• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    大兴安岭北部兴隆地区寒武纪侵入岩锆石U-Pb年代学、地球化学及其构造意义

    吴宜翰 刘博 韩宝福 巩恩普 陈家富

    吴宜翰, 刘博, 韩宝福, 巩恩普, 陈家富, 2019. 大兴安岭北部兴隆地区寒武纪侵入岩锆石U-Pb年代学、地球化学及其构造意义. 地球科学, 44(10): 3346-3360. doi: 10.3799/dqkx.2019.209
    引用本文: 吴宜翰, 刘博, 韩宝福, 巩恩普, 陈家富, 2019. 大兴安岭北部兴隆地区寒武纪侵入岩锆石U-Pb年代学、地球化学及其构造意义. 地球科学, 44(10): 3346-3360. doi: 10.3799/dqkx.2019.209
    Wu Yihan, Liu Bo, Han Baofu, Gong Enpu, Chen Jiafu, 2019. Zircon U-Pb Geochronology and Geochemistry of Cambrian Plutons in Xinglong Area of Northern Da-Hinggan Mountains: Implications for Tectonic Evolution. Earth Science, 44(10): 3346-3360. doi: 10.3799/dqkx.2019.209
    Citation: Wu Yihan, Liu Bo, Han Baofu, Gong Enpu, Chen Jiafu, 2019. Zircon U-Pb Geochronology and Geochemistry of Cambrian Plutons in Xinglong Area of Northern Da-Hinggan Mountains: Implications for Tectonic Evolution. Earth Science, 44(10): 3346-3360. doi: 10.3799/dqkx.2019.209

    大兴安岭北部兴隆地区寒武纪侵入岩锆石U-Pb年代学、地球化学及其构造意义

    doi: 10.3799/dqkx.2019.209
    基金项目: 

    中央高校基本科研业务费 N170103013

    国家重点研发计划"深地资源勘查开采"重点专项 2017YFC0601203

    国家自然科学基金项目 41802236

    国家自然科学基金项目 41472205

    详细信息
      作者简介:

      吴宜翰(1996—), 男, 本科生, 资源勘查工程专业

      通讯作者:

      刘博(1988—), 男, 副教授

    • 中图分类号: P54

    Zircon U-Pb Geochronology and Geochemistry of Cambrian Plutons in Xinglong Area of Northern Da-Hinggan Mountains: Implications for Tectonic Evolution

    • 摘要: 大兴安岭北部兴隆地区位于新林-喜桂图缝合带北部,额尔古纳地块南缘,在大地构造上属于兴蒙造山带北段.然而,由于资料有限,前人对该区寒武纪侵入岩的构造产出环境仍存有争议,从而制约了人们对于新林-喜桂图洋早期构造演化的正确认识.选取兴隆地区出露的寒武纪内河岩体为研究对象,通过岩相学、锆石U-Pb年代学及地球化学研究,以期限定其形成时限,探讨其岩石成因和构造背景,进而为解决上述问题提供新的证据.内河岩体中石英二长岩及侵入其中的辉石闪长岩的LA-ICP-MS锆石U-Pb年龄分别为508±3 Ma和507±5 Ma,证明其形成时代均为中寒武世.石英二长岩和辉石闪长岩样品为高钾钙碱性和钙碱性系列,同时表现出轻稀土元素富集和不同程度的亏损Nb、Ta和Ti.两组样品的Nb/Ta平均值分别为22.41和17.12,较高于原始地幔平均值,MgO的含量(< 8%)和Mg#(42~70)值较低.上述地球化学特征为典型俯冲带岩石的特征,暗示内河岩体为经历了俯冲板片析出流体交代作用的原始地幔部分熔融的产物.结合区域已有近同时代侵入岩、蛇绿混杂岩和蓝片岩资料,推测内河岩体可能形成于活动大陆边缘构造环境,为寒武纪期间新林-喜桂图洋向北俯冲的弧岩浆作用的产物.研究结果为兴蒙造山带北段在寒武纪期间仍处于俯冲构造环境提供了重要依据.

