Fe-Mg Isotopic Compositions of Altered Oceanic Crust and Subduction-Zone Fluids
-
摘要: 贫碳酸盐的蚀变洋壳具有与新鲜洋中脊玄武岩一致的Mg同位素组成,说明低温和高温洋壳蚀变不会导致Mg同位素分馏.大别山港河和花凉亭的早期变质脉比榴辉岩具有偏高的δ56Fe-δ26Mg值,而且早期到晚期变质脉的δ56Fe-δ26Mg值逐渐降低.这些结果说明,在流体-岩石反应和流体演化过程中,Fe-Mg同位素发生了显著的分馏,且矿物溶解-再沉淀是同位素分馏的控制因素.相比洋中脊玄武岩,蚀变洋壳和变质脉具有相似或偏高的δ56Fe-δ26Mg值,说明蚀变洋壳脱水产生的流体富集重Fe-Mg同位素,不能解释弧岩浆岩的轻Fe/重Mg同位素组成.因此,弧岩浆岩异常的Fe-Mg同位素组成是熔体提取和富集54Fe-26Mg的蛇纹岩流体交代地幔楔两个过程共同作用的结果.Abstract: The origin of the light Fe and heavy Mg isotope enrichments in arc lavas remains unclear because of the lack of constraints on the Fe-Mg isotope compositions of altered oceanic crust (AOC) and metamorphic fluids in subduction zones. Carbonate-barren AOC has Mg isotope compositions similar to those of fresh mid-ocean ridge basalts, suggesting that low-to-high temperature alteration of oceanic crust by seawater and hydrothermal fluids results in limited Mg isotope fractionation. Fe-Mg isotope measurements show that the early omphacite-epidote veins have higher δ56Fe and δ26Mg compared to the host eclogites and that the δ56Fe and δ26Mg gradually decrease from the early omphacite-epidote through epidote-quartz to the late kyanite-epidote-quartz veins. These results indicate significant Fe-Mg isotope fractionation during fluid-rock interaction and fluid evolution due to the dissolution-precipitation processes of minerals in subduction zones. Compared to mid-ocean ridge basalts, the similar or higher δ56Fe and δ26Mg of AOC and metamorphic veins suggest that AOC-derived fluids are probably enriched in heavy Fe-Mg isotopes. Thus, contribution from AOC-derived fluids is unlikely to explain the light Fe and heavy Mg isotope compositions of arc lavas. We propose that the Fe-Mg isotope anomaly of arc lavas may result from a combination of prior melt depletion and addition of serpentinite-derived 54Fe-26Mg-rich fluids into the overlying mantle wedge.
-
Key words:
- Fe-Mg isotopes /
- altered oceanic crust /
- eclogite /
- metamorphic fluids /
- fluid evolution /
- arc lavas /
- geochemistry
-
图 1 IODP 1256钻孔洋壳的蚀变温度(a),δ18O(b)和δ26Mg(c)的空间变化
蚀变温度、O和Mg同位素数据引自Alt et al.(2010)、Gao et al.(2012)和Huang et al.(2015).灰色条带表示新鲜洋中脊玄武岩的O和Mg同位素组成(Harmon and Hoefs, 1995;Teng et al., 2010)
Fig. 1. Down-hole variations in alteration temperatures, δ18O, and δ26Mg of oceanic crust from IODP site 1256
图 2 大别山港河和花凉亭榴辉岩和变质脉的Fe3+/ΣFe、δ26Mg和δ56Fe变化
据Huang et al.(2019).灰色条带表示新鲜洋中脊玄武岩的Fe-Mg同位素组成(Weyer and Ionov, 2007;Teng et al., 2010;Nebel et al., 2013)
Fig. 2. Fe3+/ΣFe、δ26Mg, and δ56Fe in ecoligites and veins at Ganghe and Hualiangting in the Dabie orogen
图 3 大别山港河和花凉亭超高压榴辉岩和变质脉中矿物的Fe-Mg同位素组成
据Huang et al.(2019).黑色正方形表示新鲜洋中脊玄武岩的Fe-Mg同位素组成(Weyer and Ionov, 2007;Teng et al., 2010;Nebel et al., 2013)
Fig. 3. δ26Mg and δ56Fe of minerals from ecoligites and veins at Ganghe and Hualiangting in the Dabie orogen
图 4 大别山花凉亭三期变质脉全岩(a, b)和绿帘石(c, d)的Eu/Eu*、δ26Mg和δ56Fe协变图解
Fig. 4. Eu/Eu*, δ26Mg, and δ56Fe in whole-rocks (a, b) and epidotes (c, d) of multi-stage veins at Hualiangting in the Dabie orogen
