 0.80 Zr 227 225 230 226 227 Hf 7.24 7.12 6.97 6.82 7.04 Be 2.22 2.30 2.96 2.40 2.47 Ga 17.90 17.20 17.30 17.80 17.55 In 0.028 0.035 0.040 0.025 0.030 Tl 0.90 1.00 1.02 0.86 0.95 U 4.65 3.25 2.15 2.80 3.21 Th 31.00 32.40 24.00 25.60 28.25 K 28 307 33 039 30 299 26 979 29 656 P 567.4 567.4 611.0 567.4 578.3 Ti 2 818.0 2 938.0 3 297.0 3 117.0 3042.5 表 2 花岗闪长岩锆石U-Pb同位素数据
Table 2. Data of zircon U-Pb isotope of granodiorite
样品号 含量(10-6) Th/U 同位素比值 年龄(Ma) D9038 Pb U 206Pb/238U err% 207Pb/235U err% 207Pb/206Pb err% 206Pb/238U 1б 207Pb/235U 1б D9038.1 24.24 421.37 1.05 0.05 0.54 0.38 1.06 0.06 0.89 305.34 1.08 323.98 1.63 D9038.2 26.09 466.64 1.08 0.05 0.51 0.37 1.09 0.06 0.89 295.93 1.07 321.85 1.65 D9038.3 16.37 286.46 1.36 0.05 0.51 0.35 1.55 0.06 1.47 291.03 1.07 306.84 1.98 D9038.4 27.18 461.75 1.14 0.05 0.57 0.41 1.08 0.06 0.88 300.57 1.10 350.76 1.64 D9038.5 22.28 410.48 1.10 0.05 0.46 0.33 1.06 0.05 0.92 286.81 1.04 288.32 1.63 D9038.6 29.04 422.29 0.97 0.05 0.73 0.63 1.00 0.09 0.77 335.99 1.19 494.06 1.60 D9038.7 25.64 447.65 1.08 0.05 0.55 0.34 1.10 0.05 0.95 300.40 1.09 297.88 1.66 D9038.8 24.52 442.42 0.99 0.05 0.58 0.35 1.23 0.05 1.00 295.66 1.10 306.45 1.75 D9038.9 22.53 391.54 1.21 0.05 0.65 0.36 1.81 0.06 1.59 288.09 1.14 314.02 2.19 D9038.10 19.63 341.50 1.14 0.05 0.63 0.34 1.58 0.05 1.33 294.56 1.13 296.74 2.01 D9038.11 21.95 389.44 1.06 0.05 0.52 0.36 1.37 0.06 1.17 290.65 1.07 315.77 1.84 D9038.12 21.25 364.91 1.14 0.05 0.43 0.38 1.23 0.06 1.10 297.57 1.03 324.36 1.75 D9038.13 21.54 381.38 1.16 0.05 0.52 0.34 1.26 0.05 1.12 291.48 1.07 296.85 1.77 D9038.14 55.51 755.16 1.17 0.05 0.60 0.86 0.60 0.12 0.77 317.81 1.12 629.32 1.38 D9038.15 23.25 418.51 1.13 0.05 0.45 0.33 1.18 0.05 1.05 291.36 1.04 289.95 1.71 D9038.16 17.64 303.46 1.28 0.05 0.62 0.39 2.22 0.06 1.75 291.80 1.13 334.35 2.54 D9038.17 47.73 509.60 1.54 0.05 2.07 1.29 7.15 0.15 3.93 340.68 2.28 842.16 7.26 D9038.18 19.39 342.20 1.20 0.05 0.47 0.37 1.37 0.06 1.27 293.30 1.05 317.49 1.85 D9038.19 16.29 286.92 1.12 0.05 0.64 0.34 1.59 0.05 1.46 302.65 1.14 294.45 2.01 D9038.20 18.60 326.54 1.14 0.05 0.60 0.35 1.48 0.05 1.30 302.94 1.12 307.88 1.93 D9038.21 19.58 319.74 1.22 0.05 0.64 0.37 1.45 0.05 1.30 319.08 1.14 317.33 1.91 D9038.22 23.54 437.36 1.15 0.05 0.71 0.35 1.55 0.06 1.36 284.36 1.18 306.14 1.99 D9038.23 65.41 322.15 1.49 0.09 2.79 4.8 5.33 0.33 3.74 527.57 2.94 1784.07 5.48 D9038.24 19.45 335.34 1.20 0.05 0.48 0.48 2.40 0.07 2.12 291.61 1.06 400.81 2.70 D9038.25 15.36 279.96 1.18 0.05 0.45 0.32 1.71 0.05 1.64 287.34 1.04 285.07 2.11 D9038.26 18.96 339.77 1.22 0.05 0.60 0.33 1.60 0.05 1.42 292.33 1.12 290.25 2.03 D9038.27 25.65 436.58 1.12 0.05 0.52 0.40 0.97 0.06 0.90 304.54 1.07 341.53 1.57 D9038.28 25.93 445.79 1.09 0.05 0.51 0.38 1.05 0.06 0.98 305.83 1.07 330.08 1.62 D9038.29 19.68 320.00 1.20 0.05 0.55 0.42 1.12 0.06 1.26 313.84 1.09 358.99 1.67 D9038.30 18.80 319.68 1.44 0.05 0.45 0.35 1.51 0.05 1.34 291.27 1.04 305.48 1.95 D9038.31 40.58 459.26 1.20 0.07 0.51 0.57 0.81 0.06 0.61 458.36 1.07 457.60 1.48 表 3 花岗闪长岩锆石Lu-Hf同位素数据
