Quartz Type and Its Control on Shale Gas Enrichment and Production: A Case Study of the Wufeng-Longmaxi Formations in the Sichuan Basin and Its Surrounding Areas, China
-
摘要: 页岩矿物组成控制着页岩的储层类型和岩石力学性质,并影响着页岩气的富集和开发.为了分析不同类型石英矿物的纵向变化特征及其对页岩气富集开采的控制作用,以四川盆地及其周缘五峰组-龙马溪组WF2-LM4和LM5-LM8两个笔石带页岩为主要研究对象,利用普通薄片观察、扫描电镜、矿物成岩世代关系、能谱分析等手段,识别出陆源碎屑石英、生物成因石英和黏土矿物转化过程中形成的3种石英类型.结果表明不同的页岩层段,3种成因的石英含量不同.生物成因石英在WF2-LM4笔石带页岩最为富集,向上到LM5-LM8笔石带页岩逐渐减少.在WF2-LM4笔石带页岩,生物成因石英与有机碳含量呈明显的正相关性,有利于页岩优质储层的形成,对页岩储层的压裂改造具有积极作用,实现了页岩赋气和改造的有机统一.研究认为四川盆地及其周缘地区五峰组-龙马溪组一段下部黑色页岩(WF2-LM4笔石带页岩)具有生物成因石英含量高,页岩生烃、储集能力和可压裂性最优的特点,是页岩气富集开采的有利层段.Abstract: Mineral compositions control the type and key physical properties of shale gas reservoir. To analyze the characteristics of different types of quartz minerals in the longitudinal direction and their effects on shale gas enrichment and development, two graptolite shale zones are scrutinized including WF2-LM4 and LM5-LM8 of the Wufeng-Longmaxi Formations in the Sichuan basin and its surrounding areas. Three types of quartz are identified which are detrital quartz, biogenic quartz and quartz sourced from clay mineral reactions by means of thin section examination, scanning electron microscopy(SEM), mineral diagenesis and energy spectrum analysis. The contents of the three types of quartz vary in different shale intervals. Biogenic quartz is most abundant in the WF2-LM4 graptolite shale zone and gradually decreases upward to the LM5-LM8. In the WF2-LM4 graptolite shale zone, there is a clear positive correlation between biogenic quartz and organic carbon content, which is conducive not only to the formation of favorable shale reservoirs but also to the fracturing of shale reservoirs, realizing the integrity of shale gas enrichment and formation stimulation. The development areas of black shale from the Wufeng Formation and the first section of the Longmaxi Formation (WF2-LM4 graptolite shale zone) are identified as favorable targets providing abundant material basis for shale gas enrichment.
-
Key words:
- shale gas /
- biogenic quartz /
- Wufeng Formation /
- Longmaxi Formation /
- Sichuan basin /
- petroleum geology
-
图 1 四川盆地及其周缘五峰组-龙马溪组主要页岩气田和页岩气井
威远地区、长宁地区和昭通地区的页岩气藏资料据聂海宽等(2012)和陈旭等(2015);LaiY1井资料据梁狄刚等(2009)和聂海宽等(2017)
Fig. 1. Major gas fields and typical shale gas wells in the Sichuan basin and its surrounding areas
图 7 焦石坝背斜JY1井页岩气综合柱状图和勘探开发层段划分
Fig. 7. Comprehensive shale gas column diagram and E & D interval division of Well JY1 in the Jiaoshiba anticline
图 8 焦页2井五峰组-龙马溪组页岩主量元素含量垂向分布特征
焦页2井距焦页1井约10 km,由于海相页岩沉积相变化不大,故各笔石带页岩厚度可以根据焦页1井类比(赵建华等, 2016;岩性图例同图 7)
Fig. 8. Longitudinal variations of bulk element content in Well JY2 from the Wufeng-Longmaxi Formation shales
图 9 渝东焦石坝地区焦页1井石英含量和有机碳含量关系
Fig. 9. Quartz and organic carbon content relationship in Well JY1 in the Jiaoshiba area
-
