• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    板块俯冲带水流体活动及其效应的定量化数值模拟

    李忠海 杨舒婷 刘明启 皇甫鹏鹏

    李忠海, 杨舒婷, 刘明启, 皇甫鹏鹏, 2019. 板块俯冲带水流体活动及其效应的定量化数值模拟. 地球科学, 44(12): 3984-3992. doi: 10.3799/dqkx.2019.232
    引用本文: 李忠海, 杨舒婷, 刘明启, 皇甫鹏鹏, 2019. 板块俯冲带水流体活动及其效应的定量化数值模拟. 地球科学, 44(12): 3984-3992. doi: 10.3799/dqkx.2019.232
    Li Zhonghai, Yang Shuting, Liu Mingqi, Huangfu Pengpeng, 2019. Aqueous Fluid Activity and Its Effects in the Subduction Zones: A Systematic Numerical Modeling Study. Earth Science, 44(12): 3984-3992. doi: 10.3799/dqkx.2019.232
    Citation: Li Zhonghai, Yang Shuting, Liu Mingqi, Huangfu Pengpeng, 2019. Aqueous Fluid Activity and Its Effects in the Subduction Zones: A Systematic Numerical Modeling Study. Earth Science, 44(12): 3984-3992. doi: 10.3799/dqkx.2019.232

    板块俯冲带水流体活动及其效应的定量化数值模拟

    doi: 10.3799/dqkx.2019.232
    基金项目: 

    科技部“973”项目 2015CB856106

    详细信息
      作者简介:

      李忠海(1982-), 男, 教授, 博士生导师, 主攻地球动力学数值模拟方向, 以理论计算和软件程序开发为基础, 以大尺度数值模拟为主要手段, 以板块俯冲-碰撞带及其相关动力学过程为研究对象

    • 中图分类号: P31

    Aqueous Fluid Activity and Its Effects in the Subduction Zones: A Systematic Numerical Modeling Study

    • 摘要: 为探讨水流体活动对板块俯冲隧道过程及大陆碰撞造山的制约作用,采用热力学和动力学耦合的数值模拟方法,建立了系统的数值模型.结果显示俯冲隧道内的混杂岩存在两种不同的折返路径:(1)平行于俯冲隧道斜向上折返,形成靠近缝合带的高压-超高压变质岩;(2)近垂直穿过上覆地幔楔侵入地壳深度.这两种差异性的模式主要受控于俯冲带热结构.俯冲带的温度结构控制俯冲隧道内水流体和熔体活动,从而影响上覆地幔楔的弱化程度,最终导致俯冲带内物质的不同运移过程和折返路径.同时,大陆俯冲碰撞带的岩石圈变形和拆沉作用均与俯冲带的流体-熔体活动所导致的岩石圈弱化息息相关.数值模拟结果极大促进了对于板块俯冲带流体-熔体活动及其动力学过程的理解.

       

    • 图  1  俯冲带含水流体活动的物质场演化数值模型

      颜色代表岩石类型.模型的演化时间如图左下角所示(修改自李忠海等,2015)

      Fig.  1.  Composition evolution of the numerical model with fluid-melt activity in the subduction zones

      图  2  会聚板块年龄或厚度对俯冲带温度结构的制约

      a.参考模型演化至10 Ma时,温度场分布(俯冲大洋岩石圈年龄为tAo=60 Ma,上覆大陆岩石圈厚度为Tc=140 km,俯冲速率为Vx=5 cm/a);黑色垂线b~e代表温度剖面位置.b、c.保持Tc=140 km和Vx=5 cm/a不变,不同年龄大洋岩石圈模型俯冲至10 Ma时,黑线b、c(x=2 720 km,2 840 km)位置对应的温度结构.d、e保持tAo=60 Ma和Vx=5 cm/a不变,不同上覆大陆岩石圈厚度模型演化至10 Ma时,黑线d、e(x=2 700 km,2 900 km)位置对应的温度结构.图修改自Liu et al.(2017)

      Fig.  2.  The constraints of age or thickness of convergent plates on the temperature structure of subduction zones

      图  3  俯冲带物质折返模式相

      修改自Liu et al.(2017)