-
[1] Alt, J.C., Laverne, C., Coggon, R.M., et al., 2010.Subsurface Structure of a Submarine Hydrothermal System in Ocean Crust Formed at the East Pacific Rise, ODP/IODP Site 1256.Geochemistry, Geophysics, Geosystems, 11(10): Q10010. https://doi.org/10.1029/2010gc003144 [2] Chen, Y.X., Schertl, H.P., Zheng, Y.F., et al., 2016.Mg-O Isotopes Trace the Origin of Mg-Rich Fluids in the Deeply Subducted Continental Crust of Western Alps.Earth and Planetary Science Letters, 456:157-167. https://doi.org/10.1016/j.epsl.2016.09.010 [3] Craddock, P.R., Warren, J.M., Dauphas, N., 2013.Abyssal Peridotites Reveal the Near-Chondritic Fe Isotopic Composition of the Earth.Earth and Planetary Science Letters, 365:63-76. https://doi.org/10.1016/j.epsl.2013.01.011 [4] Dauphas, N., Craddock, P.R., Asimow, P.D., et al., 2009.Iron Isotopes May Reveal the Redox Conditions of Mantle Melting from Archean to Present.Earth and Planetary Science Letters, 288(1-2):255-267. https://doi.org/10.1016/j.epsl.2009.09.029 [5] Dauphas, N., John, S.G., Rouxel, O., 2017.Iron Isotope Systematics.Reviews in Mineralogy and Geochemistry, 82(1):415-510. https://doi.org/10.2138/rmg.2017.82.11 [6] Debret, B., Bouilhol, P., Pons, L., et al., 2018.Carbonate Transfer during the Onset of Slab Devolatilization:New Insights from Fe and Zn Stable Isotopes.Journal of Petrology, 59(6):1145-1166. https://doi.org/10.1093/petrology/egy057v [7] Debret, B., Millet, M.A., Pons, M.L., et al., 2016.Isotopic Evidence for Iron Mobility during Subduction.Geology, 44(3):215-218. https://doi.org/10.1130/g37565.1 [8] El Korh, A., Luais, B., Deloule, E., et al., 2017.Iron Isotope Fractionation in Subduction-Related High-Pressure Metabasites (Ile de Groix, France).Contributions to Mineralogy and Petrology, 172:41. https://doi.org/10.1007/s00410-017-1357-x [9] Elliott, T., Plank, T., Zindler, A., et al., 1997.Element Transport from Slab to Volcanic Front at the Mariana Arc.Journal of Geophysical Research:Solid Earth, 102(B7):14991-15019. doi: 10.1029/97JB00788 [10] Feineman, M.D., Ryerson, F.J., DePaolo, D.J., et al., 2007.Zoisite-Aqueous Fluid Trace Element Partitioning with Implications for Subduction Zone Fluid Composition.Chemical Geology, 239(3-4):250-265. https://doi.org/10.1016/j.chemgeo.2007.01.008 [11] Foden, J., Sossi, P.A., Nebel, O., 2018.Controls on the Iron Isotopic Composition of Global Arc Magmas.Earth and Planetary Science Letters, 494:190-201. https://doi.org/10.1016/j.epsl.2018.04.039 [12] Gao, Y.J., Vils, F., Cooper, K.M., et al., 2012.Downhole Variation of Lithium and Oxygen Isotopic Compositions of Oceanic Crust at East Pacific Rise, ODP Site 1256. Geochemistry, Geophysics, Geosystems, 13(10): Q10001. https://doi.org/10.1029/2012gc004207 [13] Guo, S., Chen, Y., Ye, K., et al., 2015.Formation of Multiple High-Pressure Veins in Ultrahigh-Pressure Eclogite (Hualiangting, Dabie Terrane, China):Fluid Source, Element Transfer, and Closed-System Metamorphic Veining.Chemical