• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    砂岩(砂)的岩相分析和分类标准

    何杰 王华 EduardoGarzanti

    何杰, 王华, EduardoGarzanti, 2020. 砂岩(砂)的岩相分析和分类标准. 地球科学, 45(6): 2186-2198. doi: 10.3799/dqkx.2019.217
    引用本文: 何杰, 王华, EduardoGarzanti, 2020. 砂岩(砂)的岩相分析和分类标准. 地球科学, 45(6): 2186-2198. doi: 10.3799/dqkx.2019.217
    He Jie, Wang Hua, Eduardo Garzanti, 2020. Petrographic Analysis and Classification of Sand and Sandstone. Earth Science, 45(6): 2186-2198. doi: 10.3799/dqkx.2019.217
    Citation: He Jie, Wang Hua, Eduardo Garzanti, 2020. Petrographic Analysis and Classification of Sand and Sandstone. Earth Science, 45(6): 2186-2198. doi: 10.3799/dqkx.2019.217

    砂岩(砂)的岩相分析和分类标准

    doi: 10.3799/dqkx.2019.217
    基金项目: 

    国家自然科学基金 41972117

    国家油气重大专项 2016ZX05024-006-002

    国家油气重大专项 2017ZX05009-002-003

    详细信息
      作者简介:

      何杰(1992-), 女, 博士, 从事沉积学相关研究.ORCID:0000-0003-3406-745X.E-mail:jiehe19920402@163.com

      通讯作者:

      王华, E-mail:wanghua@cug.edu.cn

    • 中图分类号: P618

    Petrographic Analysis and Classification of Sand and Sandstone

    • 摘要: 定量的砂岩(砂)岩相学分析是重要的岩石学分析手段,有助于探讨沉积物的源区、背景和沉积盆地性质.在过去几十年中,科学家们对于砂岩(砂)的定量碎屑颗粒统计及其潜在地质意义(如沉积碎屑物与源区母岩的关系、沉积过程对碎屑组分的影响、碎屑组分与大地构造背景的关系等)取得了很多进展,但是对于定量的岩相分析方法和命名方案一直缺少系统的总结,导致一些实际工作中的波折和误区.在总结前人文献的基础上,系统描述了砂岩(砂)定量岩相分析的方法,并推荐最优的分类命名方案,希望建立统一的工作规范,本文提升砂岩(砂)碎屑颗粒统计结果的可靠性和数据的可对比性.同时,我们对砂岩构造背景判别图解的适用性进行了探讨,认为图解是展示砂岩碎屑组分统计结果的有效工具,但用于构造背景判断时则需谨慎,最好基于岩石本身的特征并结合其他资料综合探讨.

       

    • 图  1  砂岩碎屑颗粒统计Gazzi-Dickinson计点法示意

      王建刚(2011)修改

      Fig.  1.  Schematic diagram of statistical Gazzi-Dickinson point-counting method for sandstone clastic grain

      图  2  不同种类的岩屑

      沉积岩岩屑:a.灰岩; b.白云岩(瓦迪比, 阿曼北部);c.石膏(阿兹拉克沙漠, 约旦);d.燧石(罗曼达图, 意大利南部);e.由渐新世浊积岩改造的碎屑岩(加拉西亚, 大尼科巴岛).变质沉积岩碎屑:f.板岩(大竹河, 台湾);g.钙质片岩(菲施巴赫河, 奥地利);h.硅线石矽线石片岩(加德满都, 尼泊尔).火山岩碎屑:i.德干玄武岩(达布蒂河, 印度);j.安山岩(里奥格兰德, 阿根廷);k.流纹岩(利帕里岛, 意大利).变质火山岩碎屑:l.变质流纹岩(阿尔卑斯山南部, 意大利).变质基性岩颗粒:m.绿帘石绿片岩(拉巴河, 大高加索山脉西北部);n.绿帘石-蓝闪石蓝片岩(瓦拉伊塔河, 欧洲阿尔卑斯山西部).超基性岩碎屑:o.粒状蛇纹石岩(瓦迪汉, 阿曼北部);p.来自俯冲变质蛇绿岩的叶状蛇纹石岩(沃尔特里沙滩, 意大利).所有照片均拍摄于正交偏光下;蓝色的短条100 μm.据Garzanti(2019)