[1] Alkhafaji, M. W., Aljubouri, Z. A., Aldobouni, I. A., 2015. Depositional Environment of the Lower Silurian Akkas Hot Shales in the Western Desert of Iraq: Results from an Organic Geochemical Study. Marine and Petroleum Geology, 64: 294-303. https://doi.org/10.1016/j.marpetgeo.2015.02.012 [2] Aplin, A. C., Macquaker, J. H. S., 2011. Mudstone Diversity: Origin and Implications for Source, Seal, and Reservoir Properties in Petroleum Systems. AAPG Bulletin, 95(12): 2031-2059. https://doi.org/10.1306/03281110162 [3] Arthur, M.A., Dean, W.E., 1991. A Holistic Geochemical Approach to Cyclomania Examples from Cretaceous Pelagic Limestone Sequences. In: Einsele, G., Ricken, W., Seilacher, A., eds., Cycles and Events in Stratigraphy. Springer Verlag, Berlin, 126-166. [4] Chen, X., Chen, Q., Zhen, Y. Y., et al., 2018. The Circlical Distribution Pattern of the Black Graptolite Shales of the Longmaxi Formation at the Beginning of Silurian. Science in China (Series D: Earth Sciences), 48(9):1198-1026 (in Chinese). [5] Chen, X., Fan, J. X., Zhang, Y. D., et al., 2015. Subdivision and Delineation of the Wufeng and Longmaxi Black Shales in the Subsurface Areas of the Yangtze Platform. Journal of Stratigraphy, 39(4):351-358 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DCXZ201504001.htm [6] Dennett, M. R., 2002. Video Plankton Recorder Reveals High Abundances of Colonial Radiolaria in Surface Waters of the Central North Pacific. Journal of Plankton Research, 24(8): 797-805. https://doi.org/10.1093/plankt/24.8.797 [7] Guo, X.S., 2017. Sequence Stratigraphy and Evolution Model of the Wufeng-Longmaxi Shale in the Upper Yangtze Area. Earth Science, 42(7): 1069-1082 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.086 [8] He, Z. L., Hu, Z. Q., Nie, H. K., et al., 2017. Characterization of Shale Gas Enrichment in the Wufeng Formation-Longmaxi Formation in the Sichuan Basin of China and Evaluation of Its Geological Construction-Transformation Evolution Sequence. Journal of Natural Gas Geoscience, 28(5):724-733 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqdqkx201705007 [9] Huggett, J., Hooker, J. N., Cartwright, J., 2017. Very Early Diagenesis in a Calcareous, Organic-Rich Mudrock from Jordan. Arabian Journal of Geosciences, 10(12): 270. https://doi.org/10.1007/s12517-017-3038-5 [10] Ishii, E., Sanada, H., Iwatsuki, T., et al., 2011. Mechanical Strength of the Transition Zone at the Boundary between Opal-A and Opal-CT Zones in Siliceous Rocks. Engineering Geology, 122(3/4): 215-221. https://doi.org/10.1016/j.enggeo.2011.05.007 [11] Jin, Z.J., Hu, Z.Q., Gao, B., et al., 2016.Controlling Factors on the Enrichment and High Productivity of Shale Gas in the Wufeng- Longmaxi Formations, Southeastern Sichuan Basin. Earth Science Frontiers, 23(1):1-10 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201601001 [12] Jin, Z. J., Li, M. W., Hu, Z. Q., et al., 2015. Shorten the Learning Curve through Technological Innovation: A Case Study of the Fuling Shale Gas Discovery in Sichuan Basin, SW China. Unconventional Resources Technology Conference, Texas. [13] Jin, Z. J., Nie, H. K., Liu, Q. Y., et al., 2018. Source and Seal Coupling Mechanism for Shale Gas Enrichment in Upper Ordovician Wufeng Formation - Lower Silurian Longmaxi Formation in Sichuan Basin and Its Periphery. Marine and Petroleum Geology, 97: 78-93. https://doi.org/10.1016/j.marpetgeo.2018.06.009 [14] Liang, D.G., Guo, T.L., Bian, L.Z., et al., 2009. Some Progress on Studies of Hydrocarbon Generation and Accumulation in Marine Sedimentary Regions, Southern China (Part 3): Controlling Factors on the Sedimentary Facies and Develoment of Palaozoic Marine Source Rocks. Marine Origin