      Fig.  3.  Regime diagram of material exhumation in the subduction zones

      图  4  岩石圈弱化程度对大陆俯冲碰撞模式的制约

      修改自Li et al.(2016);模型A和B的上覆岩石圈地幔采用干橄榄岩的流变强度,而模型C和D的上覆岩石圈地幔采用湿橄榄岩的流变强度(Ranalli,1995)

      Fig.  4.  Constraints of lithospheric weakening on the continental subduction and collision

      图  5  阿尔卑斯-喜马拉雅构造域内三个典型造山带区域地质简图及壳幔结构示意

      区域主要构造线及构造单元(从西至东):EAF.东安纳托利亚断裂;NAF.北安纳托利亚断裂;NEAF.北东安纳托里利亚断裂;BS.Bitlis缝合带;ZFTB.扎格罗斯褶皱冲断带;HZ.高扎格罗斯;SSZ.Sanandaj-Sirjan区域;UDMA.Urumieh-Dokhtar岩浆弧;CIP.中部伊朗高原;MBT.主边界断裂;MCT.主中央断裂;STDS.藏南拆离系;ITS.雅江缝合带;BNS.斑怒缝合带;JS.金沙江缝合带;KF.喀喇昆仑断裂;修改自Huangfu et al.(2019)

      Fig.  5.  Major tectonic units and simplified crustal-lithospheric structure of three collisional orogenies within the Alpine-Himalayan belt