      Fig.  2.  Different kinds of rock fragments

      图  3  泥质岩碎屑变质等级划分及显微特征

      Lsp.泥质岩(未变质)(利古里亚阿尔卑斯山西部);Lmp1.板岩(发育弱劈理, 北高加索山脉西部);Lmp2.千枚岩岩屑(发育强劈理, 利古里亚阿尔卑斯山);Lmp3.云母片岩(阿尔卑斯山东部);Lmp4.白云母片岩(阿尔卑斯山西部);Rmp5.黑云母片岩(阿尔卑斯山中部; bi, 黑云母).图中白色圆圈的直径为62.5 μm, 所有照片均拍摄于正交偏光下.据Garzanti and Vezzoli(2003)

      Fig.  3.  Metamorphic rank and microscopic characteristics of metapelite grains

      图  4  粉砂岩(长英质岩石)碎屑变质等级划分及显微特征

      Lsp.粉砂岩(含碎屑云母, 未变质, 利古里亚阿尔卑斯山西部);Lmf1.变质粉砂岩(发育弱劈理, 特提斯喜马拉雅);Lmf2.石英-绢云母(重结晶)片岩(发育强劈理, 小喜马拉雅);Lmf3.石英-云母岩屑(片理发育, 阿尔卑斯山脉东部);Lmf4.白云母片麻岩(北高加索山脉中部);Rmf5.黑云母片麻岩(高喜马拉雅, bi, 黑云母).图中白色圆圈的直径为62.5 μm.所有照片均拍摄于正交偏光下.据Garzanti and Vezzoli(2003)

      Fig.  4.  Metamorphic rank and microscopic characteristics of metapsammite/metafelsite grains

      图  5  碳酸盐岩碎屑变质等级划分及显微特征

      Lsc.泥粒灰岩(含碎屑云母, 亚平宁山脉北部);Lmc1.变质灰岩(发育弱劈理, 轻微重结晶, 特提斯喜马拉雅);Lmc2.变质灰岩岩屑(发育强烈劈理, 明显重结晶, 阿尔卑斯山北部);Lmc3.大理岩(强烈重结晶, 含自生细粒白云母, 亚平宁山脉北部);Lmc4.白云母钙质片岩(阿尔卑斯山中部);Rmc5.黑云母钙质片岩(高喜马拉雅; bi.黑云母).图中白色圆圈的直径为62.5 μm.所有照片均拍摄于正交偏光下.据Garzanti and Vezzoli(2003)

      Fig.  5.  Metamorphic rank and microscopic characteristics of metacarbonate grains

      图  6  基性岩碎屑变质等级划分及显微特征

      Lv.玄武岩(阿曼蛇绿岩);Lmb1.变质玄武岩(塞浦路斯蛇绿岩);Lmb2.绿泥石片岩(利古里亚阿尔卑斯, chl.绿泥石);Lmb3.绿泥闪帘片岩(利古里亚阿尔卑斯, ep.绿帘石);Lmb4.蓝片岩岩屑(阿尔卑斯山西部, gl.蓝闪石);Rmb5.角闪岩岩屑(阿尔卑斯山中部, hb.普通角闪石).图中白色圆圈的直径为62.5 μm.所有照片均拍摄于正交偏光下.据Garzanti and Vezzoli(2003)

      Fig.  6.  Metamorphic rank and microscopic characteristics of metabasite grains

      图  7  基于岩相组成的传统砂岩分类系统

      Krynine(1948)Folk(1954, 1968, 1980);van Andel(1958)Hubert(1960)McBride(1963)

      Fig.  7.  Traditional sandstone classifications based on petrographic composition

      图  8  基于岩相组成和结构的传统砂岩系统

      Pettijohn(1949, 1954, 1957);Dapples et al.(1953)Gilbert(1954)Packham(1954)Crook(1960)Dott(1964)

      Fig.  8.  Traditional sandstone classifications based on both petrographic composition and texture