Table 3. Data of zircon Lu-Hf isotope of granodiorite
样品 点号 t(Ma) 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf εHf(0) εHf(t) TDM1(Ma) TDM2(Ma) fLu/Hf TW9038 2 296 0.019 445 0.000 622 0.282 769 -0.1 6.3 678 910 -0.98 3 291 0.015 705 0.000 515 0.282 742 -1.1 5.2 714 972 -0.98 8 296 0.017 810 0.000 569 0.282 740 -1.1 5.3 717 974 -0.98 9 288 0.014 790 0.000 492 0.282 673 -3.5 2.7 809 1 129 -0.99 11 291 0.014 145 0.000 534 0.282 715 -2.0 4.3 751 1 033 -0.98 12 298 0.015 579 0.000 486 0.282 742 -1.1 5.4 713 968 -0.99 13 291 0.017 519 0.000 576 0.282 791 0.7 7.0 646 861 -0.98 15 291 0.016 620 0.000 547 0.282 734 -1.3 5.0 725 990 -0.98 16 292 0.015 068 0.000 490 0.282 742 -1.1 5.3 713 972 -0.99 18 293 0.022 694 0.000 732 0.282 762 -0.4 6.0 689 928 -0.98 24 292 0.021 585 0.000 652 0.282 770 -0.1 6.2 677 910 -0.98 26 292 0.021 694 0.000 668 0.282 750 -0.8 5.5 705 954 -0.98 30 291 0.023 964 0.000 734 0.282 788 0.6 6.8 653 871 -0.98 表 4 华北板块北缘二叠纪岩浆岩年龄汇总
Table 4. Summary of ages of the Permian igneous rocks in the northern margin of the North China block
序号 样品号 纬度(N) 经度(E) 采样位置 岩性 年龄(Ma) 测试方法 来源 侵入岩 1 D464 40°57′29″ 116°45′08″ 五道营子 闪长岩 283±2 LA-ICP-MS Zhang et al., 2009a 2 D252 41°03.3′ 116°55.5′ 镶黄旗 辉长岩 276±2 SHRIMP Zhang et al., 2009a 3 D490 41°03′57″ 117°20′22″ 波罗诺 角闪辉长岩 297±1 LA-ICP-MS Zhang et al., 2009b 4 BJG1 41°35′ 111°9.6′ 四子王旗 正长花岗岩 264±3.4 LA-ICP-MS 柳长峰等,2010 5 99-7 42.42° 113.61° 镶黄旗 黑云角闪石英闪长岩 277.2±2.9 LA-ICP-MS 童英等,2010 火山岩 6 07057-1 41°50.62′ 112°51.18′ 三井泉乡 流纹质凝灰岩 276±2 LA-ICP-MS Zhang et al., 2016 7 07D024-1 42°24.40′ 119°41.58′ 赤峰 安山岩 273±6 SHRIMP Zhang et al., 2016 8 P28N9-1 41°45′53″ 113°13′49″ 西井子 流纹岩 269.5±3.4 LA-ICP-MS 董晓杰等,2016 9 08485 41°59′33″ 111°34′24″ 达茂旗 流纹岩 264±2 LA-ICP-MS Zhang et al., 2016 10 PM003TW4 42°39′00″ 113°00′25″ 乌兰沟 流纹岩 282.1±1.5 LA-ICP-MS a 11 TW9039 42°20′58″ 112°59′57″ 嘎顺 安山岩 270.2±2.7 LA-ICP-MS 注:a为内蒙古自治区地质调查院(2018)内蒙古锡林郭勒盟朱日和等三幅1:5万地质矿产综合调查成果报告. -
[1] Andersen, T., Griffin, W.L., Pearson, N.J., 2002. Crustal Evolution in the SW Part of the Baltic Shield: The Hf Isotope Evidence. Journal of Petrology, 43(9): 1725-1747. https://doi.org/10.1093/petrology/43.9.1725 [2] Belousova, E.A., Griffin, W.L., O'Reilly, S. Y., 2005. Zircon Crystal Morphology, Trace Element Signatures and Hf Isotope Composition as a Tool for Petrogenetic Modelling: Examples from Eastern Australian Granitoids. Journal of Petrology, 47(2): 329-353. https://doi.org/10.1093/petrology/egi077 [3] Bureau of Geology and Mineral Resources of Inner Mongolia Autonomous Region, 1991. Regional Geology of Inner Mongolia Autonomous Region. Geological Publishing House, Beijing(in Chinese). [4] Chen, B., 2002.Characteristics and Genesis of the Bayan Bold Pluton in Southern Sonid Zuoqi, Inner Mongolia—Typical Island Arc Magmatic Rocks Instead of Adakitic Rocks. Geological Review, 48(3):261-266(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200203005.htm [5] Chen, B., Jahn, B.M., Wilde, S., et al., 2000. Two Contrasting Paleozoic Magmatic Belts in Northern Inner Mongolia, China: Petrogenesis and Tectonic Implications. Tectonophysics, 