An Experimental of Crust-Mantle Interaction in Subduction Zones: Implications for Genesis of Mantle Heterogeneity
-
摘要: 使用活塞-圆筒式高温高压装置进行一系列榴辉岩部分熔融熔体与橄榄岩反应实验,可以为深入了解俯冲带壳-幔相互作用的影响因素及地幔不均一性的成因提供重要信息.实验使用反应偶的方法,并在0.8~3.0 GPa和1 200~1 425℃条件下进行.实验结果表明,榴辉岩部分熔融熔体-橄榄岩反应的动力学和结果受控于熔体主量元素成分、熔体中的H2O、温度、压力和橄榄岩的物理状态等因素.大陆俯冲带地幔岩石中斜方辉石的富集是再循环陆壳熔体与上覆地幔反应的结果,地幔岩石中斜方辉石岩脉的形成与含水熔体交代有关,地幔岩石中的石榴辉石岩和石榴石岩可能形成于高压、低温条件下的熔体-橄榄岩反应.
-
关键词:
- 俯冲带 /
- 壳-幔相互作用 /
- 地幔不均一性 /
- 熔体-橄榄岩反应实验 /
- 岩石学
Abstract: A series of experiments reacting peridotite with melts derived from partial melting of eclogites was accomplished in order to better understand factors that control crust-mantle interaction in subduction zones. The experiments were conducted using the reaction couple method at 0.8-3.0 GPa and 1 200-1 425℃. The experimental results show that kinetics and consequence of melt-rock reaction are controlled by factors including major element composition and H2O in reacting melt, temperature, pressure, and physical state of reacting peridotite. Orthopyroxene enrichment in mantle beneath subduction zones is a result of interaction between melt derived from recycling continental crust and overlaying mantle. Formation of orthopyroxenite veins in mantle rocks is related to hydrous mantle metasomatism. Garnet-bearing and garnet-rich lithologies in mantle rocks were likely formed by melt-rock reaction in the low-temperature regime. -
图 1 熔体-橄榄岩反应实验的初始熔体成分与不同温度、压力条件下榴辉岩/石榴辉石岩部分熔融实验得到的熔体成分对比
Fig. 1. Comparison of starting melt compositions used in melt-peridotite reaction experiments with melt compositions obtained from eclogite/garnet-pyroxenite partial melting experiments conducted at varying temperatures and pressures
图 2 无水熔体-橄榄岩反应实验和含水熔体-橄榄岩反应实验的样品组装示意
Fig. 2. Schematic diagram illustrating capsules used in the anhydrous and hydrous melt-rock reaction experiments
图 3 含水玄武质熔体-二辉橄榄岩反应实验(2 GPa,1 385 ℃)结果的背散射图像
据Wang et al.(2016);QM.淬火熔体,Ol.橄榄石,Opx.斜方辉石
Fig. 3. Back-scattered electron images of the hydrous basaltic melt and lherzolite reaction experiment (2 GPa, 1 385 ℃)
图 4 玄武安山质熔体与不同物理状态的二辉橄榄岩反应实验(2 GPa)结果的背散射图像及成分扫描
a.二辉橄榄岩未发生部分熔融(低温机制);b.二辉橄榄岩发生部分熔融(高温机制);据Lo Cascio(2008)和Wang et al.(2019);Grt.石榴石;Cpx.单斜辉石;Ol.橄榄石;Opx.斜方辉石;Melt.熔体
Fig. 4. Back-scattered electron images and element concentration maps of experiments reacting basaltic andesite with lherzolites with different physical states
-
[1] Beck, A.R., Morgan, Z.T., Liang, Y., et al., 2006.Dunite Channels as Viable Pathways for Mare Basalt Transport in the Deep Lunar Mantle.Geophysical Research Letters, 33(1):L01202. https://doi.org/10.1029/2005gl024008 [2] Hirschmann, M.M., Kogiso, T., Baker, M.B., et al., 2003.Alkalic Magmas Generated by Partial Melting of Garnet Pyroxenite.Geology, 31(6):481-484. doi: 10.1130/0091-7613(2003)031<0481:AMGBPM>2.0.CO;2 [3] Johnston, A.D., Wyllie, P.J., 1989.The System Tonalite-Peridotite-H2O at 30 kbar, with Applications to Hyperdization in Subduction Zone Magmatism.Contributions to Mineralogy and Petrology, 102(3):190-202. doi: 10.1007/BF00371296 [4] Kelemen, P.B., Hart, S.R., Bernstein, S., 1998.Silica Enrichment in the Continental Upper Mantle via Melt/Rock Reaction.Earth and Planetary Science Letters, 164(1):387-406. http://cn.bing.com/academic/profile?id=93711ed45d60d72feada9a741633ed70&encoded=0&v=paper_preview&mkt=zh-cn [5] Liu, Y.S., Gao, S., Lee, C.T.A., et al., 2005.Melt-Peridotite Interactions:Links between Garnet Pyroxenite and High-Mg# Signature of Continental Crust.Earth and Planetary Science Letter, 234(1-2):39-57. https://doi.org/10.1016/j.epsl.2005.02.034 [6] Lo Cascio, M., 2008.Kinetics of Partial Melting and Melt-Rock Reaction in the Earth's Mantle(Dissertation).Brown University, U.S.A.. [7] Morgan, Z., Liang, Y., 2005.An Experimental Study of the Kinetics of Lherzolite Reactive Dissolution with Applications to Melt Channel Formation.Contributions to Mineralogy and Petrology, 150(4):369-385. https://doi.org/10.1007/s00410-005-0033-8 [8] Rapp, R.P., Shimizu, N., Norman, M.D., et al., 1999.Reaction between Slab-Derived