      图  9  本文推荐的砂岩分类方案

      Q.石英砂岩;F.长石砂岩;L.岩屑砂岩;lFQ.岩屑长石石英砂岩;lQF.岩屑石英长石砂岩;qLF.石英岩屑长石砂岩;qFL.石英长石岩屑砂岩;fQL.长石石英岩屑砂岩;fLQ.长石岩屑石英砂岩.据Garzanti(2016)

      Fig.  9.  The proposed classification of sand and sandstone

      图  10  砂岩的QmFLt和QtFL构造判别图解

      Dickinson(1985)

      Fig.  10.  The QmFLt and QtFL triangular diagrams of sandstones

    • [1] Chen Y.F., Wang Y.W., Wang J.B., et al.2018.Greisenized Alteration-Mineralization Geochemistry of the Tin Deposit Related to A-Type Granite:Case Study on the Kamusite and Ganliangzi Deposits, Xinjiang.Earth Science, 43(9):3154-3168(in Chinese with English abstract).
      [2] Crook K.A.W..1960.Classification of Arenites.American Journal of Science, 258(6):419-428. doi: 10.2475/ajs.258.6.419
      [3] Crook K.A.W..1974.Lithogenesis and Geotectonics:The Significance of Compositional Variation in Flysch Arenites (Graywackes).In:Dott R.H., Shaver R.H., eds., Modern and Ancient Geosynclinal Sedimentation.Society of Economic Paleontologists and Mineralogists, Special Publication, 19:304-310. https://www.researchgate.net/publication/285323571_Lithogenesis_and_geotectonics_The_significance_of_compositional_variation_in_flysch_arenites_greywackes
      [4] Cummins W.A..1962.The Greywacke Problem.Geological Journal, 3(1):51-72. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/gj.3350030105
      [5] Dapples E.C., Krumbein W.C., Sloss L.L..1953.Petrographic and Lithologic Attributes of Sandstones.The Journal of Geology, 61(4):291-317. doi: 10.1086/626098
      [6] Dickinson W.R..1970.Interpreting Detrital Modes of Graywacke and Arkose.Journal of Sedimentary Research, 40(2):695-707. https://www.researchgate.net/publication/250081783_Interpreting_Detrital_Modes_of_Graywacke_and_Arkose
      [7] Dickinson W.R..1985.Interpreting Provenance Relations from Detrital Modes of Sandstones.In:Zuffa G.G., ed., Provenance of Arenites.Reidel, Dordrecht, NATO ASI Series, 148:333-361. doi: 10.1007%2F978-94-017-2809-6_15
      [8] Dickinson W.R., Suczek C.A..1979.Plate Tectonics and Sandstone Composition.American Association of Petroleum Geologists Bulletin, 63:2164-2172. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cd2e9450770825a11349d2088338932f
      [9] Dorsey R.J..1988.Provenance Evolution and Unroofing History of a Modern Arc-Continent Collision:Evidence from Petrography of Plio-Pleistocene Sandstones, Eastern Taiwan.Journal of Sedimentary Petrology, 58(2):208-218. http://www.uvm.edu/~cmehrten/courses/earthhist/Dorsey1988.pdf
      [10] Dott R.H..1964.Wacke, Graywacke and Matrix:What Approach to Immature Sandstone Classification? Journal of Sedimentary Research, 34(3):625-632. https://pubs.geoscienceworld.org/sepm/jsedres/article-abstract/34/3/625/95753
      [11] Folk R.L..1954.The Distinction between Grain Size and Mineral Composition in Sedimentary Rock Nomenclature.The Journal of Geology, 62(4):344-359. doi: 10.1086/626171
      [12] Folk R.L..1968.Petrology of Sedimentary Rocks.Hemphill Publishing, Austin. U.S.A., 170.
      [13] Folk R.L..1980.Petrology of Sedimentary Rocks.Hemphill Publishing, Austin. U.S.A., 182.
      [14] Frey M..1987.Very Low-Grade Metamorphism of Clastic Sedimentary Rocks.Low Temperature Metamorphism.Blackie and Son, London, 9-58. https://www.researchgate.net/publication/304919935_Very_low-grade_metamorphism_of_clastic_sedimentary_rocks