328(1-2): 157-182. https://doi.org/10.1016/s0040-1951(00)00182-7 [6] Chen, Q., Qiu, G.L., Xue, L.F., et al., 1993.Palaeoplate Evolution in the Southern Part of the Inner Mongolian Orogenic Belt. Geological Review, 39(6):477-483(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/OA000003486 [7] Chu, H., Zhang, J.R., Wei, C. J., et al., 2013. A New Interpretation of the Tectonic Setting and Age of Meta-Basic Volcanics in the Ondor Sum Group, Inner Mongolia. Chinese Science Bulletin, 58(28-29): 2958-2965(in Chinese). doi: 10.1360/csb2013-58-28-29-2958 [8] Claesson, S., Vetrin, V., Bayanova, T., et al., 2000. U-Pb Zircon Ages from a Devonian Carbonatite Dyke, Kola Peninsula, Russia: A Record of Geological Evolution from the Archaean to the Palaeozoic. Lithos, 51(1-2): 95-108. https://doi.org/10.1016/s0024-4937(99)00076-6 [9] Defant, M.J., Drummond, M.S., 1990. Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347(6294): 662-665. https://doi.org/10.1038/347662a0 [10] Dong, X.J., Wang, W.Q., Sha, Q., et al., 2016.Suzy Volcanic Rocks in the Northern Margin of the North China Craton and Its Formation Mechanism. Acta Petrologica Sinica, 32(9):2765-2779(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201609012 [11] Eizenhöfer, P.R., Zhao, G.C., Zhang, J., et al., 2014. Final Closure of the Paleo-Asian Ocean along the Solonker Suture Zone: Constraints from Geochronological and Geochemical Data of Permian Volcanic and Sedimentary Rocks. Tectonics, 33(4): 441-463. https://doi.org/10.1002/2013tc003357 [12] Hu, X., Xu, C.S., Niu, S.G., 1990.Evolution of the Early Paleozoic Continental Margin in Northern Margin of the North China Platform. Peking University Press, Beijing (in Chinese with English abstract). [13] Jackson, S.E., Pearson, N. J., Griffin, W. L., et al., 2004. The Application of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry to In Situ U–Pb Zircon Geochronology. Chemical Geology, 211(1-2): 47-69. https://doi.org/10.1016/j.chemgeo.2004.06.017 [14] Jian, P., Kröner, A., Windley, B. F., et al., 2012. Carboniferous and Cretaceous Mafic–Ultramafic Massifs in Inner Mongolia (China): A SHRIMP Zircon and Geochemical Study of the Previously Presumed Integral "Hegenshan Ophiolite". Lithos, 142-143: 48-66. https://doi.org/10.1016/j.lithos.2012.03.007 [15] Jian, P., Liu, D.Y., Kröner, A., et al., 2008. Time Scale of an Early to Mid-Paleozoic Orogenic Cycle of the Long-Lived Central Asian Orogenic Belt, Inner Mongolia of China: Implications for Continental Growth. Lithos, 101(3-4): 233-259. https://doi.org/10.1016/j.lithos.2007.07.005 [16] Jian, P., Liu, D.Y., Kröner, A., et al., 2010. Evolution of a Permian Intraoceanic Arc-Trench System in the Solonker Suture Zone, Central Asian Orogenic Belt, China and Mongolia. Lithos, 118(1-2): 169-190. https://doi.org/10.1016/j.lithos.2010.04.014 [17] Jiang, X.J., Liu, Z.H., Xu, Z.Y., et al., 2013.LA-ICP-MS Zircon U-Pb Dating of Wulanhada Middle Permian Alkali-Feldspar Granites in Xianghuang Banner, Central Inner Mongolia, and Its Geochemical Characteristics. Geological