• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    超临界二氧化碳喷射破碎页岩试验

    杜玉昆 庞飞 陈科 林拓 陈晓红 王瑞和

    杜玉昆, 庞飞, 陈科, 林拓, 陈晓红, 王瑞和, 2019. 超临界二氧化碳喷射破碎页岩试验. 地球科学, 44(11): 3749-3756. doi: 10.3799/dqkx.2019.221
    引用本文: 杜玉昆, 庞飞, 陈科, 林拓, 陈晓红, 王瑞和, 2019. 超临界二氧化碳喷射破碎页岩试验. 地球科学, 44(11): 3749-3756. doi: 10.3799/dqkx.2019.221
    Du Yukun, Pang Fei, Chen Ke, Lin Tuo, Chen Xiaohong, Wang Ruihe, 2019. Experiment of Breaking Shale Using Supercritical Carbon Dioxide Jet. Earth Science, 44(11): 3749-3756. doi: 10.3799/dqkx.2019.221
    Citation: Du Yukun, Pang Fei, Chen Ke, Lin Tuo, Chen Xiaohong, Wang Ruihe, 2019. Experiment of Breaking Shale Using Supercritical Carbon Dioxide Jet. Earth Science, 44(11): 3749-3756. doi: 10.3799/dqkx.2019.221

    超临界二氧化碳喷射破碎页岩试验

    doi: 10.3799/dqkx.2019.221
    基金项目: 

    中央高校基本科研业务费专项 18CX02072A

    国家自然科学基金项目 51404287

    详细信息
      作者简介:

      杜玉昆(1983-), 男, 博士, 硕士生导师, 研究方向为非常规能源钻探开发和高压水射流理论与应用

      通讯作者:

      陈晓红

    • 中图分类号: P618

    Experiment of Breaking Shale Using Supercritical Carbon Dioxide Jet

    • 摘要: 高效开发页岩气有利于满足日益增长的能源需求,但页岩储层的开发极为困难,超临界二氧化碳作为一种新型页岩气钻采流体,可以有效保护页岩储层,置换吸附提高页岩气采收率,并同时实现二氧化碳的埋存.研发了一套超临界二氧化碳喷射开发页岩气装置,并开展了超临界二氧化碳喷射破碎页岩室内试验.发现超临界二氧化碳射流喷射后岩石强度降低,且射流压力和温度越高,降低幅度越大;本实验条件下超临界二氧化碳射流破岩体积是水射流的1.73~6.51倍,破岩优势显著,井底环境温度对超临界二氧化碳射流的破岩性能有较大影响.表明超临界二氧化碳可显著提高页岩气钻井速度,有望形成一种高效的页岩气开发方法,应用潜力广阔.

       

    • 图  1  超临界二氧化碳喷射开发页岩气装置

      Fig.  1.  Experiment device of developing shale gas by using supercritical carbon dioxide