Petroleum Geology, 14(2):1-19 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-HXYQ200902003.htm [15] Lin, J.F., Hu, H.Y., Li, Q., et al., 2017. Geochemical Characteristics and Implications of Shale Gas in Jiaoshiba, Easter Sichuan, China. Earth Science, 42(7): 1124-1133 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.091 [16] Liu, H. L., Guo, W., Liu, D. X., et al., 2018. Authigenic Embrittlement of Marine Shale in the Process of Diagenesis. Natural Gas Industry, 38(5): 17-25 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy201805003 [17] Liu, J.T., Li, Y.J., Zhang, Y.C., et al., 2017. Evidencs of Biogenic Silica of Wufeng-Longmaxi Formation Shale in Jiaoshiba Area and Its Geological Significance. Journal of China University of Petroleum, 41(1): 34-41 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-SYDX201701004.htm [18] Liu, S. G., Ma, W. X., Luba, J., et al., 2011. Characteristics of the Shale Gas Reservoir Rocks in the Lower Silurian Longmaxi Formation, East Sichuan Basin, China. Acta Petrologica Sinica, 27(8): 2239-2252 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201108003 [19] Loucks, R. G., Reed, R. M., 2014. Scanning-Electron-Microscope Petrographic Evidence for Distinguishing Organic Matter Pores Associated with Depostional Organic Matter versus Migrated Organic Matter in Mudrocks. Gulf Coast Association of Gelogical Societies Journal, 3:51-60. [20] Loucks, R. G., Ruppel, S. C., 2007. Mississippian Barnett Shale: Lithofacies and Depositional Setting of a Deep-Water Shale-Gas Succession in the Fort Worth Basin, Texas. AAPG Bulletin, 91(4): 579-601. https://doi.org/10.1306/11020606059 [21] Lüning, S., Craig, J., Loydell, D. K., et al., 2000. Lower Silurian Hot Shales' in North Africa and Arabia: Regional Distribution and Depositional Model. Earth-Science Reviews, 49(1/2/3/4): 121-200. https://doi.org/10.1016/s0012-8252(99)00060-4 [22] Ma, X. H., Xie, J., 2018. The Progress and Prospects of Shale Gas Exploration and Development in Southern Sichuan Basin, SW China. Petroleum Exploration and Development, 45(1):161-169 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S1876380418300181 [23] Macquaker, J. H. S., Taylor, K. G., Keller, M., et al., 2014. Compositional Controls on Early Diagenetic Pathways in Fine-Grained Sedimentary Rocks: Implications for Predicting Unconventional Reservoir Attributes of Mudstones. AAPG Bulletin, 98(3): 587-603. https://doi.org/10.1306/08201311176 [24] Matheney, R. K., Knauth, L. P., 1993. New Isotopic Temperature Estimates for Early Silica Diagenesis in Bedded Cherts. Geology, 21(6): 519-522. https://doi.org/10.1130/0091-7613(1993)021 < 0519:nitefe > 2.3.co; 2 doi: 10.1130/0091-7613(1993)021<0519:nitefe>2.3.co;2 [25] Metwally, Y. M., Chesnokov, E. M., 2012. Clay Mineral Transformation as a Major Source for Authigenic Quartz in Thermo-Mature Gas Shale. Applied Clay Science, 55(1): 138-150. https://doi.org/10.1016/j.clay.2011.11.007 [26] Milliken, K. L., Ergene, S. M., Ozkan, A., 2016. Quartz Types, Authigenic and Detrital, in the Upper Cretaceous Eagle Ford Formation, South Texas, USA. Sedimentary Geology, 339: 273-288. https://doi.org/10.1016/j.sedgeo.2016.03.012 [27] Milliken, K. L., Esch, W. L., Reed, R. M., et al., 2012. Grain Assemblages