       

    • 图  1  中亚造山带构造地质单元划分简图

      Fig.  1.  Schematic tectonic map of the Central Asia orogenic belt

      图  2  东北地区岩浆事件分布及构造分区

      Fig.  2.  Tectonic division of the NE China and distributions of magmatic events

      图  3  采样点地质图

      修改自黑龙江省地质矿产局(1961)1:20万《兴隆沟幅》区域地质调查报告;黑龙江地质调查研究总院(2008) 1:25万《兴隆幅》区域地质调查报告

      Fig.  3.  Geological map of sampling locations

      图  4  研究区采样点照片

      a.采样位置图;b, c.辉石闪长岩与岩体接触关系;d.石英二长岩;e.辉石闪长岩

      Fig.  4.  Photos of sampling locations in the study area

      图  5  研究区侵入岩正交偏光下照片

      a, b.石英二长岩;c, d.辉石闪长岩;Hbl.普通角闪石;Pl.斜长石;Qtz.石英;Kfs.碱性长石;Zrn.锆石;Cpx.单斜辉石

      Fig.  5.  Othogonal polarized images of plutons in the study area under orthogonal polarization

      图  6  大兴安岭北部内河岩体代表性锆石CL阴极发光图像

      a.石英二长岩18XL-46;b.辉石闪长岩18XL-51

      Fig.  6.  Cathodoluminescence images of typical zircons in the Neihe pluton from the northern Da-Hinggan Mountains

      图  7  锆石U-Pb年龄谐和图以及加权平均年龄图

      a, b.石英二长岩;c, d.辉石闪长岩

      Fig.  7.  Zircon U-Pb age harmonics and weighted average age diagrams

      图  8  大兴安岭北部寒武纪侵入岩地球化学图解

      a.硅-全碱图解,据Le Bas et al.(1986),其中碱性和亚碱性边界据Irvine and Baragar (1971);b.SiO2-K2O图解, 据Peccerillo and Taylor(1976)

      Fig.  8.  Geochemical illustration of Cambrian plutons in the northern Da-Hinggan Mountains

      图  9  大兴安岭北部寒武纪侵入岩稀土元素球粒陨石标准化图(a)和微量元素原始地幔标准化图(b)

      a.稀土元素球粒陨石标准化图;b.微量元素原始地幔标准化图.其中球粒陨石和原始地幔数值据Sun and McDonough(1989)

      Fig.  9.  Chondrite-normalized REE patterns (a) and primitive mantle-normalized trace elements spider diagrams (b) of Cambrian plutons in the northern Da-Hinggan Mountains

      图  10  大兴安岭北部寒武纪侵入岩形成环境构造判别图

      a.Th-Hf-Ta图,据Wood(1980);b. Nb/Yb-Th/Yb图, 据Pearce(2008);c. YbN-(La/Yb)N图; d. Y-Sr/Y图; 图c和d据Martin(1999);e. Th/Zr-Nb/Zr图解, 据Kepezhinskas et al.(1997). N-MORB.正常型洋脊玄武岩;E-MORB.异常型洋脊玄武岩;WPT.板内拉斑玄武岩;WPA.碱性板内玄武岩;VAB.火山弧玄武岩;VA.火山弧;SHO.钾玄质;CA.钙碱性;TH.拉斑质;S.俯冲相关富集;W.板内相关富集

      Fig.  10.  Tectonic environment discrimination for the Cambrian plutons from the northern Da-Hinggan Mountains

      图  11  大兴安岭新元古代-早奥陶世构造演化模式

      Fig.  11.  Neoproterozoic-Early Ordovician tectonic evolution model of the Da-Hinggan Mountains

      表  1  大兴安岭北部内河岩体主量元素(%)和微量元素(10-6)测试结果

      Table  1.   Results of major elements (%) and trace elements (10-6) in the Neihe pluton in the northern Da-Hinggan Mountains