      图  2  试验流程

      Fig.  2.  Experimental flow chart

      图  3  喷嘴结构示意

      Fig.  3.  Experimental nozzle

      图  4  不同射流时间后岩心抗压强度

      Fig.  4.  Effect of jet time on the rock strength

      图  5  不同射流压力作用下岩心抗压强度

      Fig.  5.  Effect of jet pressure on the rock strength

      图  6  不同射流温度作用下岩心抗压强度

      Fig.  6.  Effect of jet temperature on the rock strength

      图  7  与高压水射流破岩性能对比

      Fig.  7.  Rock-breaking property comparison with water jet

      图  8  射流压力对破岩性能的影响

      Fig.  8.  Effect of jet pressure on the rock-breaking properties

      图  9  井底环境温度对破岩性能的影响

      Fig.  9.  Effect of bottom-hole temperature on the rock-breaking properties

      表  1  国内外页岩气区块主要指标对比

      Table  1.   Comparison of main indicators of shale gas blocks at home and abroad

      区块 垂深(m) 井深(m) 单井砂量(m3) 单井液量(m3) 施工压力(MPa) 排量(m3/min)
      Eagle Ford 3 500~3 658 4 800~5 000 70~110 1 500~2 000 50~70 10~12
      Haynesville 3 500~4 312 5 000~5 600 100~110 1 800 70~80 11~13
      Woodford 3 500~4 484 4 500~5 784 80~90 2 800~2 900 80~90 13~14
      中石化涪陵 3 600~4 300 5 400~5 600 30~75 1 500~2 000 75~95 10~14
      中石化丁山 4 100~4 400 5 300~5 700 20~34 2 400~2 700 80~95 12~13
      中石化永川 4 000~4 200 5 600~5 870 28~61 1 400~1 800 75~90 12~15
      中石油威远 3 600~3 900 4 880~5 700 70~90 > 2 000 70~90 10~12
      下载: 导出CSV

