Crust Anatexis in Collisional Orogenic Belt: Constraints from Natural Observations and Experimental Investigation on Nanogranite Inclusions
-
摘要: 在碰撞造山带构造演化过程中,中下地壳深熔作用对于深部地壳物理性质与化学成分具有重要控制作用.作为深熔作用的"见证者",纳米花岗岩包裹体是寄主岩石部分熔融作用的产物,能够为确定陆壳岩石中天然熔体特征及分析熔融机制提供关键信息.在喜马拉雅东构造结南迦巴瓦岩群的代表性岩石单元(泥质片麻岩与长英质片麻岩)中,石榴石与锆石中常包含有典型的纳米花岗岩包裹体,其代表性子矿物组合为钾长石+斜长石+石英±黑云母,这是在黑云母脱水熔融过程中、寄主片麻岩中熔体被主要转熔矿物(如石榴石等)捕获所形成一类特殊包裹体.在观测基础上,采用高温高压与高温常压手段,对纳米花岗岩包裹体进行均一化实验并获得均一化玻璃质熔体.成分分析表明,均一化熔体成分以过铝质花岗岩为主,其主/微量元素特征能够有效反演部分熔融作用的演化过程.因此,纳米花岗岩包裹体的天然观测与实验研究对于确定天然熔体特征与深入剖析碰撞造山带的地壳深熔作用具有重要启示意义.Abstract: Crustal anatexis during the tectonic evolution of collisional orogenic belts has a fundamental impact on physical properties and chemical compositions of the deep crust. As the direct witness to crustal anatexis, nanogranite inclusions, which formed during partial melting of hosted crustal rocks, are key to determine the compositions of the natural melts as well as melting mechanism. Nanogranite inclusions within garnet and zircon were identified in pelitic gneisses and felsic gneisses from the Namche Barwa complex of the eastern Himalayan syntaxis. They have a typical granitic mineral assemblage of K-feldspar, plagioclase, and quartz with or without biotite. These minerals represent the former melt as a result of dehydration melting of biotite in gneisses, which is captured by peritectic minerals (like garnet). Homogenization experiments on the nanogranite inclusions were conducted under high temperature and pressure and high temperature and room pressure conditions in order to obtain homogenized glasses. Chemical analyses show that these homogenized glasses are dominated by peraluminous granites. The major-and trace-element compositions of these glasses can be used to trace the melting processes of the host rocks. A combination of natural observation and experimental investigation of nanogranite inclusions from collisional orogenic belts is crucial to gain further insights into the crustal anatexis and associated melt compositions.
-
Key words:
- crust anatexis /
- nanogranite inclusions /
- metamorphic evolution /
- eastern Himalayan syntaxis /
- petrology
-
图 1 东喜马拉雅构造结南迦巴瓦岩群石榴(蓝晶)黑云片麻岩石榴石中的纳米花岗岩包裹体与实验结果
a和b.石榴石中的纳米花岗岩包裹体分布特征(光学显微镜,单偏光);c.典型的纳米花岗岩包裹体,子矿物组合为黑云母+斜长石+石英+钾长石(电子背散射(SEM)图像);d.实验获得的玻璃质熔体,指示石榴石中纳米花岗岩包裹体达到成分均一化(1.5 GPa/850 ℃)(SEM图像);e.含黑云母的多晶包裹体,其结构特征指示脱水熔融反应(白色三角形示钾长石,代表熔体假象特征)(SEM图像).Grt.石榴石;Bt.黑云母;Pl.斜长石;Qz.石英;Kfs.钾长石;Glass.玻璃质熔体
Fig. 1. Nanogranite inclusions within garnets of garnet (kyanite)-bearing biotite gneiss from the Namche Barwa complex in the eastern Himalayan syntaxis and experimental results
图 2 东喜马拉雅构造结南迦巴瓦岩群花岗质片麻岩锆石中的纳米花岗岩包裹体与代表性实验结果
a、b、d和e.锆石中的纳米花岗岩包裹体(a和d为SEM图像;b和e为阴极发光(CL)图像);c和f.纳米花岗岩中代表性的子矿物组合:斜长石(Pl)+石英(Qz)+钾长石(Kfs)±黑云母(Bt)(SEM图像);g和h.高温实验获得的均一化玻璃质熔体(Glass),指示锆石中纳米花岗岩包裹体达到成分均一化(1 000 ℃)(SEM图像)
Fig. 2. Nanogranite inclusions within zircons of granitic gneiss from the Namche Barwa complex in the eastern Himalayan syntaxis and representative experimental result