      样品号 18XL-46 18XL-47 18XL-51 18XL-52
      岩性 石英二长岩 石英二长岩 辉石闪长岩 辉石闪长岩
      SiO2 58.43 58.94 51.47 51.42
      TiO2 0.77 0.71 1.12 1.12
      Al2O3 17.05 17.13 15.10 15.06
      Fe2O3 T 6.83 6.78 8.07 8.16
      MgO 2.51 2.36 9.35 9.47
      MnO 0.13 0.13 0.15 0.15
      CaO 6.30 6.32 7.60 7.50
      Na2O 3.65 3.65 2.66 2.65
      K2O 2.94 2.92 0.83 0.98
      P2O5 0.31 0.30 0.33 0.33
      LOI 0.84 0.63 3.02 2.99
      Total 99.76 99.87 99.69 99.82
      Sc 13.37 14.75 19.18 22.59
      V 124.40 123.42 135.41 152.92
      Cr 11.98 10.54 432.89 565.47
      Co 12.89 11.71 35.36 40.38
      Ni 5.54 5.00 235.63 274.05
      Ga 23.48 23.52 17.77 19.58
      Rb 77.52 80.90 38.26 51.36
      Ba 1 055 1 098 260 313
      Th 5.02 6.63 5.21 4.43
      U 1.64 1.43 1.18 1.01
      Nb 11.12 11.57 8.80 9.36
      Ta 0.49 0.52 0.59 0.48
      Sr 828.06 873.75 573.30 516.72
      Y 20.55 24.41 19.75 20.31
      Zr 210.97 193.39 163.89 172.26
      Hf 4.55 4.22 4.01 3.48
      Cs 0.72 0.81 0.94 0.70
      La 31.99 43.71 26.63 25.66
      Ce 65.00 78.56 57.79 54.21
      Pr 7.63 8.73 6.95 6.31
      Nd 31.11 35.25 28.05 25.30
      Sm 5.93 6.68 5.66 4.98
      Eu 1.81 1.80 1.61 1.54
      Gd 4.97 5.84 5.13 4.56
      Tb 0.65 0.77 0.75 0.63
      Dy 3.49 4.07 4.01 3.48
      Ho 0.64 0.74 0.78 0.65
      Er 1.90 2.17 2.21 1.91
      Tm 0.25 0.28 0.29 0.24
      Yb 1.73 1.84 1.90 1.57
      Lu 0.25 0.26 0.28 0.22
      (La/Sm)N 3.49 4.22 3.04 3.33
      (La/Yb)N 13.25 17.06 10.07 11.69
      δEu 0.99 0.86 0.90 0.97
      REE 157.36 190.70 142.04 131.27
      LREE 141.66 172.94 125.08 116.46
      HREE 15.70 17.76 16.96 14.81
      LREE/HREE 9.02 9.74 7.38 7.86
      下载: 导出CSV

      表  2  额尔古纳地块新元古代-早奥陶世侵入岩锆石定年结果

      Table  2.   Results of Neoproterozoic-Early Ordovician plutons in the Erguna block