      表  2  岩心全矿物分析结果

      Table  2.   Total mineral analysis of rock core by XRD

      矿物类型 石英 钾长石 斜长石 方解石 黄铁矿 粘土矿物
      含量(%) 18 1 2 68 1 10
      下载: 导出CSV
    • [1] Chen, G.S., Dong, D.Z., Wang, S.Q., et al., 2009. A Preliminary Study on Accumulation Mechanism and Enrichment Pattern of Shale Gas. Natural Gas Industry, 29(5):17-21, 134-135 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy200905004
      [2] Du, Y. K., Wang, R.H., Ni, H.J., et al., 2012. Determination of Rock-Breaking Performance of High-Pressure Supercritical Carbon Dioxide Jet. Journal of Hydrodynamics, 24(4): 554-560. https://doi.org/10.1016/s1001-6058(11)60277-1
      [3] Du, Y. K., Wang, R.H., Ni, H. J., et al., 2012. Rock- Breaking Experiment with Supercritical Carbon Dioxide Jet. Journal of China University of Petroleum (Edition of Natural Science), 36(4): 93-96 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sydxxb201204017
      [4] Faisal, A. A., 2007. Mechanistic Modeling of an Underbalanced Drilling Operation Utilizing Supercritical Carbon Dioxide (Dissertation). Louisiana State University, Baton Rouge, 1-100.
      [5] Faisal, A.A., Julius, P., Richard, H., 2009. Modeling of an Underbalanced-Drilling Operation Using Supercritical Carbon Dioxide. SPE Drilling and Completion, 24(4): 599-610. doi: 10.2118/114050-PA
      [6] Faraj, B., Williams, H., Addison, G., et al., 2004. Gas Potential of Selected Shale Formations in the Western Canadian Sedimentary Basin. Gas TIPS, 10(1): 21-25.
      [7] Huang, F., Lu, Y.Y., Tang, J.R., et al., 2015. Research on Erosion of Shale Impacted by Supercritical Carbon Dioxide Jet. Chinese Journal of Rock Mechanics and Engineering, 34(4):787-794 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201504016
      [8] Humayun, R., Tomasko, D.L., 2000. High-Resolution Adsorption Isotherms of Supercritical Carbon Dioxide on Activated Carbon. AIChE Journal, 46(10): 2065-2075. https://doi.org/10.1002/aic.690461017
      [9] Kang, Y.Z., 2018. Significant Exploration Progress and Resource Potential of Unconventional Oil and Gas in China. Oil Forum, 37(4): 1-7 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/sykjlt201804001
      [10] Li, H., 2010. Study on Multi-Phase Flow in Supercritical Wellbore Annular (Dissertation). China University of Petroleum, Qingdao, 1-121 (in Chinese with English abstract).
      [11] Li, M. K., Ni, H. J., Wang, R. H., et al., 2017. Comparative Simulation Research on the Stress Characteristics of Supercritical Carbon Dioxide Jets, Nitrogen Jets and Water Jets. Engineering Applications of Computational Fluid Mechanics, 11(1): 357-370. https://doi.org/10.13039/501100007129
      [12] Lu, S.F., Liu, W., Wang, M., et al., 2017. Lacustrine Shale Oil Resource Potential of Es3L Sub-Member of Bonan Sag, Bohai Bay Basin, Eastern China. Journal of Earth Science, 28(6): 996-1005. doi: 10.1007/s12583-016-0945-4
      [13] Lu, S. F., Shen, B.J., Xu, C.X., et al., 2018. Study on Adsorption Behavior and Mechanism of Shale Gas by Using GCMC Molecular Simulation. Earth Science, 43(5): 1783-1791 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.430
      [14] Montgomery, S. L., Jarvie, D.M., Bowker, K. A., et al., 2005. Mississippian Barnett Shale, Fort Worth Basin, North-Central Texas: Gas-Shale Play with Multi- Trillion Cubic Foot Potential. AAPG Bulletin, 89(2): 155-175. https://doi.org/10.1306/09170404042
      [15] Montgomery, S. L., Jarvie, D. M., Bowker, K. A., et al., 2006. Mississippian Barnett Shale, Fort Worth Basin, North-Central Texas: Gas-Shale Play with Multi- Trillion Cubic Foot Potential: Reply. AAPG Bulletin, 90(6): 967–969. https://doi.org/10.1306/02090605186
      [16] Nikolai, S., Andrea, B., 2007. Measurement and Interpretation of Supercritical CO2 Sorption on Various Coals. International Journal of Coal Geology, 69: 229-242. doi: 10.1016/j.coal.2006.06.004
      [17] Roche, P., 2006. Technology and Prices Help Release Shale Gas from "Unconventional" Status. New Technology Magazine, Oct/Nov: 15-20.
      [18] Shen, Z.H., Wang, H.Z., Li, G.S., 2010. Feasibility Analysis of Coiled Tubing Drilling with Supercritical Carbon Dioxide. Petroleum Exploration and Development, 37(6): 743-747 (in Chinese with English abstract). doi: 10.1016/S1876-3804(11)60008-6
