Characteristics and Driving Factor of Hydrochemical Evolution in Karst Water in the Critical Zone of Liupanshui Mining Area
-
摘要: 贵州六盘水矿区地表水-地下水交换频繁,是重要的生活和工、农业用水水源,为保障该地区用水安全和可持续性,以六盘水典型矿业集中开发区为研究对象,于2015年9月共采集水样33件.运用水化学、相关性分析和离子比值法等进行了综合研究,结果表明:地下水化学类型大多为Ca-HCO3型,部分为Ca-SO4型;地表水大多为Ca-HCO3、Ca-SO4型;矿井水为NaHCO3,而酸性矿山排水为Ca-SO4型.水体中Ca2+、Mg2+和HCO3-呈显著正相关性,主要由碳酸盐岩溶解控制,Na+和K+主要为硅酸盐岩溶解,Cl-主要来源于城镇生活污水,NO3-主要受农业生产影响,SO42-来源多样.矿业活动、城镇化和农业生产影响了水体离子组成,矿业活动还会加速碳酸盐岩的溶解,三者使水体水化学类型发生明显变化.喀斯特岩溶关键带人类活动复合影响下,矿业活动是岩溶水系统中水化学特征变化的关键驱动因子.Abstract: The surface water and groundwater which are critical resources for daily life, industrial and agricultural production exchange frequently in Liupanshui mining area.To ensure the security and sustainability of water system in the karst critical zone, thirty-three water samples were collected from the typical Liupanshui mining area in September 2015. They were analyzed by using the methods of hydrochemistry, correlation analysis and ion ratios. The results show most groundwater hydrochemical type was CaHCO3 type, and some was Ca-SO4 type. Most surface water was Ca-HCO3 type and Ca-SO4 type. Differently, the mine waste water was Na-HCO3 type and the acid mine waste water was Ca-SO4 type. There was a significant positive correlation between Ca2+, Mg2+ and HCO3- which was mainly controlled by reaction between water and carbonate, and some Na+ and K+ were controlled by reaction between water and silicate. The sources of Cl- were mainly sewage, most of NO3- were affected by agricultural production, and SO42- came from multiple sources. Mining activities, urbanization and agricultural production have affected the compositions of water ions, in addition mining activities have accelerated the dissolution of carbonate. These three factors have made significant changes in the hydrochemistry types. Under these compound influences affected by human activities, mining activities are the key driving factors for the changes of hydrochemical characteristics in water system of the karst critical zone.
-
Key words:
- karst mining area /
- compound influence /
- hydrochemical evolution /
- driving factor /
- hydrogeology
-
表 1 研究区基础水质数据
Table 1. Basic data of water quality in the study area
样品名称 样品类型 经度 纬度 K+ Ca2+ Na+ Mg2+ HCO3- Cl- SO42- NO3- F- TDS pH EC
(μs/cm)Eh
(mV)DO
(mg/L)T(℃) 备注 (mg/L) M-S1 泉水 104.86° 26.62° 5.05 132.68 38.94 19.28 248.46 35.01 180.89 26.38 0.11 686.81 7.24 836 226 3.89 17.10 水源地保护点 M-S2 泉水 104.79° 26.69° 1.01 72.84 3.54 3.53 119.94 1.14 33.86 17.28 0.19 253.33 7.63 295 241 5.42 17.10 水源地保护点 M-S4 泉水 104.79° 26.70° 0.94 15.41 3.28 3.87 143.72 0.64 19.23 12.01 0.14 199.24 6.71 124 298 8.02 19.00 矿区A1附近 M-S6 泉水 104.85° 26.67° 4.34 76.27 5.24 16.32 197.05 4.42 59.07 35.29 0.19 398.17 7.87 487 223 7.93 18.10 居民区非生活用水 M-S7 泉水 104.85° 26.69° 4.19 143.81 15.06 40.15 250.60 14.52 162.45 141.32 0.23 772.34 7.45 945 240 3.67 18.20 农业区 M-S8 泉水 104.85° 26.69° 2.39 83.84 2.51 18.85 291.29 1.65 50.08 20.66 0.01 471.28 7.78 572 