Melts and Peridotite in the Mantle Wedge:Experimental Constraints at 3.8 GPa.Chemical Geology, 160(4):335-356. https://doi.org/10.1016/S0009-2541(99)00106-0 [9] Rapp, R.P., Watson, E.B., 1995.Dehydration Melting of Metabasalt at 8-32 kbar: Implications for Continental Growth and Crust-Mantle Recycling.J.Petrol., 36:891-931. doi: 10.1093/petrology/36.4.891 [10] Sen, C., Dunn, T., 1995.Experimental Modal Metasomatism of a Spinel Lherzolite and the Production of Amphibole-Bearing Peridotite.Contributions to Mineralogy and Petrology, 119(4):422-432. https://doi.org/10.1007/bf00286939 [11] Su, B., Chen, Y., Guo, S., et al., 2019.Garnetite and Pyroxenite in the Mantle Wedge Formed by Slab-Mantle Interactions at Different Melt/Rock Ratios.Journal of Geophysical Research:Solid Earth, 124(4):6504-6522. http://cn.bing.com/academic/profile?id=ef05de6118e49f4ff647ba0fb878f992&encoded=0&v=paper_preview&mkt=zh-cn [12] Wang, C., Liang, Y., Xu, W., 2015.Formations of Amphibole-Gabbro and Amphibole-Bearing Peridotite through Hydrous Melt-Peridotite Reaction and In Situ Crystallization: An Experimental Study.Abstract 142-2 Presented at 2015 Annual Meeting, GSA.Baltimore, MD. [13] Wang, C.G., Liang, Y., Dygert, N., et al., 2016.Formation of Orthopyroxenite by Reaction between Peridotite and Hydrous Basaltic Melt:An Experimental Study.ContributionstoMineralogy and Petrology, 171(8-9):77. https://doi.org/10.1007/s00410-016-1287-z [14] Wang, C.G., Liang, Y., Xu, W.L., et al., 2013.Effect of Melt Composition on Basalt and Peridotite Interaction:Laboratory Dissolution Experiments with Applications to Mineral Compositional Variations in Mantle Xenoliths from the North China Craton.Contributions to Mineralogy and Petrology, 166(5):1469-1488. https://doi.org/10.1007/s00410-013-0938-6 [15] Wang, C.G., Lo Cascio, M., Liang, Y., et al., 2019.An Experimental Study of Peridotite Dissolution in Eclogite-Derived Melts:Implications for Styles of Melt-Rock Interaction in Lithospheric Mantle beneath the North China Craton.Geochimica et Cosmochimica Acta. https://doi.org/10.1016/j.gca.2019.09.022 [16] Wang, C.G., Xu, W.L., Yang, D.B., et al., 2018.Olivine Oxygen Isotope Evidence for Intracontinental Recycling of Delaminated Continental Crust.Geochemistry, Geophysics, Geosystems, 19(7):1913-1924. https://doi.org/10.1029/2017gc007284 [17] Xu.W., Hergt, J.M., Gao, S., et al., 2008.Interaction of Adakitic Melt-Peridotite:Implications for the High-Mg# Signature of Mesozoic Adakitic Rocks in the Eastern North China Craton.Earth and Planetetary Science Letters, 265:123-137. https://doi.org/10.1016/j.epsl.2007.09.041 [18] Xu, W.L., Yang, D.B., Gao, S., et al., 2010.Geochemistry of Peridotite Xenoliths in Early Cretaceous High-Mg# Diorites from the Central Orogenic Block of the North China Craton:The Nature of Mesozoic Lithospheric Mantle and Constraints on Lithospheric Thinning.Chemical Geology, 270(1-4):257-273. https://doi.org/10.1016/j.chemgeo.2009.12.006 [19] Yaxley, G.M., Green, D.H., 1998.Reactions between Eclogite and Peridotite:Mantle Refertilisation by Subduction of Oceanic Crust.Schweizerische Mineralogische Und Petrographische Mitteilungen, 78(2):243-255. https://www.researchgate.net/publication/234065726_Reactions_between_eclogite_and_peridotite_Mantle_refertilisation_by_subduction_of_oceanic_crust [20] Zheng, J.P., Griffin, W.L., O'Reilly, S.Y., et al., 2007.Mechanism and Timing of Lithospheric Modification and Replacement beneath the Eastern North China Craton:Peridotitic Xenoliths from the 100 Ma Fuxin Basalts and a Regional Synthesis.Geochimica et Cosmochimica Acta, 71(21):5203-5225. https://doi.org/10.1016/j.gca.2007.07.028 [21] Zheng, J.P., O'Reilly, S.Y., Griffin, W., et al., 2001.Relict Refractory Mantle beneath the Eastern North China Block:Significance for Lithosphere Evolution.Lithos, 57(1):43-66. https://doi.org/10.1016/s0024-4937(00)00073-6 [22] Zheng, Y.F., Chen, Y.X., 2016.Continental versus Oceanic Subduction Zones.National Science Review, 3(4):495-519. https://doi.org/10.1093/nsr/nww049