      [15] Galehouse.1971.Pipette Analysis.In:Carver R.E., ed., Procedures in Sedimentary Petrology.Wiley Interscience, Athens, GA, 650.
      [16] Garzanti E..2016.From Static to Dynamic Provenance Analysis:Sedimentary Petrology Upgraded.Sedimentary Geology, 336:3-13. doi: 10.1016/j.sedgeo.2015.07.010
      [17] Garzanti E..2017.The Maturity Myth in Sedimentology and Provenance Analysis.Journal of Sedimentary Research, 87(4):353-365. doi: 10.2110/jsr.2017.17
      [18] Garzanti E..2019.Petrographic Classification of Sand and Sandstone.Earth-Science Reviews, 192:545-563. https://doi.org/10.1016/j.earscirev.2018.12.014
      [19] Garzanti E., Andò S., Limonta M., et al.2018.Diagenetic Control on Mineralogical Suites in Sand, Silt, and Mud (Cenozoic Nile Delta):Implications for Provenance Reconstructions.Earth-Science Reviews, 185:122-139. https://doi.org/10.1016/j.earscirev.2018.05.010
      [20] Garzanti E., Andò S., Padoan M., et al.2015.The Modern Nile Sediment System:Processes and Products.Quaternary Science Reviews, 130:9-56. doi: 10.1016/j.quascirev.2015.07.011
      [21] Garzanti E., Andò S., Scutellà M..2000.Actualistic Ophiolite Provenance:The Cyprus Case.The Journal of Geology, 108(2):199-218. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ027320346/
      [22] Garzanti E., Andò S., Vezzoli G..2009.Grain-Size Dependence of Sediment Composition and Environmental Bias in Provenance Studies.Earth and Planetary Science Letters, 277(3):422-432. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f0a9e1bb833371ed30c2c45bee88bca2
      [23] Garzanti E., Andò S., Vezzoli G., et al.2012.Petrology of the Namib Sand Sea:Long-Distance Transport and Compositional Variability in the Wind-Displaced Orange Delta.Earth-Science Reviews, 112(3-4):173-189. https://doi.org/10.1016/j.earscirev.2012.02.008
      [24] Garzanti E., Dinis P., Vermeesch P., et al.2017.Sedimentary Processes Controlling Ultralong Cells of Littoral Transport:Placer Formation and Termination of the Orange Sand Highway in Southern Angola.Sedimentology, 65(2):431-460. http://smartsearch.nstl.gov.cn/paper_detail.html?id=48d9085dac3a0a3424b82d4f137a2e2d
      [25] Garzanti E., Doglioni C., Vezzoli G., et al.2007.Orogenic Belts and Orogenic Sediment Provenances.The Journal of Geology, 115(3):315-334. doi: 10.1086/512755
      [26] Garzanti E., Padoan M., Andò S., et al.2013.Weathering and Relative Durability of Detrital Minerals in Equatorial Climate:Sand Petrology and Geochemistry in the East African Rift.The Journal of Geology, 121(6):547-580. doi: 10.1086/673259
      [27] Garzanti E., Vermeesch P., Andò S., et al.2014a.Ultra-Long Distance Littoral Transport of Orange Sand and Provenance of the Skeleton Coast Erg (Namibia).Marine Geology, 357:25-36. https://doi.org/10.1016/j.margeo.2014.07.005
      [28] Garzanti E., Vermeesch P., Padoan M., et al.2014b.Provenance of Passive-Margin Sand (Southern Africa).The Journal of Geology, 122(1):17-42. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=164f9b009d3e84019eb44c458b00580a
      [29] Garzanti E., Vezzoli G..2003.A Classification of Metamorphic Grains in Sands Based on Their Composition and Grade.Journal of Sedimentary Research, 73(5):830-837. doi: 10.1306/012203730830