258 6.92 19.40 农业区 M-S10 泉水 104.85° 26.69° 5.88 79.38 9.80 8.07 235.60 3.99 58.55 35.20 0.30 436.77 7.74 529 214 7.74 17.80 居民区生活用水 M-S13 泉水 104.86° 26.63° 11.84 81.00 14.53 9.88 115.66 8.55 86.08 54.77 0.16 382.47 8.07 507 219 5.61 19.40 农业区 M-S14 泉水 104.85° 26.62° 0.15 10.05 6.34 3.89 8.57 0.03 18.86 19.08 0.08 67.06 7.57 105 266 7.80 18.40 自然保护区 M-S3 井水 104.79° 26.71° 0.95 55.18 6.72 7.81 162.78 0.56 26.78 8.19 0.43 269.39 7.88 309 204 6.71 19.60 水源地保护点深层地下水 M-S5 井水 104.76° 26.71° 2.48 82.65 7.58 3.27 137.08 5.29 76.34 19.98 0.09 334.76 7.76 425 206 8.18 19.80 矿区生活用水 M-S9 井水 104.85° 26.69° 3.55 102.46 9.83 53.63 346.98 7.85 93.84 75.09 0.78 694.03 7.59 805 238 4.72 18.40 居民区生活用水 M-S12 井水 104.84° 26.63° 10.54 78.64 116.42 15.07 214.19 56.89 204.35 50.52 0.16 746.77 6.98 993 237 3.69 18.80 矿区非饮用水 M-S15 井水 104.87° 26.62° 1.82 68.87 8.78 8.69 171.35 2.56 58.07 15.33 0.07 335.56 7.54 451 156 2.44 18.30 居民区非生活用水 M-S16 井水 104.86° 26.64° 2.79 60.90 18.85 8.98 171.35 1.40 69.63 1.69 0.11 335.70 7.52 402 222 1.89 18.00 农业区 M-S17 井水 104.86° 26.64° 5.48 70.83 10.43 9.38 205.62 3.78 37.26 12.13 0.20 335.10 7.45 425 228 2.44 19.40 农业区 M-S18 井水 104.86° 26.64° 6.83 58.21 2.51 13.78 179.92 0.71 29.59 18.53 0.22 310.30 7.68 366 223 7.14 18.60 农业区 M-S11 地下河水 104.86° 26.69° 3.11 71.14 4.09 12.55 175.63 1.95 40.90 18.44 0.17 327.98 7.84 394 212 7.54 22.40 山体地下暗河出水 均值 -- -- -- 4.07 74.68 15.80 14.28 187.54 8.39 72.55 32.33 0.20 408.73 7.57 498 228 5.65 18.77 -- 标准差 -- -- -- 3.20 32.30 26.53 13.08 74.71 14.63 55.49 32.81 0.17 195.94 0.33 252 29 2.19 1.20 -- M-R1 河水 104.79° 26.71° 2.74 36.23 22.27 10.64 68.54 3.81 86.43 27.53 0.31 258.50 8.30 351 195 7.46 19.40 流经农业区 M-R2 河水 104.79° 26.71° 2.08 49.65 7.60 8.17 64.26 1.23 95.25 12.05 0.23 240.52 8.72 337 177 8.11 19.70 流经农业区 M-R3 河水 104.80° 26.70° 3.10 64.34 36.41 13.43 98.53 3.66 180.85 2.64 1.18 404.12 7.55 566 254 6.80 19.40 矿区生活污水混合煤矿水 M-R4 河水 104.80° 26.69° 4.28 63.52 84.01 10.14 244.17 20.79 124.38 19.36 0.22 570.88 8.11 725 194 7.68 19.40 矿区“黑”水 M-R5 河水 104.80° 26.70° 4.74 62.12 221.49 13.48 441.22 91.92 150.83 11.91 0.40 998.11 8.40 1207 161 7.42 20.40 矿区“黑”水 M-R6 河水 104.78° 26.69° 1.76 69.74 9.37 8.40 141.36 2.95 73.55 11.73 0.14 319.02 7.78 402 164 6.95 19.00 流经城镇生活区 M-R7 河水 104.80° 26.69° 1.81 69.61 15.78 7.89 167.92 3.94 74.89 17.16 0.22 359.22 7.84 408 208 5.05 19.60 流经城镇生活区 M-R8 河水 104.83° 26.67° 1.72 67.65 17.53 7.85 141.36 3.90 76.80 14.43 0.19 331.43 8.03 417 207 8.16 20.00 流经城镇生活区 M-R9 河水 104.86 26.69 2.06 68.11 16.28 7.91 149.93 4.10 74.72 12.79 0.52 336.43 7.97 418 178 7.85 23.40 流经山区 M-R10 河水 104.85° 26.63° 8.64 101.28 24.92 11.99 175.63 18.58 131.65 25.10 0.29 498.07 8.01 649 205 5.05 20.40 流经城镇生活区 M-R11 河水 104.83° 26.66° 9.13 85.55 121.68 13.03 325.56 29.55 172.27 18.59 0.45 775.80 8.10 1000 215 7.16 21.60 城镇区黑臭水 M-R12 河水 104.86° 26.62° 10.69 104.23 35.56 11.95 162.78 54.74 153.25 18.59 0.49 552.28 8.05 716 219 6.03 20.80 城镇区黑臭水 均值 -- -- -- 4.40 70.17 51.07 10.41 181.77 19.93 116.24 15.99 