    • [1] Behn, M.D., Kelemen, P.B., Hirth, G., et al., 2011.Diapirs as the Source of the Sediment Signature in Arc Lavas.Nature Geoscience, 4(9):641-646. https://doi.org/10.1038/ngeo1214
      [2] Butler, J.P., Beaumont, C., Jamieson, R.A., 2013.The Alps 1:A Working Geodynamic Model for Burial and Exhumation of (Ultra) High-Pressure Rocks in Alpine-Type Orogens.Earth and Planetary Science Letters, (377-378):114-131. https://doi.org/10.1016/j.epsl.2013.06.039
      [3] Burg, J.P., Gerya, T.V., 2005.The Role of Viscous Heating in Barrovian Metamorphism of Collisional Orogens:Thermomechanical Models and Application to the Lepontine Dome in the Central Alps.Journal of Metamorphic Geology, 23(2):75-95. https://doi.org/10.1111/j.1525-1314.2005.00563.x
      [4] Connolly, J.A.D., 2005.Computation of Phase Equilibria by Linear Programming:A Tool for Geodynamic Modeling and Its Application to Subduction Zone Decarbonation.Earth and Planetary Science Letters, 236(1-2):524-541. https://doi.org/10.1016/j.epsl.2005.04.033
      [5] Gerya, T.V., Meilick, F.I., 2011.Geodynamic Regimes of Subduction under an Active Margin:Effects of Rheological Weakening by Fluids and Melts.Journal of Metamorphic Geology, 29(1):7-31. https://doi.org/10.1111/j.1525-1314.2010.00904.x
      [6] Hacker, B.R., Abers, G.A., Peacock, S.M., 2003.Subduction Factory 1.Theoretical Mineralogy, Densities, Seismic Wave Speeds, and H2O Contents.Journal of Geophysical Research:Solid Earth, 108(B1):2029. https://doi.org/10.1029/2001jb001127
      [7] Huangfu, P.P., Li, Z.H., Fan, W.M., et al., 2019.Continental Lithospheric-Scale Subduction versus Crustal-Scale Underthrusting in the Collision Zone:Numerical Modeling.Tectonophysics, 757:68-87. https://doi.org/10.1016/j.tecto.2019.03.007
      [8] Huangfu, P.P., Li, Z.H., Gerya, T., et al., 2018.Multi-Terrane Structure Controls the Contrasting Lithospheric Evolution beneath the Western and Central-Eastern Tibetan Plateau.Nature Communications, 9:3780. doi: 10.1038/s41467-018-06233-x
      [9] Huangfu, P.P., Wang, Y.J., Fan, W.M., et al., 2017.Dynamics of Unstable Continental Subduction:Insights from Numerical Modeling.Science China:Earth Sciences, 47(2):135-153(in Chinese).
      [10] Iwamori, H., 2004.Phase Relations of Peridotites under H2O-Saturated Conditions and Ability of Subducting Plates for Transportation of H2O.Earth and Planetary Science Letters, 227(1-2):57-71. https://doi.org/10.1016/j.epsl.2004.08.013
      [11] Leng, W., Mao, W., 2015.Geodynamic Modeling of Thermal Structure of Subduction Zones.Science China:Earth Sciences, 58(7):1070-1083. https://doi.org/10.1007/s11430-015-5107-5
      [12] Li, Z.H., 2014.A Review on the Numerical Geodynamic Modeling of Continental Subduction, Collision and Exhumation.Science China:Earth Sciences, 44(5):817-841(in Chinese).
      [13] Li, Z.H., Gerya, T., Connolly, J.A.D., 2019.Variability of Subducting Slab Morphologies in the Mantle Transition Zone:Insight from Petrological-Thermomechanical Modeling.Earth-Science Reviews, 196:102874. https://doi.org/10.1016/j.earscirev.2019.05.018
      [14] Li, Z.H., Gerya, T.V., Burg, J.P., 2010.Influence of Tectonic Overpressure on P-T paths of HP-UHP Rocks in Continental Collision Zones:Thermomechanical Modelling.Journal of Metamorphic Geology, 28(3):227-247. https://doi.org/10.1111/j.1525-1314.2009.00864.x
      [15] Li, Z.H., Liu, M.Q., Gerya, T., 2015.Material Transportation and Fluid-Melt Activity in the Subduction Channel:Numerical Modeling.Science China:Earth Sciences, 45(7):881-899(in Chinese).
      [16] Li, Z.H., Liu, M.Q., Gerya, T., 2016.Lithosphere Delamination in Continental Collisional Orogens:A Systematic Numerical Study.Journal of Geophysical Research:Solid Earth, 121(7):5186-5211. https://doi.org/10.1002/2016jb013106
      [17] Liu, M.Q., Li, Z.H., 2018.Dynamics of Thinning and Destruction of the Continental Cratonic Lithosphere:Numerical Modeling.Science China:Earth Sciences, 48(7):844-877(in Chinese).
      [18] Liu, M.Q., Li, Z.H., Yang, S.H., 2017.Diapir versus Along-Channel Ascent of Crustal Material during Plate Convergence:Constrained by the Thermal Structure of Subduction Zones.Journal of Asian Earth Sciences, 145:16-36. https://doi.org/10.1016/j.jseaes.2017.02.036
      [19] Ranalli, G., 1995.Deformation and Flow Processes in Geophysics and Geodynamics.Chapman & Hall, Ranalli London, 413.
      [20] Wang, Q., 2010.A Review of Water Contents and Ductile Deformation Mechanisms of Olivine:Implications for the Lithosphere-Asthenosphere Boundary of Continents.Lithos, 120(1-2):30-41. https://doi.org/10.1016/j.lithos.2010.05.010
      [21] Zheng, Y.F., 2012.Metamorphic Chemical Geodynamics in Continental Subduction Zones.Chemical Geology, 328:5-48. https://doi.org/10.1016/j.chemgeo.2012.02.005
      [22] 皇甫鹏鹏, 王岳军, 范蔚茗, 等, 2017.大陆不稳定俯冲的动力学研究.中国科学:地球科学, 47(2):135-153. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201702001
      [23] 李忠海, 2014.大陆俯冲-碰撞-折返的动力学数值模拟研究综述.中国科学:地球科学, 44(5):817-843. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201405001
      [24] 李忠海, 刘明启, Gerya, T., 2015.俯冲隧道中物质运移和流体-熔体活动的动力学数值模拟.中国科学:地球科学, 45(7):881-899. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201507001
      [25] 刘明启, 李忠海, 2018.克拉通岩石圈减薄与破坏机制的动力学数值模拟.中国科学:地球科学, 48(7):844-877. http://www.cnki.com.cn/Article/CJFDTotal-JDXK201807004.htm
    • 加载中
    图(5)
    计量
    • 文章访问数:  3845
    • HTML全文浏览量:  1334
    • PDF下载量:  153
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-08-09
    • 刊出日期:  2019-12-15

    目录

      /

      返回文章
      返回