      [30] Garzanti E., Vezzoli G., Andò S., et al.2001.Petrology of Rifted-Margin Sand (Red Sea and Gulf of Aden, Yemen).The Journal of Geology, 109(3):277-297. doi: 10.1086/319973
      [31] Garzanti E., Vezzoli G., Andò S..2002.Modern Sand from Obducted Ophiolite Belts (Oman, U.A.E.).The Journal of Geology, 110 (4):371-391. doi: 10.1086/340440
      [32] Gilbert C.M..1954.Sedimentary Rocks.In:Williams H., Turner F.J., Gilbert C.M., eds., Petrography.Freeman, San Francisco, 406.
      [33] Hubert J.F..1960.Petrology of the Fountain and Lyons Formations, Front Range, Colorado (Dissertation).Colorado School of Mines, Colorado.
      [34] Ingersoll R.V..1983.Petrofacies and Provenance of Late Mesozoic Forearc Basin, Northern and Central California.AAPG Bulletin, 67(7):1125-1142. https://www.researchgate.net/publication/255934284_Petrofacies_and_Provenance_of_Late_Mesozoic_Forearc_Basin_Northern_and_Central_California
      [35] Ingersoll R.V., Bullard T.F., Ford R.L., et al.1984.The Effect of Grain Size on Detrital Modes:A Test of the Gazzi-Dickinson Point-Counting Method.Journal of Sedimentary Petrology, 54(1):103-116. https://www.researchgate.net/profile/Raymond_Ingersoll/publication/260785669_The_effect_of_grain_size_on_detrital_modes_A_test_of_the_Gazzi-Dickinson_point_counting_method/links/55dddfef08ae7983897d09c4.pdf?origin=publication_detail
      [36] Ingersoll R.V., Suczek C.A..1979.Petrology and Provenance of Neogene Sand from Nicobar and Bengal Fans, DSDP Sites 211 and 218.Journal of Sedimentary Petrology, 49(4):1217-1228. https://pubs.geoscienceworld.org/sepm/jsedres/article-abstract/49/4/1217/97232/Petrology-and-provenance-of-Neogene-sand-from
      [37] Klein G.D..1963.Analysis and Review of Sandstone Classifications in the North American Geological Literature, 1940-1960.Bulletin of the Geological Society of America, 74(5):555-576. doi: 10.1130/0016-7606(1963)74[555:AAROSC]2.0.CO;2
      [38] Krynine P.D..1948.The Megascopic Study and Field Classification of Sedimentary Rocks.The Journal of Geology, 56(2):130-165. https://ci.nii.ac.jp/ncid/BA84011400
      [39] McBride E.F..1963.A Classification of Common Sandstones.Journal of Sedimentary Petrology, 33(3):664-669. https://www.researchgate.net/profile/Earle_Mcbride/publication/240778409_A_Classification_of_Common_Sandstones/links/0c96053bfed33192e5000000.pdf
      [40] Molinaroli E., Blom M., Basu A..1991.Methods of Provenance Determination Tested with Discriminant Function Analysis.Journal of Sedimentary Research, 61(6):900-908. https://core.ac.uk/display/53164325
      [41] Okada H..1971.Classification of Sandstone:Analysis and Proposal.The Journal of Geology, 79(5):509-525. doi: 10.1086/627673
      [42] Packham G.H..1954.Sedimentary Structures as An Important Factor in the Classification of Sandstones.American Journal of Science, 252(8):466-476. doi: 10.2475/ajs.252.8.466
      [43] Pettijohn F.J..1949.Sedimentary Rocks.Harper and Brothers, New York, 526. http://d.old.wanfangdata.com.cn/Periodical/syxb201710002
      [44] Pettijohn F.J..1954.Classification of Sandstones.The Journal of Geology, 62(4):360-365. doi: 10.1086/626172
      [45] Pettijohn F.J..1957.Paleocurrents of Lake Superior Precambrian Quartzites.Bulletin of the Geological Society of America, 68(4):469-480. doi: 10.1130/0016-7606(1957)68[469:POLSPQ]2.0.CO;2