      [19] Wang, H.Z., Li, X.J., Sepehrnoori, K., et al., 2019. Calculation of the Wellbore Temperature and Pressure Distribution during Supercritical CO2 Fracturing Flowback Process. International Journal of Heat and Mass Transfer, 139: 10-16. https://doi.org/10.1016/j.ijheatmasstransfer.2019.04.109
      [20] Wang, H. Z., Shen, Z.H., Li, G.S., 2011. Feasibility Analysis on Shale Gas Exploitation with Supercritical CO2. Petroleum Exploration and Development, 38(1): 97-102 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SYZT201103006.htm
      [21] Wang, H.Z., Wang, M., Yang, B., et al., 2018. Numerical Study of Supercritical CO2 and Proppant Transport in Different Geometrical Fractures. Greenhouse Gases: Science and Technology, 8(5):898-910. https://doi.org/10.1002/ghg.1803
      [22] Wang, J., Bao, H.Y., Lu, Y. Q., et al., 2019. Quantitative Characterization and Main Controlling Factors of Shale Gas Occurrence in Jiaoshiba Area, Fuling. Earth Science, 44(3): 1001-1011 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.388
      [23] Wang, Z.M., 2008. Feature Research of Supercritical Carbon Dioxide Drilling Fluid (Dissertation). China University of Petroleum, Qingdao, 1-112 (in Chinese with English abstract).
      [24] Wang, Z.M., Qiu, Z.S., Zhu, K.L., 2010. Research on Features of Wellbore Temperature Transmission for Supercritical CO2 Drilling Fluid. Drilling Fluid & Completion Fluid, 27(6): 1-3 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zjyywjy201006001
      [25] Wang, Y.S., Liang, C., Sun, X.N., 2017. Shale Oil Reservoir Characteristics and Enrichment in the Jiyang Depression, Bohai Bay Basin, East China. Journal of Earth Science, 28(6): 977-986. doi: 10.1007/s12583-016-0940-9
      [26] Xu, L., Liu, F.Y., Zhang, R., et al., 2017. Status of Shale Gas Exploration and Development and Its Environmental Impact Risk. Environmental Protection of Oil & Gas Fields, 27(4): 6-10 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YQTB201704002.htm
      [27] Xu, T.T., Zhao, Z.J., Feng, J.H., 2007. Development in Drilling Fluid Technologies abroad in 2005. Drilling Fluid & Completion Fluid, 24(1): 61-70 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zjyywjy200701019
      [28] Yu, Z.B., Gong, C., Zhang, Y., et al., 2018. Prospect and Suggestions on Shale Gas Development in China. Natural Gas Technology and Economy, 12(6): 64-67, 84 (in Chinese with English abstract).
      [29] Zhai, G. M., 2008. Speculations on the Exploration and Developmeng of Unconventional Hydrocarbon Resources. Natural Gas Industry, 28(12): 1-3, 133 (in Chinese with English abstract).
      [30] 陈更生, 董大忠, 王世谦, 等, 2009.页岩气藏形成机理与富集规律初探.天然气工业, 29(5):17-21, 134-135. doi: 10.3787/j.issn.1000-0976.2009.05.004
      [31] 杜玉昆, 王瑞和, 倪红坚, 等, 2012.超临界二氧化碳射流破岩试验.中国石油大学学报(自然科学版), 36(4): 93-96. doi: 10.3969/j.issn.1673-5005.2012.04.017
      [32] 黄飞, 卢义玉, 汤积仁, 等, 2015.超临界二氧化碳射流冲蚀页岩试验研究.岩石力学与工程学报, 34(4):787-794. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb201504016
      [33] 康玉柱, 2018.中国非常规油气勘探重大进展和资源潜力.石油科技论坛, 37(4): 1-7. doi: 10.3969/j.issn.1002-302x.2018.04.001
      [34] 李昊, 2010.超临界条件下井筒环空多相流动规律研究(博士学位论文).青岛: 中国石油大学, 1-121. http://cdmd.cnki.com.cn/Article/CDMD-10425-2010280232.htm
      [35] 卢双舫, 沈博健, 许晨曦, 等, 2018.利用GCMC分子模拟技术研究页岩气的吸附行为和机理.地球科学, 43(5): 1783-1791. doi: 10.3799/dqkx.2018.430
      [36] 沈忠厚, 王海柱, 李根生, 2010.超临界CO2连续油管钻井可行性分析.石油勘探与开发, 37(6): 743-747. http://d.old.wanfangdata.com.cn/Periodical/syktykf201006015
      [37] 王海柱, 沈忠厚, 李根生, 2011.超临界CO2钻井井筒压力温度耦合计算.石油勘探与开发, 38(1): 97-102. http://d.old.wanfangdata.com.cn/Periodical/syktykf201101014
      [38] 王进, 包汉勇, 陆亚秋, 等, 2019.涪陵焦石坝地区页岩气赋存特征定量表征及其主控因素.地球科学, 44(3): 1001-1011. doi: 10.3799/dqkx.2018.388
      [39] 王在明, 2008.超临界二氧化碳连续管钻井液特性研究(博士学位论文).青岛: 中国石油大学, 1-112.
      [40] 王在明, 邱正松, 朱宽亮, 2010.超临界二氧化碳钻井流体井筒温度传递特性.钻井液与完井液, 27(6): 1-3. doi: 10.3969/j.issn.1001-5620.2010.06.001
      [41] 徐丽, 刘福云, 张戎, 等, 2017.页岩气勘探开发现状及环境影响与风险.油气田环境保护, 27(4): 6-10. doi: 10.3969/j.issn.1005-3158.2017.04.002
      [42] 徐同台, 赵忠举, 冯京海, 2007. 2005年国外钻井液新技术.钻井液与完井液, 24(1): 61-70. doi: 10.3969/j.issn.1001-5620.2007.01.019
      [43] 于智博, 龚诚, 张羿, 等, 2018.我国页岩气发展前景展望及开发策略建议.天然气技术与经济, 12(6): 64-67, 84. doi: 10.3969/j.issn.2095-1132.2018.06.016
      [44] 翟光明, 2008.关于非常规油气资源勘探开发的几点思考.天然气工业, 28(12): 1-3, 133. doi: 10.3787/j.issn.1000-0976.2008.12.001
    • 加载中
    图(9) / 表(2)
    计量
    • 文章访问数:  2377
    • HTML全文浏览量:  907
    • PDF下载量:  34
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-06-17
    • 刊出日期:  2019-11-15

    目录

      /

      返回文章
      返回