      采样位置 年龄±误差(Ma) 测试方法 岩性 参考文献
      环二库地区 557±2 LA-ICP-MS 花岗闪长岩 Feng et al., 2018
      会宝沟地区 523±2 LA-ICP-MS 闪长岩 Feng et al., 2017
      漠河县洛古河 517±9 SHRIMP 石英闪长岩 Wu et al., 2005
      十七站和新村 512±4 LA-ICP-MS 二长闪长岩 柴明春等,2018
      漠河县洛古河 504±8 SHRIMP 二长花岗岩 Wu et al., 2005
      漠河县西门都里河 502±7 LA-ICP-MS 二长花岗岩 秦秀峰等,2007
      漠河县 502±7 SHRIMP 二长花岗岩 秦秀峰等,2007
      呼玛县哈拉巴奇 500±2 LA-ICP-MS 二长花岗岩 隋振民等,2006
      韩家园子 500±1 LA-ICP-MS 花岗闪长岩 Ge et al., 2005
      塔河县十八站 499±1 LA-ICP-MS 二长花岗岩 Ge et al., 2005
      塔河县城北 494±9 LA-ICP-MS 正长花岗岩 Ge et al., 2005
      塔河西 493±5 LA-ICP-MS 二长花岗岩 Ge et al., 2005
      塔河县 492±5 LA-ICP-MS 正长花岗岩 Ge et al., 2005
      塔河岩体 490±3 LA-ICP-MS 细粒辉长岩 Ge et al., 2005
      塔林西公路旁 485±3 LA-ICP-MS 二长花岗岩 Ge et al., 2005
      塔河县东 480±4 LA-ICP-MS 正长花岗岩 Ge et al., 2005
      下载: 导出CSV
    • [1] Belousova, E., Griffin, W., O'Reilly, S. Y., et al., 2002. Igneous Zircon: Trace Element Composition as an Indicator of Source Rock Type. Contributions to Mineralogy and Petrology, 143(5): 602-622. https://doi.org/10.1007/s00410-002-0364-7
      [2] Chai, M.C., Zhao, G.Y., Qin, X.F., et al., 2018.LA-ICP-MS U-Pb Ages and Geochemical Characteristics of the Intermediate-Acidic Intrusions in Shibazhan-Hanjiayuan Area, Great Hinggan Mountains, and Its Geological Significance.Geological Review, 64(3):569-583(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dzlp201803005
      [3] Feng, Z.Q., 2015. The Palezoic Tectono-Magmatic Evolution of the Northern Great Xing'an Range (Dissertation). Jilin University, Changchun (in Chinese with English abstract).
      [4] Feng, Z. Q., Liu, Y. J., Li, L., et al., 2018. Subduction, Accretion, and Collision during the Neoproterozoic-Cambrian Orogeny in the Great Xing'an Range, China NE: Insights from Geochemistry and Geochronology of the Ali River Ophiolitic Mélange and Arc-Type Granodiorites. Precambrian Research, 311: 117-135. https://doi.org/10.1016/j.precamres.2018.04.013
      [5] Feng, Z. Q., Liu, Y. J., Li, Y. R., et al., 2017. Ages, Geochemistry and Tectonic Implications of the Cambrian Igneous Rocks in the Northern Great Xing'an Range, NE China. Journal of Asian Earth Sciences, 144: 5-21. https://doi.org/10.1016j.jseaes.2016.12.006 doi: 10.1016/j.jseaes.2016.12.006
      [6] Feng, Z. Q., Liu, Y. J., Liu, B. Q., et al., 2015. Timing and Nature of the Xinlin–Xiguitu Ocean: Constraints from Ophiolitic Gabbros in the Northern Great Xing'an Range, Eastern Central Asian Orogenic Belt. International Journal of Earth Sciences, 105(2): 491-505. https://doi.org/10.1007/s00531-015-1185-z
      [7] Ge, W.C., Sui, Z.M., Wu, F.Y., et al., 2007.Zircon U-Pb Ages, Hf Isotopic Characteristics and Their Implications of the Early Paleozoic Granites in the Northeastern Da Hinggan Mts., Northeastern China.Acta Petrologica Sinica, 23(2):423-440(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200702021
      [8] Ge, W. C., Wu, F. Y., Zhou, C. Y., et al., 2005. Emplacement Age of the Tahe Granite and Its Constraints on the Tectonic Nature of the Ergun Block in the Northern Part of the Da Hinggan Range. Chinese Science Bulletin, 50(18): 2097-2105. https://doi.org/10.1007/bf03322807 doi: 10.1360/982005-207
      [9] Irvine, T. N., Baragar, W. R. A., 1971. A Guide to the Chemical Classification of the Common Volcanic Rocks. Canadian Journal of Earth Sciences, 8(5): 523-548. https://doi.org/10.1139/e71-055
      [10] Kepezhinskas, P., McDermott, F., Defant, M. J., et al., 1997. Trace Element and Sr-Nd-Pb Isotopic Constraints on a Three-Component Model of Kamchatka Arc Petrogenesis. Geochimica et Cosmochimica Acta, 61(3): 577-600. https://doi.org/10.1016/s0016-7037(96)00349-3 doi: 10.1016/S0016-7037(96)00349-3
      [11] Lassiter, J.C., DePaolo, D.J., 1997. Plume/Lithosphere Interaction in the Generation of Continental and Oceanic Flood Basalts: Chemical and Isotopic Constraints.In: Mahoney, J., ed., Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism. Geophysical Monography 100. American Geophysical Union Press, Washington D.C., 335-355.https: //doi.org/10.1029/GM100p0335