Geology, 417:238-260. https://doi.org/10.1016/j.chemgeo.2015.10.006 [14] Guo, S., Ye, K., Chen, Y., et al., 2012.Fluid-Rock Interaction and Element Mobilization in UHP Metabasalt:Constraints from an Omphacite-Epidote Vein and Host Eclogites in the Dabie Orogen.Lithos, 136-139:145-167. https://doi.org/10.1016/j.lithos.2011.11.008 [15] Guo, S., Ye, K., Wu, T.F., et al., 2013.A Potential Method to Confirm the Previous Existence of Lawsonite in Eclogite:The Mass Imbalance of Sr and LREEs in Multistage Epidote (Ganghe, Dabie UHP Terrane).Journal of Metamorphic Geology, 31(4):415-435. https://doi.org/10.1111/jmg.12027 [16] Guo, S., Ye, K., Yang, Y.H., et al., 2014.In Situ Sr Isotopic Analyses of Epidote:Tracing the Sources of Multi-Stage Fluids in Ultrahigh-Pressure Eclogite (Ganghe, Dabie Terrane).Contributions to Mineralogy and Petrology, 167(2):975. https://doi.org/10.1007/s00410-014-0975-9 [17] Harmon, R.S., Hoefs, J., 1995.Oxygen Isotope Heterogeneity of the Mantle Deduced from Global 18O Systematics of Basalts from Different Geotectonic Settings.Contributions to Mineralogy and Petrology, 120(1):95-114. https://doi.org/10.1007/bf00311010 [18] Huang, J., Guo, S., Jin, Q.Z., et al., 2019.Iron and Magnesium Isotopic Compositions of Subduction-Zone Fluids and Implications for Arc Volcanism.Geochimica et Cosmochimica Acta. https://doi.org/10.1016/j.gca.2019.06.020 [19] Huang, J., Ke, S., Gao, Y.J., et al., 2015.Magnesium Isotopic Compositions of Altered Oceanic Basalts and Gabbros from IODP Site 1256 at the East Pacific Rise.Lithos, 231:53-61. https://doi.org/10.1016/j.lithos.2015.06.009 [20] Inglis, E.C., Debret, B., Burton, K.W., et al., 2017.The Behavior of Iron and Zinc Stable Isotopes Accompanying the Subduction of Mafic Oceanic Crust:A Case Study from Western Alpine Ophiolites.Geochemistry, Geophysics, Geosystems, 18(7):2562-2579. doi: 10.1002/2016GC006735 [21] Li, S.G., Yang, W., Ke, S., et al., 2017.Deep Carbon Cycles Constrained by a Large-Scale Mantle Mg Isotope Anomaly in Eastern China.National Science Review, 4(1):111-120. https://doi.org/10.1093/nsr/nww070 [22] Li, Y.L., Zheng, Y.F., Fu, B., 2005.Mössbauer Spectroscopy of Omphacite and Garnet Pairs from Eclogites:Application to Geothermobarometry.American Mineralogist, 90(1):90-100. https://doi.org/10.2138/am.2005.1400 [23] Martin, L.A.J., Wood, B.J., Turner, S., et al., 2011.Experimental Measurements of Trace Element Partitioning between Lawsonite, Zoisite and Fluid and Their Implication for the Composition of Arc Magmas.Journal of Petrology, 52(6):1049-1075. https://doi.org/10.1093/petrology/egr018 [24] Nebel, O., Arculus, R.J., Sossi, P.A., et al., 2013.Iron Isotopic Evidence for Convective Resurfacing of Recycled Arc-Front Mantle beneath Back-Arc Basins.Geophysical Research Letters, 40(22):5849-5853. https://doi.org/10.1002/2013gl057976 [25] Nebel, O., Sossi, P.A., Bénard, A., et al., 2015.Redox-Variability and Controls in Subduction Zones from an Iron-Isotope Perspective.Earth and