      [46] Powell C.M..1979.A Morphological Classification of Rock Cleavage.Tectonophysics, 58(1-2):21-34. https://doi.org/10.1016/0040-1951(79)90320-2
      [47] Qin Z.W., Ma C.Q., Fu J.M., et al.2018.The Origin of Mafic Enclaves in Xiangjia Granitic Pluton of East Kunlun Orogenic Belt:Evidence from Petrography and Geochemistry.Earth Science, 43(7):2420-2437(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201807016.htm
      [48] Sorby H.C..1880.On the Structure and Origin of Non-Calcareous Stratified Rocks.Proceedings of the Geological Society London, 36:46-92. https://www.researchgate.net/publication/285499252_On_the_structure_and_origin_of_noncalcareous_stratified_rocks
      [49] van Andel T.H..1958.Origin and Classification of Cretaceous, Paleocene and Eocene Sandstones of Western Venezuela.AAPG Bulletin, 42(4):734-763.
      [50] Völl G..1976.Recrystallization of Quartz, Biotite and Feldspars from Erstfeld to the Leventina Nappe, Swiss Alps, and Its Geological Significance.Schweiz. Mineral. Pertogr. Mitt., 56:641-647. http://ci.nii.ac.jp/naid/10003976886
      [51] Wang J.G..2011.Sedimentary Record and Basin Evolution of the Himalayan Orogen in Xigaze Area, Southern Tibet (Dissertation).Nanjing University, Nanjing(in Chinese with English abstract).
      [52] Weltje G.J..2006.Ternary Sandstone Composition and Provenance:An Evaluation of the 'Dickinson Model'.Geological Society, London, Special Publication, 264(1):611-627. https://pubs.geoscienceworld.org/books/book/1637/chapter/107438592/Ternary-sandstone-composition-and-provenancean
      [53] Weltje G.J..2012.Quantitative Models of Sediment Generation and Provenance:State of the Art and Future Developments.Sedimentary Geology, 280:4-20. doi: 10.1016/j.sedgeo.2012.03.010
      [54] Whetten J.T., Hawkins J.W..1970.Diagenetic Origin of Graywacke Matrix Minerals.Sedimentology, 15:347-361. doi: 10.1111/j.1365-3091.1970.tb02191.x
      [55] White N.M., Pringle M., Garzanti E., et al.2002.Constraints on the Exhumation and Erosion of the High Himalayan Slab, NW India, from Foreland Basin Deposits.Earth and Planetary Science Letters, 195(1-2):29-44. doi: 10.1016/S0012-821X(01)00565-9
      [56] Young S.W..1976.Petrographic Textures of Detrital Polycrystalline Quartz as an Aid to Interpreting Crystalline Source Rocks.SEPM Journal of Sedimentary Research, 46(3):595-603. http://www.researchgate.net/publication/284034294_Petrographic_Textures_of_Detrital_Polycrystalline_Quartz_as_an_Aid_to_Interpreting_Crystalline_Source_Rocks
      [57] Zhang Z.M., Kang D.Y., Ding H.X., et al.2018.Partial Melting of Himalayan Orogen and Formation Mechanism of Leucogranites.Earth Science, 43(1):82-98(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201801005
      [58] 陈言飞, 王玉往, 王京彬, 等.2018.与A型花岗岩有关锡矿的云英岩化蚀变矿化地球化学:以新疆卡姆斯特和干梁子矿床为例.地球科学, 43(9):3154-3168. doi: 10.3799/dqkx.2018.321
      [59] 秦拯纬, 马昌前, 付建明, 等.2018.东昆仑香加花岗质岩体中镁铁质包体成因:岩相学及地球化学证据.地球科学, 43(7):2420-2437. doi: 10.3799/dqkx.2018.549
      [60] 王建刚.2011.西藏日喀则地区喜马拉雅造山带沉积记录与盆地演化(博士学位论文).南京:南京大学.
      [61] 张泽明, 康东艳, 丁慧霞, 等.2018.喜马拉雅造山带的部分熔融与淡色花岗岩成因机制.地球科学, 43(1):82-98. doi: 10.3799/dqkx.2018.005
    • dqkx-45-6-2186-Table1-3.pdf
    • 加载中
    图(10)
    计量
    • 文章访问数:  2018
    • HTML全文浏览量:  642
    • PDF下载量:  185
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-06-11
    • 刊出日期:  2020-06-15

    目录

      /

      返回文章
      返回