      [12] Le Bas, M. J., Le Maitre, R. W., Streckeisen, A., et al., 1986. A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram. Journal of Petrology, 27(3): 745-750. https://doi.org/10.1093/petrology/27.3.745
      [13] Li, R.S., 1991. Xinlin Ophiolite. Heilongjiang Geology, 2(1): 19-32 (in Chinese with English abstract).
      [14] Liu, Y., Gao, S., Hu, Z., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2): 537-571. https://doi.org/10.1093/petrology/egp082
      [15] Liu, Y. J., Li, W. M., Feng, Z. Q., et al., 2017. A Review of the Paleozoic Tectonics in the Eastern Part of Central Asian Orogenic Belt. Gondwana Research, 43: 123-148. https://doi.org/10.1016/j.gr.2016.03.013
      [16] Liu, Y.J., Zhang, X.Z., Jin, W., et al., 2010.Late Paleozoic Tectonic Evolution in Northeast China.Geology in China, 37(4):943-951(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201806021
      [17] Ludwig, K.R., 2003. User's Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronological Center, Special Publication, 4: 1-71. doi: 10.1016-j.immuni.2011.10.010/
      [18] Martin, H., 1999. Adakitic Magmas: Modern Analogues of Archaean Granitoids. Lithos, 46(3): 411-429. https://doi.org/10.1016/s0024-4937(98)00076-0 doi: 10.1016/S0024-4937(98)00076-0
      [19] Miao, L. C., Liu, D. Y., Zhang, F. Q., et al., 2007. Zircon SHRIMP U-Pb Ages of the "Xinghuadukou Group" in Hanjiayuanzi and Xinlin Areas and the "Zhalantun Group" in Inner Mongolia, Da Hinggan Mountains. Chinese Science Bulletin, 52(8): 1112-1124. https://doi.org/10.1007/s11434-007-0131-2
      [20] Pearce, J. A., 2008. Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust. Lithos, 100(1-4): 14-48. https://doi.org/10.1016/j.lithos.2007.06.016
      [21] Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. https://doi.org/10.1007/bf00384745 doi: 10.1007/BF00384745
      [22] Qin, X.F., Yin, Z.G., Wang, Y., et al., 2007.Early Paleozoic Adakitic Rocks in Mohe Area at the Northern End of the Da Hinggan Mountains and Their Geological Significance.Acta Petrologica Sinica, 23(6):1501-1511(in Chinese with English abstract). http://www.oalib.com/paper/1492427
      [23] Shao, J., Li, Y.F., Zhou, Y.H., et al., 2015.Neo-Archaean Magmatic Event in Erguna Massif of Northeast China: Evidence from the Zircon LA-ICP-MS Dating of the Gneissic Monzogranite from the Drill. Journal of Jilin University(Earth Science Edition), 45(2):364-373(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-CCDZ201502003.htm
      [24] Sorokin, A. A., Kudryashov, N. M., Kotov, A. B., et al., 2017. Age and Tectonic Setting of the Early Paleozoic Magmatism of the Mamyn Terrane, Central Asian Orogenic Belt, Russia. Journal of Asian Earth Sciences, 144: 22-39. https://doi.org/10.1016/j.jseaes.2017.01.017
      [25] Sui, Z.M., Ge, W.C., Wu, F.Y., et al., 2006.U-Pb Chronology in Zircon from Harabaqi Granitic Pluton in Northeastern Daxing'anling Area and Its Origin.Global Geology, 25(3):229-236(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sjdz200603003
      [26] Sun, L.X., Ren, B.F., Zhao, F.Q., et al., 2013.Late Paleoproterozoic Magmatic Records in the Eerguna Massif:Evidences from the Zircon U-Pb Dating of Granitic Gneisses.Geological Bulletin of China, 32(2-3):341-352(in Chinese with English abstract). http://cn.bing.com/academic/profile?id=8ed856ab02bc19a3ed731d3a500f84a6&encoded=0&v=paper_preview&mkt=zh-cn
      [27] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 doi: 10.1144/GSL.SP.1989.042.01.19
      [28] Wood, D. A., 1980. The Application of a Th-Hf-Ta Diagram to Problems of Tectonomagmatic Classification and to Establishing the Nature of Crustal Contamination of Basaltic Lavas of the British Tertiary Volcanic Province. Earth and Planetary Science Letters, 50(1): 11-30. https://doi.org/10.1016/0012-821x(80)90116-8 doi: 10.1016/0012-821X(80)90116-8