and Strong Diagenetic Overprinting in Siliceous Mudrocks, Barnett Shale (Mississippian), Fort Worth Basin, Texas. AAPG Bulletin, 96(8): 1553-1578. https://doi.org/10.1306/12011111129 [28] Nie, H. K., Bao, S. J., Gao, B., et al., 2012. A Study of Shale Gas Preservation Conditions for the Lower Paleozoic in Sichuan Basin and Its Periphery. Earth Science Frontiers, 19(3):280-294 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201203030 [29] Nie, H. K., Jin, Z. J., Bian, R. K., et al., 2016. The "Source-Cap Hydrocarbon-Controlling" Enrichment of Shale Gas in Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation of Sichuan Basin and Its Periphery. Acta Petrologica Sinica, 37(5): 557-571 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201605001 [30] Nie, H. K., Jin, Z. J., Ma, X., et al., 2017. Graptolites Zone and Sedimentary Characteristics of Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation in Sichuan Basin and Its Adjacent Areas. Acta Petrologica Sinica, 38(2): 160-174 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201702004 [31] Qin, J. Z., Shen, B.J., Fu, X. D., et al., 2010. Ultramicroscopic Organic Petrology and Potential of Hydrocarbon Generation and Expulsion of Quality Marine Source Rocks in South China. Oil & Gas Geology, 31(6):826-837 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz201006016 [32] Rong, J. Y., Chen, X., Wang, Y., et al., 2011. Northward Expansion of Central Guizhou Oldland through the Ordovician and Silurian Transition: Evidence and Implications. Science in China (Series D:Earth Sciences), 41(10):1407-1415 (in Chinese). [33] Rowe, H. D., Loucks, R. G., Ruppel, S. C., et al., 2008. Mississippian Barnett Formation, Fort Worth Basin, Texas: Bulk Geochemical Inferences and Mo-TOC Constraints on the Severity of Hydrographic Restriction. Chemical Geology, 257(1/2): 16-25. https://doi.org/10.1016/j.chemgeo.2008.08.006 [34] Schieber, J., Krinsley, D., Riciputi, L., 2000. Diagenetic Origin of Quartz Silt in Mudstones and Implications for Silica Cycling. Nature, 406(6799): 981-985. https://doi.org/10.1038/35023143 [35] Thyberg, B., Jahren, J., Winje, T., et al., 2010. Quartz Cementation in Late Cretaceous Mudstones, Northern North Sea: Changes in Rock Properties Due to Dissolution of Smectite and Precipitation of Micro-Quartz Crystals. Marine and Petroleum Geology, 27(8): 1752-1764. https://doi.org/10.1016/j.marpetgeo.2009.07.005 [36] van den Boorn, S. H. J. M., van Bergen, M. J., Nijman, W., et al., 2007. Dual Role of Seawater and Hydrothermal Fluids in Early Archean Chert Formation: Evidence from Silicon Isotopes. Geology, 35(10): 939-942. https://doi.org/10.1130/g24096a.1 [37] Wang, X.P., Mou, C.L., Ge, X.Y., et al., 2015a. Mineral Component and Evaluation of Black Rock Series of Longmaxi Formation in Southern Sichuan and Its Periphery. Acta Petrolei Sinica, 36(2):150-162 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201502003 [38] Wang, X.P., Mou, C.L., Wang, Q.Y., et al., 2015b. Diagenesis of Black Shale in Longmaxi Formation, Southern Sichuan Basin and Its Periphery. Acta Petrolei Sinica, 36(9):1035-1047 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201509002 [39] Zhang, G.W., Guo, A.L., Wang, Y.J., et al., 2013. Structure and Problems of South