Bulletin of China, 32(11):1760-1768(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201311008 [18] Le Maitre, R.W., Streckeisen, A., Zanettin, B., et al., 2002.Igenous. Rocks: A Classification and Glossary of Terms: Recommendations of the IUGS Subcommission on the Systematics of Igneous Rocks. Cambridge University Press, Cambridge, 33. [19] Li, G.Z., Wang, Y.J., Li, C.Y., et al., 2017.Discovery of Early Permian Radiolarian Fauna in the Solon Obo Ophiolite Belt, Inner Mongolia and Its Geological Significance. Chinese Science Bulletin, 62(5):400-406(in Chinese with English abstract). doi: 10.1360/N972016-00703 [20] Li, H.K., Geng, J. Z., Hao, S., et al., 2009. The Study of Zircon U-Pb Isotopic Age by Laser Ablation Multi-Collector Plasma Mass Spectrometry (LA- MC- ICPMS). Acta Mineralogica Sinica, 29(1): 600-601(in Chinese). [21] Li, P.W., Gao, R., Guan, Y., et al., 2009.The Closure Time of the Paleo-Asian Ocean and the Paleo-Tethys Ocean: Implication for the Tectonic Cause of the End-Permian Mass Extinction. Journal of Jilin University (Earth Science Edition), 39(3):521-527(in Chinese with English abstract). http://cn.bing.com/academic/profile?id=7fd4a618a21339059a2afde8a913565e&encoded=0&v=paper_preview&mkt=zh-cn [22] Liu, C.F., Zhang, H.R., Yu, Y.S., et al., 2010.Dating and Petrochemistry of the Beijige Pluton in Siziwangqi, Inner Mongolia.Geoscience, 24(1):112-119, 150(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz201001014 [23] Liu, D.Y., Jian, P., Zhang, Q., et al., 2003.SHRIMP Dating of Adakites in the Tulingkai Ophiolite, Inner Mongolia: Evidence for the Early Paleozoic Subduction. Acta Geologica Sinica, 77(3):317-327, 435-437(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DXQY200304018.htm [24] Liu, M., Zhao, H.T., Zhang, D., et al., 2017.Chronology, Geochemistry and Tectonic Implications of Late Palaeozoic Intrusions from South of Xiwuqi, Inner Mongolia. Earth Science, 42(4):527-548(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201704004 [25] Liu, Y.S., Gao, S., Hu, Z.C., et al., 2009. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2): 537-571. https://doi.org/10.1093/petrology/egp082 [26] Ludwig, K.R., 2003. Isoplot 3.0: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, Berkeley. [27] Ma, C., Tang, Y.J., Ying, J.F., 2019.Magmatism in Subduction Zones and Growth of Continental Crust. Earth Science, 44(4):1128-1142(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201904006 [28] MacDonald, G.A., Katsura, T., 1964. Chemical Composition of Hawaiian Lavas 1. Journal of Petrology, 5(1): 82-133. https://doi.org/10.1093/petrology/5.1.82 [29] Maniar, P.D., Piccoli, P.M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016-7606(1989)101 < 0635:tdog > 2.3.co; 2 doi: 10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2 [30] Martin, H., 1999. Adakitic Magmas: Modern Analogues of Archaean Granitoids. Lithos, 46(3): 411-429. https://doi.org/10.1016/s0024-4937(98)00076-0 [31] Miao, L., Zhang, F., Fan, W.M., et al., 2007. Phanerozoic Evolution of the Inner Mongolia–Daxinganling