0.39 470.37 8.07 600 198 6.98 20.26 -- 标准差 -- -- -- 3.25 19.29 63.46 2.31 108.84 27.66 40.81 6.63 0.28 226.43 0.30 276 26 1.08 1.23 -- M-W1 矿井水 104.84° 26.64° 9.36 25.90 553.35 7.91 942.42 179.05 141.60 5.25 0.78 1865.60 8.48 2130 156 4.87 14.80 矿区矿井原水 M-W2 矿井水 104.84° 26.64° 5.25 49.87 453.45 6.54 663.98 190.93 118.92 3.13 0.22 1492.30 8.25 1815 200 6.45 19.90 矿区处理出水 均值 -- -- -- 7.30 37.88 503.40 7.23 803.20 184.99 130.26 4.19 0.50 1678.95 8.36 1973 178 5.66 17.35 -- 标准差 -- -- -- 2.91 16.95 70.64 0.97 196.89 8.40 16.04 1.50 0.39 263.96 0.17 223 31 1.12 3.61 -- M-A1 矿山水 104.79° 26.70° 1.19 99.87 9.32 40.31 0.00 0.19 671.05 7.07 0.49 829.48 3.82 1232 460 7.83 19.10 酸性矿山排水 注:S表示地下水,R表示地表水,W表示矿井水,A表示酸性矿山废水,--表示无此项内容. 表 2 研究区地下水各离子相关性
Table 2. Correlation matrix between groundwater chemical variables
变量 Ca2+ Mg2+ Na++K+ HCO3- Cl- SO42- NO3- F- TDS pH EC Eh DO T Ca2+ 1 Mg2+ 0.647** 1 Na++K+ 0.238 0.092 1 HCO3- 0.681** 0.759* 0.170 1 Cl- 0.435 0.226 0.945** 0.279 1 SO42- 0.725** 0.473* 0.473* 0.780** 0.897** 1 NO3- 0.657** 0.756** 0.213 0.416 0.323 0.597** 1 F- 0.201 0.646** -0.069 0.476* -0.047 0.023 0.347 1 TDS 0.851** 0.757** 0.757** 0.783** 0.715** 0.886** 0.713** 0.310 1 pH 0.121 -0.019 -0.449 -0.076 -0.482* -0.341 -0.027 0.123 -0.210 1 EC 0.847* 0.702** 0.642** 0.722* 0.754* 0.910** 0.697** 0.246 0.988** -0.155 1 Eh -0.281 0.085 0.004 -0.055 0.032 -0.063 0.106 -0.028 -0.059 -0.494* -0.138 1 DO -0.396 -0.268 -0.379 -0.282 -0.359 -0.466 -0.185 -0.019 -0.426 0.272 -0.461 0.303 1 T -0.206 -0.122 -0.113 -0.093 -0.189 -0.266 -0.152 -0.050 -0.212 0.261 -0.199 -0.096 0.317 1 注:**表示在0.01水平(双侧)上显著相关;*表示在0.05水平(双侧)上显著相关. 表 3 研究区地表水各离子相关性
Table 3. Correlation matrix between surface water chemical variables
变量 Ca2+ Mg2+ Na++K+ HCO3– Cl– SO42– NO3– F– TDS pH EC Eh DO T Ca2+ 1 Mg2+ 0.313 1 Na++K+ 0.062 0.660* 1 HCO3– 0.251 0.507 0.939** 1 Cl– 0.310 0.629* 0.860** 0.812** 1 SO42– 0.411 0.928** 0.586* 0.459 0.548 1 NO3– 0.143 0.003 -0.053 0.001 0.023 -0.177 1 F– 0.069 0.575 0.096 -0.066 0.051 0.650* -0.549 1 TDS 0.343 0.714** 0.958** 0.957** 0.890** 0.675* -0.003 0.116 1 pH -0.351 -0.065 0.277 0.148 0.292 -0.108 0.301 -0.456 0.144 1 EC 0.359 0.767** 0.947** 0.928** 0.875** 0.739** -0.008 -0.172 0.995** 0.140 1 Eh 0.317 0.394 -0.206 -0.262 -0.209 0.528 -0.101 0.661* -0.086 -0.540 -0.028 1 DO -0.612* -0.224 0.129 -0.005 -0.072 -0.176 -0.284 -0.047 -0.069 0.438 -0.057 -0.355 1 T 0.340 0.022 0.146 0.251 0.175 0.069 0.016 0.168 0.226 0.032 0.222 -0.083 0.121 1 注:**表示在0.01水平(双侧)上显著相关;*表示在0.05水平(双侧)上显著相关. 表 4 研究区地下水矿物的饱和指数
Table 4. Mineral saturation indices of groundwater in the study area