China Continent. Science in China (Series D: Earth Sciences), 43(10): 1553-1582 (in Chinese). [40] Zhao, J. H., Jin, Z. K., Jin, Z. J., et al., 2017. Origin of Authigenic Quartz in Organic-Rich Shales of the Wufeng and Longmaxi Formations in the Sichuan Basin, South China: Implications for Pore Evolution. Journal of Natural Gas Science and Engineering, 38:21-38. doi: 10.1016/j.jngse.2016.11.037 [41] Zhao, J.H., Jin, Z.J., Jin, Z.K., et al., 2016. The Genesis of Quartz in Wufeng-Longmaxi Gas Shales, Sichuan Basin. Natural Gas Geoscience, 27(2): 377-386 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201602020 [42] 陈旭, 陈清, 甄勇毅, 等, 2018.志留纪初宜昌上升及其周缘龙马溪组黑色笔石页岩的圈层展布模式.中国科学(D辑:地球科学), 48(9):1198-1026. http://www.cnki.com.cn/Article/CJFDTotal-JDXK201809006.htm [43] 陈旭, 樊隽轩, 张元动, 等, 2015.五峰组及龙马溪组黑色页岩在扬子覆盖区内的划分与圈定.地层学杂志, 39(4): 351-358. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dcxzz201504001 [44] 郭旭升, 2017.上扬子地区五峰组-龙马溪组页岩层序地层及演化模式.地球科学, 42(7): 1069-1082. doi: 10.3799/dqkx.2017.086 [45] 何治亮, 胡宗全, 聂海宽, 等, 2017.四川盆地五峰组-龙马溪组页岩气富集特征与"建造-改造"评价思路.天然气地球科学, 28(5):724-733. http://www.cnki.com.cn/Article/CJFDTotal-TDKX201705007.htm [46] 金之钧, 胡宗全, 高波, 等, 2016.川东南地区五峰组-龙马溪组页岩气富集与高产控制因素.地学前缘, 23(1):1-10. http://d.old.wanfangdata.com.cn/Periodical/dxqy201601001 [47] 梁狄刚, 郭彤楼, 边立曾, 等, 2009.中国南方海相生烃成藏研究的若干新进展(三):南方四套区域性海相烃源岩的沉积相及发育的控制因素.海相油气地质, 14(2): 1-19. doi: 10.3969/j.issn.1672-9854.2009.02.001 [48] 林俊峰, 胡海燕, 黎祺, 等, 2017.川东焦石坝地区页岩气特征及其意义.地球科学, 42(7): 1124-1133. doi: 10.3799/dqkx.2017.091 [49] 刘洪林, 郭伟, 刘德勋, 等, 2018.海相页岩成岩过程中的自生催化作用.天然气工业, 38(5): 17-25. http://www.cnki.com.cn/Article/CJFDTotal-TRQG201805003.htm [50] 刘江涛, 李永杰, 张元春, 等, 2017.焦石坝五峰组-龙马溪组页岩硅质生物成因的证据及其地质意义.中国石油大学学报(自然科学版), 41(1): 34-41. doi: 10.3969/j.issn.1673-5005.2017.01.004 [51] 刘树根, 马文辛, Luba, J., 等, 2011.四川盆地东部地区下志留统龙马溪组页岩储层特征.岩石学报, 27(8): 2239-2252. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201108003 [52] 马新华, 谢军, 2018.川南地区页岩气勘探开发进展及发展前景: 石油勘探与开发, 45(1): 161-169. http://www.cnki.com.cn/Article/CJFDTotal-SKYK201801020.htm [53] 聂海宽, 包书景, 高波, 等, 2012.四川盆地及其周缘下古生界页岩气保存条件研究.地学前缘, 19(3): 280-294. http://d.old.wanfangdata.com.cn/Periodical/dxqy201203030 [54] 聂海宽, 金之钧, 边瑞康, 等, 2016.四川盆地及其周缘上奥陶统五峰组-下志留统龙马溪组页岩气"源-盖控藏"富集.石油学报, 37(5): 557-571. http://www.cnki.com.cn/Article/CJFDTotal-SYXB201605001.htm [55] 聂海宽, 金之钧, 马鑫, 等, 2017.四川盆地及邻区上奥陶统五峰组-下志留统龙马溪组底部笔石带及沉积特征.石油学报, 38(2): 160-174. http://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201702004.htm [56] 秦建中, 申宝剑, 付小东, 等, 2010.中国南方海相优质烃源岩超显微有机岩石学与生排烃潜力.石油与天然气地质, 31(6): 826-837. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201006016 [57] 戎嘉余, 陈旭, 王怿, 等, 2011.奥陶-志留纪之交黔中古陆的变迁:证据与启示.中国科学(D辑:地球科学), 41(10):1407-1415. http://www.cnki.com.cn/Article/CJFDTotal-JDXK201110003.htm [58] 王秀平, 牟传龙, 葛详英, 等, 2015a.川南及邻区龙马溪组黑色岩系矿物组分特征及评价.石油学报, 36(2):150-162. http://d.old.wanfangdata.com.cn/Periodical/syxb201502003 [59] 王秀平, 牟传龙, 王启宇, 等, 2015b.川南及邻区龙马溪组黑色岩系成岩作用.石油学报, 36(9):1035-1047. http://d.old.wanfangdata.com.cn/Periodical/syxb201509002 [60] 张国伟, 郭安林, 王岳军, 等, 2013.中国华南大陆构造与问题.中国科学(D辑:地球科学), 43(10): 1553-1582. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201310003 [61] 赵建华, 金之钧, 金振奎, 等, 2016.四川盆地五峰组-龙马溪组含气页岩中石英成因研究.天然气地球科学, 27(2): 377-386. http://www.cnki.com.cn/Article/CJFDTotal-TDKX201602022.htm