Orogenic Belt in North China: Constraints from Geochronology of Ophiolites and Associated Formations. Geological Society, London, Special Publications, 280(1): 223-237. https://doi.org/10.1144/sp280.11 [32] Nozaka, T., Liu, Y., 2002. Petrology of the Hegenshan Ophiolite and Its Implication for the Tectonic Evolution of Northern China. Earth and Planetary Science Letters, 202(1): 89-104. https://doi.org/10.1016/s0012-821x(02)00774-4 [33] Pan, G.T., Lu, S.N., Xiao, Q.H., et al., 2016.Division of Tectonic Stages and Tectonic Evolution in China. Earth Science Frontiers, 23(6):1-23(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201606001 [34] Pearce, J.A., Harris, N.B.W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956-983. https://doi.org/10.1093/petrology/25.4.956 [35] Shao, J.A., He, G.Q., Tang, K.D., 2015. The Evolution of Permian Continental Crust in Northern Part of North China. Acta Petrologica Sinica, 31(1): 47-55. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201501003 [36] Sun, S.S., McDonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [37] Tang, K.D., 1992.Tectonic Evolution and Minerogenetic Regularities of the Fold Belt along the Northern Margins of Sino-Korean Plate. Peking University Press, Beijing, 60-69(in Chinese). [38] Tong, Y., Hong, D.W., Wang, T., et al., 2010.Spatial and Temporal Distribution of Granitoids in the Middle Segment of the Sino-Mongolian Border and Its Tectonic and Metallogenic Implications. Acta Geoscientica Sinica, 31(3): 395-412(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb201003013 [39] Vervoort, J.D., Patchett, P.J., Gehrels, G. E., et al., 1996. Constraints on Early Earth Differentiation from Hafnium and Neodymium Isotopes. Nature, 379(6566): 624-627. https://doi.org/10.1038/379624a0 [40] Wang, S.J., Xu, Z.Y., Dong, X.J., et al., 2018.Geochemical Characteristics and Zircon U-Pb Age of the Granodiorite-Norite Gabbro in the Northern Margin of the North China Block and Their Formation Mechanism. Earth Science, 43(9):3267-3284(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201809024 [41] Wang, Y.J., Shu, L.S., 2001.Two Mistakes in the Study of the Formation Age of the Ophiolite Belts, China.Acta Palaeontologica Sinica, 40(4):529-532(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gswxb200104014 [42] Wu, F.Y., Li, X.H., Yang, J.H., et al., 2007.Discussions on the Petrogenesis of Granites. Acta Petrologica Sinica, 23(6):1217-1238(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200706001 [43] Wu, F.Y., Yang, Y.H., Xie, L. W., et al., 2006. Hf Isotopic Compositions of the Standard Zircons and Baddeleyites Used in U-Pb Geochronology. Chemical Geology, 234(1-2): 105-126. https://doi.org/10.1016/j.chemgeo.2006.05.003 [44] Xiao, W.J., Windley, B.F., Hao, J., et al., 2003. Accretion Leading to Collision and the Permian Solonker Suture, Inner Mongolia, China: Termination of the Central Asian Orogenic Belt. Tectonics, 22(6): 1069-1089. https://doi.org/10.1029/2002tc001484 [45] Xiao, W.J., Windley, B.F., Huang, B. C., et al., 2009. End-Permian to Mid-Triassic