样品名称 方解石 白云石 萤石 石膏 硬石膏 盐岩 霰石 M-S1 0.16 -0.27 -2.62 -1.19 -1.44 -7.45 0.01 M-S2 0.10 -0.88 -2.27 -1.99 -2.23 -9.94 -0.05 M-S3 0.39 0.22 -1.74 -2.2 -2.44 -9.97 0.25 M-S4 -1.34 -3.01 -3.42 -2.79 -3.03 -10.21 -1.49 M-S5 0.35 -0.43 -2.97 -1.63 -1.86 -8.96 0.20 M-S6 0.54 0.66 -2.35 -1.80 -2.04 -9.2 0.39 M-S7 0.40 0.51 -2.06 -1.26 -1.50 -8.26 0.25 M-S8 0.67 0.96 -4.81 -1.85 -2.09 -9.95 0.52 M-S9 0.57 1.11 -1.12 -1.61 -1.85 -8.70 0.42 M-S10 0.50 0.26 -1.92 -1.78 -2.02 -8.97 0.35 M-S11 0.51 0.58 -2.51 -1.96 -2.19 -9.67 0.36 M-S12 -0.37 -1.19 -2.58 -1.35 -1.59 -6.77 -0.52 M-S13 0.54 0.44 -2.51 -1.62 -1.86 -8.47 0.39 M-S14 -1.87 -3.88 -3.84 -2.93 -3.41 -11.21 -2.01 M-S15 0.13 -0.38 -3.21 -1.81 -2.05 -9.2 -0.02 M-S16 0.05 -0.47 -2.90 -1.78 -2.02 -9.13 -0.09 M-S17 0.15 -0.31 -2.34 -1.99 -2.23 -8.96 0.00 M-S18 0.24 0.11 -2.31 -2.16 -2.40 -10.3 0.09 -
[1] Buckerfield, S. J., Waldron, S., Quilliam, R. S., et al., 2019. How can we Improve Understanding of Faecal Indicator Dynamics in Karst Systems under Changing Climatic, Population, and Land Use Stressors? — Research Opportunities in SW China. Science of the Total Environment, 646: 438-447. https://doi.org/10.1016/j.scitotenv.2018.07.292 [2] Cao, J.H., Jiang, Z.C., Yuan, D.X., et al., 2017.The Progress in the Study of the Karst Dynamic System and Global Changes in the Past 30 Years.Geology in China, 44(5):874-900 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DIZI201705005.htm [3] Cao, J. H., Yuan, D. X., Tong, L. Q., et al., 2015. An Overview of Karst Ecosystem in Southwest China: Current State and Future Management. Journal of Resources and Ecology, 6(4): 247-256. https://doi.org/10.5814/j.issn.1674-764x.2015.04.008 [4] Caschetto, M., Colombani, N., Mastrocicco, M., et al., 2017. Nitrogen and Sulphur Cycling in the Saline Coastal Aquifer of Ferrara, Italy. A Multi-Isotope Approach. Applied Geochemistry, 76: 88-98. https://doi.org/10.1016/j.apgeochem.2016.11.014 [5] Cheung, K., Klassen, P., Mayer, B., et al., 2010. Major Ion and Isotope Geochemistry of Fluids and Gases from Coalbed Methane and Shallow Groundwater Wells in Alberta, Canada. Applied Geochemistry, 25(9): 1307-1329. https://doi.org/10.1016/j.apgeochem.2010.06.002 [6] Gutiérrez, F., Gutiérrez, M., 2016. Landforms of the Earth: An Illustrated Guide. Springer International Publishing, Switzerland. [7] Han, G. L., Liu, C. Q., 2004. Water Geochemistry Controlled by Carbonate Dissolution: A Study of the River Waters Draining Karst-Dominated Terrain, Guizhou Province, China. Chemical Geology, 204(1-2): 1-21. https://doi.org/10.1016/j.chemgeo.2003.09.009 [8] Hartmann, A., Goldscheider, N., Wagener, T., et al., 2014. Karst Water Resources in a Changing World: Review of Hydrological Modeling Approaches. Reviews of Geophysics, 52(3): 218-242. https://doi.org/10.1002/2013rg000443 [9] Hendry, M. J., Cherry, J. A., Wallick, E. I., 1986. Origin and Distribution of Sulfate in a Fractured till in Southern Alberta, Canada. Water Resources Research, 22(1): 45-61. https://doi.org/10.1029/wr022i001p00045 [10] Hosono, T., Tokunaga, T., Tsushima, A., et al., 2014. Combined Use of δ13C, δ15N, and δ34S Tracers to Study Anaerobic Bacterial Processes in Groundwater Flow Systems. Water Research, 54: 284-296. https://doi.org/10.1016/j.watres.2014.02.005 [11] Jia, Y. N., Yuan, D. X., 2004. The Influence of Land Use Change on Karst