Planetary Science Letters, 432:142-151. https://doi.org/10.1016/j.epsl.2015.09.036 [26] Pogge von Strandmann, P.A.E., Elliott, T., Marschall, H.R., et al., 2011.Variations of Li and Mg Isotope Ratios in Bulk Chondrites and Mantle Xenoliths.Geochimica et Cosmochimica Acta, 75(18):5247-5268. https://doi.org/10.1016/j.gca.2011.06.026 [27] Schmidt, M.W., Poli, S., 1998.Experimentally Based Water Budgets for Dehydrating Slabs and Consequences for Arc Magma Generation.Earth and Planetary Science Letters, 163(1-4):361-379. https://doi.org/10.1016/s0012-821x(98)00142-3 [28] Scott, S.R., Sims, K.W.W., Frost, B.R., et al., 2017.On the Hydration of Olivine in Ultramafic Rocks:Implications from Fe Isotopes in Serpentinites.Geochimica et Cosmochimica Acta, 215:105-121. https://doi.org/10.1016/j.gca.2017.07.011 [29] Sossi, P.A., Nebel, O., Foden, J., 2016.Iron Isotope Systematics in Planetary Reservoirs.Earth and Planetary Science Letters, 452:295-308. https://doi.org/10.1016/j.epsl.2016.07.032 [30] Teng, F.Z., Dauphas, N., Huang, S.C., et al., 2013.Iron Isotopic Systematics of Oceanic Basalts.Geochimica et Cosmochimica Acta, 107:12-26. https://doi.org/10.1016/j.gca.2012.12.027 [31] Teng, F.Z., Hu, Y., Chauvel, C., 2016.Magnesium Isotope Geochemistry in Arc Volcanism.Proceedings of the National Academy of Sciences, 113(26):7082-7087. https://doi.org/10.1073/pnas.1518456113 [32] Teng, F.Z., Li, W.Y., Ke, S., et al., 2010.Magnesium Isotopic Composition of the Earth and Chondrites.Geochimica et Cosmochimica Acta, 74(14):4150-4166. https://doi.org/10.1016/j.gca.2010.04.019 [33] Turner, S., Williams, H., Piazolo, S., et al., 2018.Sub-Arc Xenolith Fe-Li-Pb Isotopes and Textures Tell Tales of Their Journey through the Mantle Wedge and Crust.Geology, 46(11):947-950. https://doi.org/10.1130/g45359.1 [34] Wang, S.J., Teng, F.Z., Li, S.G., et al., 2014.Magnesium Isotopic Systematics of Mafic Rocks during Continental Subduction.Geochimica et Cosmochimica Acta, 143:34-48. https://doi.org/10.1016/j.gca.2014.03.029 [35] Wang, S.J., Teng, F.Z., Li, S.G., et al., 2017.Tracing Subduction Zone Fluid-Rock Interactions Using Trace Element and Mg-Sr-Nd Isotopes.Lithos, 290/291:94-103. https://doi.org/10.1016/j.lithos.2017.08.004 [36] Weyer, S., Ionov, D.A., 2007.Partial Melting and Melt Percolation in the Mantle:The Message from Fe Isotopes.Earth and Planetary Science Letters, 259(1-2):119-133. https://doi.org/10.1016/j.epsl.2007.04.033 [37] Williams, H., Peslier, A., McCammon, C., et al., 2005.Systematic Iron Isotope Variations in Mantle Rocks and Minerals:The Effects of Partial Melting and Oxygen Fugacity.Earth and Planetary Science Letters, 235(1-2):435-452. https://doi.org/10.1016/j.epsl.2005.04.020 [38] Zheng, Y.F., Fu, B., Gong, B., et al., 2003.Stable Isotope Geochemistry of Ultrahigh Pressure Metamorphic Rocks from the Dabie-Sulu Orogen in China:Implications for Geodynamics and Fluid Regime.Earth-Science Reviews, 62(1-2):105-161. https://doi.org/10.1016/s0012-8252(02)00133-2