Termination of the Accretionary Processes of the Southern Altaids: Implications for the Geodynamic Evolution, Phanerozoic Continental Growth, and Metallogeny of Central Asia. International Journal of Earth Sciences, 98(6): 1189-1217. https://doi.org/10.1007/s00531-008-0407-z [46] Xiao, W.J., Windley, B.F., Sun, S., et al., 2015. A Tale of Amalgamation of Three Permo-Triassic Collage Systems in Central Asia: Oroclines, Sutures, and Terminal Accretion. Annual Review of Earth and Planetary Sciences, 43(1): 477-507. https://doi.org/10.1146/annurev-earth-060614-105254 [47] Xu, B., Charvet, J., Chen, Y., et al., 2013. Middle Paleozoic Convergent Orogenic Belts in Western Inner Mongolia (China): Framework, Kinematics, Geochronology and Implications for Tectonic Evolution of the Central Asian Orogenic Belt. Gondwana Research, 23(4): 1342-1364. doi: 10.1016/j.gr.2012.05.015 [48] Xu, B., Charvet, J., Zhang, F.Q., 2001.Primary Study on Petrology and Geochronology of Blueschists in Sunitezuoqi, Northern Inner Mongolia.Chinese Journal of Geology, 36(4):424-434(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKX200104005.htm [49] Xu, W.L., Sun, C.Y., Tang, J., et al., 2019.Basement Nature and Tectonic Evolution of the Xing'an-Mongolian Orogenic Belt. Earth Science, 44(5):1620-1646(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201905017 [50] Yang, J.H., Wu, F.Y., Shao, J. A., et al., 2006. Constraints on the Timing of Uplift of the Yanshan Fold and Thrust Belt, North China. Earth and Planetary Science Letters, 246(3-4): 336-352. https://doi.org/10.1016/j.epsl.2006.04.029 [51] Zhang, J.R., Wei, C.J., Chu, H., 2015. Blueschist Metamorphism and Its Tectonic Implication of Late Paleozoic–Early Mesozoic Metabasites in the Mélange Zones, Central Inner Mongolia, China. Journal of Asian Earth Sciences, 97: 352-364. https://doi.org/10.13039/501100001809 [52] Zhang, Q., Wang, Y.L., Jin, W.J., et al., 2008.Criteria for the Recognition of Pre-, Syn- and Post-Orogenic Granitic Rocks. Geological Bulletin of China, 27(1):1-18(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200801001 [53] Zhang, S.H., Zhao, Y., Kröner, A., et al., 2009a. Early Permian Plutons from the Northern North China Block: Constraints on Continental Arc Evolution and Convergent Margin Magmatism Related to the Central Asian Orogenic Belt. International Journal of Earth Sciences, 98(6): 1441-1467. https://doi.org/10.1007/s00531-008-0368-2 [54] Zhang, S.H., Zhao, Y., Liu, X. C., et al., 2009b. Late Paleozoic to Early Mesozoic Mafic-Ultramafic Complexes from the Northern North China Block: Constraints on the Composition and Evolution of the Lithospheric Mantle. Lithos, 110(1-4): 229-246. https://doi.org/10.1016/j.lithos.2009.01.008 [55] Zhang, S.H., Zhao, Y., Liu, J. M., et al., 2016. Different Sources Involved in Generation of Continental Arc Volcanism: The Carboniferous-Permian Volcanic Rocks in the Northern Margin of the North China Block. Lithos, 240-243: 382-401. https://doi.org/10.13039/501100004613 [56] Zhang, X.H., Wilde, S. A., Zhang, H. F., et al., 