      [29] Wu, F. Y., Sun, D. Y., Ge, W. C., et al., 2011. Geochronology of the Phanerozoic Granitoids in Northeastern China. Journal of Asian Earth Sciences, 41(1): 1-30. https://doi.org/10.1016/j.jseaes.2010.11.014
      [30] Wu, G., Sun, F. Y., Zhao, C. S., et al., 2005. Discovery of the Early Paleozoic Post-Collisional Granites in Northern Margin of the Erguna Massif and Its Geological Significance. Chinese Science Bulletin, 50(23): 2733-2743. https://doi.org/10.1007/bf02899644 doi: 10.1007/BF02899644
      [31] Xu, B., Zhao, P., Wang, Y. Y., et al., 2015. The Pre-Devonian Tectonic Framework of Xing'an-Mongolia Orogenic Belt (XMOB) in North China. Journal of Asian Earth Sciences, 97: 183-196. https://doi.org/10.1016/j.jseaes.2014.07.020
      [32] Xu, W.L., Sun, C.Y., Tang, J., et al., 2019. Basement Nature and Tectonic Evolution of the Xing'an-Mongolia Orogenic Belt. Earth Science, 44(5): 1620-1646(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201905017.htm
      [33] Yu, Q., Ge, W. C., Zhang, J., et al., 2017. Geochronology, Petrogenesis and Tectonic Implication of Late Paleozoic Volcanic Rocks from the Dashizhai Formation in Inner Mongolia, NE China. Gondwana Research, 43: 164-177. https://doi.org/10.1016/j.gr.2016.01.010
      [34] Zhang, L., Liu, Y.J., Feng, Z.Q., et al., 2017.Basement Structural Features of Mesozoic Volcanic Basins in Erguna Massif:Implications from Lingquan Basin.Earth Science, 42(12):2229-2242(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201712009.htm
      [35] Zhou, J. B., Wang, B., Wilde, S. A., et al., 2015. Geochemistry and U-Pb Zircon Dating of the Toudaoqiao Blueschists in the Great Xing'an Range, Northeast China, and Tectonic Implications. Journal of Asian Earth Sciences, 97: 197-210. https://doi.org/10.1016/j.jseaes.2014.07.011
      [36] Zhou, J.B., Zhang, X.Z., Wilde, S.A., et al., 2009. Detrital Zircon U-Pb Dating of Heilongjiang Complex and Its Tectonic Implications. Acta Petrologica Sinica, 25(8):1924-1936 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200908017
      [37] 柴明春, 赵国英, 覃小锋, 等, 2018.大兴安岭十八站-韩家园地区中酸性侵入岩LA-ICP-MS锆石U-Pb年龄、地球化学特征及其地质意义.地质论评, 64(3):569-583. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201803005
      [38] 冯志强, 2015.大兴安岭北段古生代构造-岩浆演化(博士学位论文).长春: 吉林大学. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDW201510008018.htm
      [39] 葛文春, 隋振民, 吴福元, 等, 2007.大兴安岭东北部早古生代花岗岩锆石U-Pb年龄、Hf同位素特征及地质意义.岩石学报, 23(2):423-440. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200702021
      [40] 李瑞山, 1991.新林蛇绿岩.黑龙江地质, 2(1):19-31. http://d.old.wanfangdata.com.cn/Periodical/hljkjxx201303041
      [41] 刘永江, 张兴洲, 金巍, 等, 2010.东北地区晚古生代区域构造演化.中国地质, 37(4):943-951. doi: 10.3969/j.issn.1000-3657.2010.04.010
      [42] 秦秀峰, 尹志刚, 汪岩, 等, 2007.大兴安岭北端漠河地区早古生代埃达克质岩特征及地质意义.岩石学报, 23(6):1501-1511. doi: 10.3969/j.issn.1000-0569.2007.06.024
      [43] 邵军, 李永飞, 周永恒, 等, 2015.中国东北额尔古纳地块新太古代岩浆事件——钻孔片麻状二长花岗岩锆石LA-ICP-MS测年证据.吉林大学学报(地球科学版), 45(2):364-373. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb201502004
      [44] 隋振民, 葛文春, 吴福元, 等, 2006.大兴安岭东北部哈拉巴奇花岗岩体锆石U-Pb年龄及其成因.世界地质, 25(3):229-236. doi: 10.3969/j.issn.1004-5589.2006.03.003
      [45] 孙立新, 任邦方, 赵凤清, 等, 2013.内蒙古额尔古纳地块古元古代末期的岩浆记录——来自花岗片麻岩的锆石U-Pb年龄证据.地质通报, 32(2-3):341-352. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201302013
      [46] 许文良, 孙晨阳, 唐杰, 等, 2019.兴蒙造山带的基底属性与构造演化过程.地球科学, 44(5):1620-1646. http://d.old.wanfangdata.com.cn/Periodical/dqkx201905017
      [47] 张丽, 刘永江, 冯志强, 等, 2017.额尔古纳地块中生代火山岩盆地基底构造特征:来自灵泉盆地的启示.地球科学, 42(12):2229-2242. http://d.old.wanfangdata.com.cn/Periodical/dqkx201712008
      [48] 周建波, 张兴洲, Wilde, ,S.A., 等, 2009.黑龙江杂岩的碎屑锆石年代学及其大地构造意义.岩石学报, 25(2):1924-1936. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200908017
    • dqkx-44-10-3346-TableS1.pdf
    • 加载中
    图(11) / 表(2)
    计量
    • 文章访问数:  3188
    • HTML全文浏览量:  1301
    • PDF下载量:  69
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-08-18
    • 刊出日期:  2019-11-11

    目录

      /

      返回文章
      返回