Water Quality of Shuicheng Basin in Guizhou Province. Journal of Geographical Sciences, 14(2): 143-150. https://doi.org/10.1007/bf02837529 [12] Kalhor, K., Ghasemizadeh, R., Rajic, L., et al., 2019. Assessment of Groundwater Quality and Remediation in Karst Aquifers: A Review. Groundwater for Sustainable Development, 8: 104-121. https://doi.org/10.1016/j.gsd.2018.10.004 [13] Li, H., Wen, Z., Xie, X.J., et al., 2017.Hydrochemical Characteristics and Evolution of Karst Groundwater in Sanqiao District of Guiyang City.Earth Science, 42(5):804-812 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201705016 [14] Li, X. D., Liu, C. Q., Harue, M., et al., 2010. The Use of Environmental Isotopic (C, Sr, S) and Hydrochemical Tracers to Characterize Anthropogenic Effects on Karst Groundwater Quality: A Case Study of the Shuicheng Basin, SW China. Applied Geochemistry, 25(12): 1924-1936. https://doi.org/10.1016/j.apgeochem.2010.10.008 [15] Li, X. X., Wu, P., Han, Z. W., et al., 2016. Sources, Distributions of Fluoride in Waters and Its Influencing Factors from an Endemic Fluorosis Region in Central Guizhou, China. Environmental Earth Sciences, 75(11): 981-995. https://doi.org/10.1007/s12665-016-5779-y [16] Liu, X.L., Liu, C.Q., Li, S.L., et al., 2010.Evaluation of Ground Water in Liupanshui City of Guizhou Province Based on the Determination of δ13C and 87Sr/86Sr. Chinese Journal of Ecology, 29(5):978-984 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxzz201005024 [17] Massmann, G., Tichomirowa, M., Merz, C., et al., 2003. Sulfide Oxidation and Sulfate Reduction in a Shallow Groundwater System (Oderbruch Aquifer, Germany). Journal of Hydrology, 278(1-4): 231-243. https://doi.org/10.1016/s0022-1694(03)00153-7 [18] Pauwels, H., Ayraud-Vergnaud, V., Aquilina, L., et al., 2010a. The Fate of Nitrogen and Sulfur in Hard-Rock Aquifers as Shown by Sulfate-Isotope Tracing. Applied Geochemistry, 25(1): 105-115. https://doi.org/10.1016/j.apgeochem.2009.11.001 [19] Pauwels, H., Pettenati, M., Greffié, C., 2010b. The Combined Effect of Abandoned Mines and Agriculture on Groundwater Chemistry. Journal of Contaminant Hydrology, 115(1-4): 64-78. https://doi.org/10.1016/j.jconhyd.2010.04.003 [20] Pu, J. B., Cao, M., Zhang, Y. Z., et al., 2014. Hydrochemical Indications of Human Impact on Karst Groundwater in a Subtropical Karst Area, Chongqing, China. Environmental Earth Sciences, 72(5): 1683-1695. https://doi.org/10.1007/s12665-014-3073-4 [21] Puig, R., Folch, A., Menció, A., et al., 2013. Multi-Isotopic Study (15N, 34S, 18O, 13C) to Identify Processes Affecting Nitrate and Sulfate in Response to Local and Regional Groundwater Mixing in a Large-Scale Flow System. Applied Geochemistry, 32: 129-141. https://doi.org/10.1016/j.apgeochem.2012.10.014 [22] Qi, F.Q., 2017. Main Types and Characteristics of Groundwater in Liupanshui. Resource Information and Engineering, 32(3):77-78 (in Chinese with English abstract). [23] Rashid, A., Khattak, S. A., Ali, L., et al., 