-
[1] Carosi, R., Montomoli, C., Langone, A., et al., 2015.Eocene Partial Melting Recorded in Peritectic Garnets from Kyanite⁃Gneiss, Greater Himalayan Sequence, Central Nepal.Geological Society, London, Special Publications, 412:111-129. doi: 10.1144/SP412.1 [2] Cesare, B., Ferrero, S., Salvioli⁃Mariani, E., et al., 2009."Nanogranite" and Glassy Inclusions:The Anatectic Melt in Migmatites and Granulites.Geology, 37(7):627-630. doi: 10.1130/G25759A.1 [3] Cesare, B., Acosta⁃Vigil, A., Bartoli, O., et al., 2015.What can We Learn from Melt Inclusions in Migmatites and Granulites?Lithos, 239:186-216. https://doi.org/10.1016/j.lithos.2015.09.028 [4] Guilmette, C., Indares, A., Hébert, R., 2011.High⁃Pressure Anatectic Paragneisses from the Namche Barwa, Eastern Himalayan Syntaxis:Textural Evidence for Partial Melting, Phase Equilibria Modeling and Tectonic Implications.Lithos, 124(1-2):66-81. https://doi.org/10.1016/j.lithos.2010.09.003 [5] Patino Douce, A.E., Harris, N., 1998.Experimental Constraints on Himalayan Anatexis.Journal of Petrology, 39(4):689-710. https://doi.org/10.1093/petroj/39.4.689 [6] Xiang, H., Zhang, Z.M., Dong, X., et al., 2013.High⁃Pressure Metamorphism and Anatexis during the Subduction of Indian Continent:Phase Equilibria Modeling of the Namche Barwa Complex, Eastern Himalayan Syntaxis.Acta Petrologica Sinica, 29(11):3792-3802(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201311012 [7] Yang, X.S., Jin, Z.M., Huenges, E., et al., 2001.Experimental Study on Dehydration Melting of Natural Biotite⁃Plagioclase Gneiss from High Himalayas and Implications for Himalayan Crust Anatexis.Chinese Science Bulletin, 46(3):246-250(in Chinese with English abstract). doi: 10.1007/BF03187179 [8] Zeng, L.S., Gao, L.E., 2017.Cenozoic Crustal Anatexis and the Leucogranites in the Himalayan Collisional Orogenic Belt.Acta Petrologica Sinica, 33(5):1420-1444(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201705004 [9] Zeng, L.S., Liang, F.H., Asimow, P., et al., 2009.Partial Melting of Deeply Subducted Continental Crust and the Formation of Quartzofeldspathic Polyphase Inclusions in the Sulu UHP Eclogites.Science Bulletin, 54(15):2580-2594. doi: 10.1007/s11434-009-0426-6 [10] Zhang, Z.M., Kang, D.Y., Ding, H.X., et al., 2018.Partial Melting of Himalayan Orogen and Formation Mechanism of Leucogranites.Earth Science, 43(1):82-98(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201801005 [11] 向华, 张泽明, 董昕, 等, 2013.印度大陆俯冲过程中的高压变质与深熔作用:东喜马拉雅构造结南迦巴瓦杂岩的相平衡模拟研究.岩石学报, 29(11):3792-3802. http://d.old.wanfangdata.com.cn/Conference/8247940 [12] 杨晓松, 金振民, Huenges, E., 等, 2001.高喜马拉雅黑云斜长片麻岩脱水熔融实验:对青藏高原地壳深熔的启示.科学通报, 46(3):246-250. doi: 10.3321/j.issn:0023-074X.2001.03.015 [13] 曾令森, 高利娥, 2017.喜马拉雅碰撞造山带新生代地壳深熔作用与淡色花岗岩.岩石学报, 33(5):1420-1444. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201705004 [14] 张泽明, 康东艳, 丁慧霞, 等, 2018.喜马拉雅造山带的部分熔融与淡色花岗岩成因机制.地球科学, 43(1):82-98. doi: 10.3799/dqkx.2018.005