2011. Early Permian High-K Calc-Alkaline Volcanic Rocks from NW Inner Mongolia, North China: Geochemistry, Origin and Tectonic Implications. Journal of the Geological Society, 168(2): 525-543. https://doi.org/10.1144/0016-76492010-094 [57] Zheng, Y.F., Chen, Y.X., Dai, L. Q., et al., 2015. Developing Plate Tectonics Theory from Oceanic Subduction Zones to Collisional Orogens. Science China Earth Sciences, 58(7): 1045-1069. https://doi.org/10.1007/s11430-015-5097-3 [58] 陈斌, 2002.内蒙古苏尼特左旗南白音宝力道岩体特征与成因——是岛弧岩浆岩而不是埃达克岩.地质论评, 48(3):261-266. doi: 10.3321/j.issn:0371-5736.2002.03.005 [59] 陈琦, 仇甘霖, 薛林福, 等, 1993.内蒙造山带南部古板块构造演化.地质论评, 39(6):477-483. doi: 10.3321/j.issn:0371-5736.1993.06.001 [60] 初航, 张晋瑞, 魏春景, 等, 2013.内蒙古温都尔庙群变质基性火山岩构造环境及年代新解.科学通报, 58(28-29):2958-2965. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201328011 [61] 董晓杰, 王挽琼, 沙茜, 等, 2016.华北克拉通北缘中段二叠纪苏吉火山岩及其形成机制.岩石学报, 32(9):2765-2779. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201609012 [62] 胡骁, 许传诗, 牛树根1990.华北地台北缘早古生代大陆边缘演化.北京:北京大学出版社. [63] 蒋孝君, 刘正宏, 徐仲元, 等, 2013.内蒙古镶黄旗乌兰哈达中二叠世碱长花岗岩LA-ICP-MS锆石U-Pb年龄和地球化学特征.地质通报, 32(11):1760-1768. doi: 10.3969/j.issn.1671-2552.2013.11.008 [64] 李钢柱, 王玉净, 李成元, 等, 2017.内蒙古索伦山蛇绿岩带早二叠世放射虫动物群的发现及其地质意义.科学通报, 62(5):400-406. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201705007 [65] 李怀坤, 耿建珍, 郝爽, 等, 2009.用激光烧蚀多接收器等离子体质谱仪(LA-MC-ICPMS)测定锆石U-Pb同位素年龄的研究.矿物学报, 29(S1):600-601. http://d.old.wanfangdata.com.cn/Conference/7298171 [66] 李朋武, 高锐, 管烨, 等, 2009.古亚洲洋和古特提斯洋的闭合时代——论二叠纪末生物灭绝事件的构造起因.吉林大学学报(地球科学版), 39(3):521-527. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cckjdxxb200903023 [67] 柳长峰, 张浩然, 於炀森, 等, 2010.内蒙古中部四子王旗地区北极各岩体锆石定年及其岩石化学特征.现代地质, 24(1):112-119, 150. doi: 10.3969/j.issn.1000-8527.2010.01.014 [68] 刘敦一, 简平, 张旗, 等, 2003.内蒙古图林凯蛇绿岩中埃达克岩SHRIMP测年:早古生代洋壳消减的证据.地质学报, 77(3):317-327, 435-437. doi: 10.3321/j.issn:0001-5717.2003.03.004 [69] 刘敏, 赵洪涛, 张达, 等, 2017.内蒙古西乌旗南部晚古生代侵入岩年代学、地球化学特征及地质意义.地球科学, 42(4):527-548. doi: 10.3799/dqkx.2017.042 [70] 马超, 汤艳杰, 英基丰, 2019.俯冲带岩浆作用与大陆地壳生长.地球科学, 44(4):1128-1142. doi: 10.3799/dqkx.2019.026 [71] 内蒙古自治区地质矿产局, 1991.内蒙古自治区区域地质志.北京:地质出版社. [72] 潘桂棠, 陆松年, 肖庆辉, 等, 2016.中国大地构造阶段划分和演化.地学前缘, 23(6):1-23. http://d.old.wanfangdata.com.cn/Periodical/dxqy201606001 [73] 唐克东, 1992.中朝板块北侧褶皱带构造演化及成矿规律.北京:北京大学出版社, 60-69. [74] 童英, 洪大卫, 王涛, 等, 2010.中蒙边境中段花岗岩时空分布特征及构造和找矿意义.地球学报, 31(3): 133-150. http://d.old.wanfangdata.com.cn/Periodical/dqxb201003013 [75] 王师捷, 徐仲元, 董晓杰, 等, 2018.华北板块北缘中段花岗闪长岩-苏长辉长岩的锆石U-Pb年代学、地球化学特征及其形成机制.地球科学, 43(9):3267-3284. doi: 10.3799/dqkx.2017.585 [76] 王玉净, 舒良树, 2001.中国蛇绿岩带形成时代研究中的两个误区.古生物学报, 40(4):529-532. doi: 10.3969/j.issn.0001-6616.2001.04.014 [77] 吴福元, 李献华, 杨进辉, 等, 2007.花岗岩成因研究的若干问题.岩石学报, 23(6):1217-1238. doi: 10.3969/j.issn.1000-0569.2007.06.001 [78] 徐备, Charvet, J., 张福勤, 2001.内蒙古北部苏尼特左旗蓝片岩岩石学和年代学研究.地质科学, 36(4):424-434. doi: 10.3321/j.issn:0563-5020.2001.04.005 [79] 许文良, 孙晨阳, 唐杰, 等, 2019.兴蒙造山带的基底属性与构造演化过程.地球科学, 44(5):1620-1646. http://d.old.wanfangdata.com.cn/Periodical/dqkx201905017 [80] 张旗, 王元龙, 金惟俊, 等, 2008.造山前、造山和造山后花岗岩的识别.地质通报, 27(1):1-18. doi: 10.3969/j.issn.1671-2552.2008.01.001