2019. Geochemical Profile and Source Identification of Surface and Groundwater Pollution of District Chitral, Northern Pakistan. Microchemical Journal, 145: 1058-1065. https://doi.org/10.1016/j.microc.2018.12.025 [24] Schilling, K. E., Jacobson, P. J., Vogelgesang, J. A., 2015. Agricultural Conversion of Floodplain Ecosystems: Implications for Groundwater Quality. Journal of Environmental Management, 153: 74-83. https://doi.org/10.1016/j.jenvman.2015.02.004 [25] Shi, B., 2016.Coal Resource Potential Evaluation in Liupanshui Coalfield, Guizhou Province.Coal Quality Technology, (3):26-33 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=mzjs201603010 [26] Sun, J., Kobayashi, T., Strosnider, W. H. J., et al., 2017. Stable Sulfur and Oxygen Isotopes as Geochemical Tracers of Sulfate in Karst Waters. Journal of Hydrology, 551: 245-252. https://doi.org/10.1016/j.jhydrol.2017.06.006 [27] Sutton, J. E., Screaton, E. J., Martin, J. B., 2014. Insights on Surface-Water/Groundwater Exchange in the Upper Floridan Aquifer, North-Central Florida (USA), from Streamflow Data and Numerical Modeling. Hydrogeology Journal, 23(2): 305-317. https://doi.org/10.1007/s10040-014-1213-2 [28] Touhari, F., Meddi, M., Mehaiguene, M., et al., 2014. Hydrogeochemical Assessment of the Upper Cheliff Groundwater (North West Algeria). Environmental Earth Sciences, 73(7): 3043-3061. https://doi.org/10.1007/s12665-014-3598-6 [29] World Health Organization, 2008. Guidelines for Drinking-Water Quality, Second Edition. World Health Organization, Geneva. https://www.who.int/water_sanitation_health/dwq/2edvol1i.pdf [30] Wu, P., Tang, C. Y., Zhu, L. J., et al., 2009. Hydrogeochemical Characteristics of Surface Water and Groundwater in the Karst Basin, Southwest China. Hydrological Processes, 23(14): 2012-2022. https://doi.org/10.1002/hyp.7332 [31] Wu, Y., Luo, Z. H., Luo, W., et al., 2018. Multiple Isotope Geochemistry and Hydrochemical Monitoring of Karst Water in a Rapidly Urbanized Region. Journal of Contaminant Hydrology, 218: 44-58. https://doi.org/10.1016/j.jconhyd.2018.10.009 [32] Yu, H.T., Ma, T., Deng, Y.M., et al., 2017.Hydrochemical Characteristics of Shallow Groundwater in Eastern Jianghan Plain. Earth Science, 42(5):685-692 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201705004 [33] 曹建华, 蒋忠诚, 袁道先, 等, 2017.岩溶动力系统与全球变化研究进展.中国地质, 44(5):874-900. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201705005 [34] 李华, 文章, 谢先军, 等, 2017.贵阳市三桥地区岩溶地下水水化学特征及其演化规律.地球科学, 42(5):804-812. http://d.old.wanfangdata.com.cn/Periodical/dqkx201705016 [35] 刘小龙, 刘丛强, 李思亮, 等, 2010.碳与锶同位素在六盘水地下水研究中的应用.生态学杂志, 29(5):978-984. http://d.old.wanfangdata.com.cn/Periodical/stxzz201005024 [36] 祁芙前, 2017.六盘水市主要地下水类型及特征.资源信息与工程, 32(3): 77-78. doi: 10.3969/j.issn.2095-5391.2017.03.038 [37] 石碧, 2016.贵州省六盘水煤田煤炭资源潜力评价.煤质技术, (3):26-33. doi: 10.3969/j.issn.1007-7677.2016.03.010 [38] 於昊天, 马腾, 邓娅敏, 等, 2017.江汉平原东部地区浅层地下水水化学特征.地球科学, 42(5):685-692. http://d.old.wanfangdata.com.cn/Periodical/dqkx201705004